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Preface

Language is a process of free creation; its laws and princi-
ples are fixed, but the manner in which the principles of
generation are used is free and infinitely varied. Even the
interpretation and use of words involves a process of free
creation.

Noam Chomsky (1928-)

In order to reduce the complexity of designing and building computers, nearly all
of these are made to execute relatively simple commands (but do so very quickly).
A program for a computer must be built by combining these very simple commands
into a program in what is called machine language. Since this is a tedious and
error-prone process most programming is, instead, done using a high-level pro-
gramming language. This language can be very different from the machine lan-
guage that the computer can execute, so some means of bridging the gap is
required. This is where the compiler comes in.

A compiler translates (or compiles) a program written in a high-level pro-
gramming language, that is suitable for human programmers, into the low-level
machine language that is required by computers. During this process, the compiler
will also attempt to detect and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast
programs can be developed. The main reasons for this are

e Compared to machine language, the notation used by programming languages is
closer to the way humans think about problems.

e The compiler can detect some types of programming mistakes.

e Programs written in a high-level language tend to be shorter than equivalent
programs written in machine language.

Another advantage of using a high-level language is that the same program can be
compiled to many different machine languages and, hence, be brought to run on
many different machines.
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On the other hand, programs that are written in a high-level language and
automatically translated to machine language may run somewhat slower than
programs that are hand-coded in machine language. Hence, some time-critical
programs are still written partly in machine language. A good compiler will,
however, be able to get very close to the speed of hand-written machine code when
translating well-structured programs.

The Phases of a Compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with
well-defined interfaces between them. Conceptually, these phases operate in
sequence (though in practice, they are often interleaved), each phase (except the
first) taking the output from the previous phase as its input. It is common to let each
phase be handled by a separate program module. Some of these modules are written
by hand, while others may be generated from specifications. Often, some of the
modules can be shared between several compilers.

A common division into phases is described below. In some compilers, the
ordering of phases may differ slightly, some phases may be combined or split into
several phases or some extra phases may be inserted between those mentioned
below.

Lexical This is the initial part of reading and analyzing the program text:

analysis The text is read and divided into fokens, each of which
corresponds to a symbol in the programming language, e.g., a
variable name, keyword, or number. Lexical analysis is often
abbreviated to lexing.

Syntax This phase takes the list of tokens produced by the lexical

analysis analysis and arranges these in a tree structure (called the syntax
tree) that reflects the structure of the program. This phase is often
called parsing.

Type This phase analyses the syntax tree to determine if the program

checking violates certain consistency requirements, e.g., if a variable is
used but not declared, or if it is used in a context that does not
make sense given the type of the variable, such as trying to use a
Boolean value as a function pointer.

Intermediate =~ The program is translated to a simple machine-independent

code intermediate language.

generation

Register The symbolic variable names used in the intermediate code are

allocation translated to numbers, each of which corresponds to a register in

the target machine code.
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Machine code The intermediate language is translated to assembly language

generation (a textual representation of machine code) for a specific machine
architecture.

Assembly and The assembly language code is translated into binary represen-

linking tation and addresses of variables, functions, etc., are determined

The first three phases are collectively called the front-end of the compiler and the
last three phases are collectively called the back-end. The middle part of the
compiler is in this context only the intermediate code generation, but this often
includes various optimisations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes invariants on the
data it passes on to the next phase. For example, the type checker can assume the
absence of syntax errors, and the code generation can assume the absence of type
errors. These invariants can reduce the burden of writing the later phases.

Assembly and linking are typically done by programs supplied by the machine
or operating system vendor, and are hence not part of the compiler itself. We will
not further discuss these phases in this book, but assume that a compiler produces
its result as symbolic assembly code.

Interpreters

An interpreter is another way of implementing a programming language.
Interpretation shares many aspects with compiling. Lexing, parsing, and type
checking are in an interpreter done just as in a compiler. But instead of generating
code from the syntax tree, the syntax tree is processed directly to evaluate
expressions, execute statements, and so on. An interpreter may need to process the
same piece of the syntax tree (for example, the body of a loop) many times and,
hence, interpretation is typically slower than executing a compiled program. But
writing an interpreter is often simpler than writing a compiler, and an interpreter is
easier to move to a different machine, so for applications where speed is not of
essence, or where each part of the program is executed only once, interpreters are
often used.

Compilation and interpretation may be combined to implement a programming
language. For example, the compiler may produce intermediate-level code which is
then interpreted rather than compiled to machine code. In some systems, there may
even be parts of a program that are compiled to machine code, some parts that are
compiled to intermediate code that is interpreted at runtime, while other parts may
be interpreted directly from the syntax tree. Each choice is a compromise between
speed and space: Compiled code tends to be bigger than intermediate code, which
tend to be bigger than syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is more
important to be able to test a program modification quickly rather than run the
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program efficiently. And since interpreters do less work on the program before exe-
cution starts, they are able to start running the program more quickly. Furthermore,
since an interpreter works on a program representation that is closer to the source code
than is compiled code, error messages can be more precise and informative.

We will discuss interpreters briefly in Chap. 4, but they are not the main focus of
this book.

Why Learn About Compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Java, or SML. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are

(a) It is considered a topic that you should know in order to be “well-cultured” in
computer science.

(b) A good craftsman should know his tools, and compilers are important tools for
programmers and computer scientists.

(c) The techniques used for constructing a compiler are useful for other purposes as
well.

(d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.

Reason “b” is more convincing: Understanding how a compiler is built will
allow programmers to get an intuition about what their high-level programs will
look like when compiled, and use this intuition to tune programs for better effi-
ciency. Furthermore, the error reports that compilers provide are often easier to
understand when one knows about and understands the different phases of com-
pilation, such as knowing the difference between lexical errors, syntax errors, type
errors, and so on.

The third reason is also quite valid. In particular, the techniques used for reading
(lexing and parsing) the text of a program and converting this into a form (abstract
syntax) that is easily manipulated by a computer, can be used to read and manip-
ulate any kind of structured text such as XML documents, address lists, etc.

Reason “d” is becoming more and more important as domain-specific languages
(DSLs) are gaining in popularity. A DSL is a (typically small) language designed for
a narrow class of problems. Examples are database query languages, text-formatting
languages, scene description languages for ray-tracers, and languages for setting up
economic simulations. The target language for a compiler for a DSL may be tra-
ditional machine code, but it can also be another high-level language for which
compilers already exist, a sequence of control signals for a machine, or formatted
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text and graphics in some printer-control language (e.g., PostScript), and DSLs are
often interpreted instead of compiled. Even so, all DSL compilers and interpreters
will have front-ends for reading and analyzing the program text that are similar to
those used in compilers and interpreters for general-purpose languages.

In brief, the methods needed to make a compiler front-end are more widely
applicable than the methods needed to make a compiler back-end, but the latter is
more important for understanding how a program is executed on a machine.

About the Second Edition of the Book

The second edition has been extended with material about optimisations for
function calls and loops, and about dataflow analysis, which can be used for various
optimisations. This extra material is aimed at advanced BSc-level courses or
MSc-level courses.

To the Lecturer

This book was written for use in the introductory compiler course at DIKU, the
Department of Computer Science at the University of Copenhagen, Denmark.

At times, standard techniques from compiler construction have been simplified
for presentation in this book. In such cases, references are made to books or articles
where the full version of the techniques can be found.

The book aims at being “language neutral”. This means two things

e Little detail is given about how the methods in the book can be implemented in
any specific language. Rather, the description of the methods is given in the
form of algorithm sketches and textual suggestions of how these can be
implemented in various types of languages, in particular imperative and func-
tional languages.

e There is no single through-going example of a language to be compiled. Instead,
different small (sub-)languages are used in various places to cover exactly the
points that the text needs. This is done to avoid drowning in detail, hopefully
allowing the readers to “see the wood for the trees”.

Each chapter has a section on further reading, which suggests additional reading
material for interested students. Each chapter has a set of exercises. Few of these
require access to a computer, but can be solved on paper or blackboard. After some
of the sections in the book, a few easy exercises are listed as suggested exercises. It
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is recommended that the student attempts to solve these exercises before continuing
reading, as the exercises support understanding of the previous sections.

Teaching with this book can be supplemented with project work, where students
write simple compilers. Since the book is language neutral, no specific project is
given. Instead, the teacher must choose relevant tools and select a project that fits
the level of the students and the time available. Depending on the amount of project
work and on how much of the advanced material added in the second edition is
used, the book can support course sizes ranging from 5-10 ECTS points.

The following link contains extra material for the book, including solutions to
selected exercises—http://www.diku.dk/ ~ torbenm/ICD/.

Copenhagen, Denmark Torben Zgidius Mogensen


http://www.diku.dk/~torbenm/ICD/
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