Undergraduate Topics in Computer Science

Series editor

Tan Mackie

Adyvisory board

Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S Skiena, Stony Brook University, Stony Brook, USA

Tain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

Torben ZAgidius Mogensen

Introduction to Compiler
Design

Second Edition

@ Springer

Torben Agidius Mogensen
Datalogisk Institut
Kabenhavns Universitet

Copenhagen

Denmark

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science

ISBN 978-3-319-66965-6 ISBN 978-3-319-66966-3 (eBook)

https://doi.org/10.1007/978-3-319-66966-3
Library of Congress Control Number: 2017954288

1st edition: © Springer-Verlag London Limited 2011

2nd edition: © Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Language is a process of free creation; its laws and princi-
ples are fixed, but the manner in which the principles of
generation are used is free and infinitely varied. Even the
interpretation and use of words involves a process of free
creation.

Noam Chomsky (1928-)

In order to reduce the complexity of designing and building computers, nearly all
of these are made to execute relatively simple commands (but do so very quickly).
A program for a computer must be built by combining these very simple commands
into a program in what is called machine language. Since this is a tedious and
error-prone process most programming is, instead, done using a high-level pro-
gramming language. This language can be very different from the machine lan-
guage that the computer can execute, so some means of bridging the gap is
required. This is where the compiler comes in.

A compiler translates (or compiles) a program written in a high-level pro-
gramming language, that is suitable for human programmers, into the low-level
machine language that is required by computers. During this process, the compiler
will also attempt to detect and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast
programs can be developed. The main reasons for this are

e Compared to machine language, the notation used by programming languages is
closer to the way humans think about problems.

e The compiler can detect some types of programming mistakes.

e Programs written in a high-level language tend to be shorter than equivalent
programs written in machine language.

Another advantage of using a high-level language is that the same program can be
compiled to many different machine languages and, hence, be brought to run on
many different machines.

vi Preface

On the other hand, programs that are written in a high-level language and
automatically translated to machine language may run somewhat slower than
programs that are hand-coded in machine language. Hence, some time-critical
programs are still written partly in machine language. A good compiler will,
however, be able to get very close to the speed of hand-written machine code when
translating well-structured programs.

The Phases of a Compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with
well-defined interfaces between them. Conceptually, these phases operate in
sequence (though in practice, they are often interleaved), each phase (except the
first) taking the output from the previous phase as its input. It is common to let each
phase be handled by a separate program module. Some of these modules are written
by hand, while others may be generated from specifications. Often, some of the
modules can be shared between several compilers.

A common division into phases is described below. In some compilers, the
ordering of phases may differ slightly, some phases may be combined or split into
several phases or some extra phases may be inserted between those mentioned
below.

Lexical This is the initial part of reading and analyzing the program text:

analysis The text is read and divided into fokens, each of which
corresponds to a symbol in the programming language, e.g., a
variable name, keyword, or number. Lexical analysis is often
abbreviated to lexing.

Syntax This phase takes the list of tokens produced by the lexical

analysis analysis and arranges these in a tree structure (called the syntax
tree) that reflects the structure of the program. This phase is often
called parsing.

Type This phase analyses the syntax tree to determine if the program

checking violates certain consistency requirements, e.g., if a variable is
used but not declared, or if it is used in a context that does not
make sense given the type of the variable, such as trying to use a
Boolean value as a function pointer.

Intermediate =~ The program is translated to a simple machine-independent

code intermediate language.

generation

Register The symbolic variable names used in the intermediate code are

allocation translated to numbers, each of which corresponds to a register in

the target machine code.

Preface vii

Machine code The intermediate language is translated to assembly language

generation (a textual representation of machine code) for a specific machine
architecture.

Assembly and The assembly language code is translated into binary represen-

linking tation and addresses of variables, functions, etc., are determined

The first three phases are collectively called the front-end of the compiler and the
last three phases are collectively called the back-end. The middle part of the
compiler is in this context only the intermediate code generation, but this often
includes various optimisations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes invariants on the
data it passes on to the next phase. For example, the type checker can assume the
absence of syntax errors, and the code generation can assume the absence of type
errors. These invariants can reduce the burden of writing the later phases.

Assembly and linking are typically done by programs supplied by the machine
or operating system vendor, and are hence not part of the compiler itself. We will
not further discuss these phases in this book, but assume that a compiler produces
its result as symbolic assembly code.

Interpreters

An interpreter is another way of implementing a programming language.
Interpretation shares many aspects with compiling. Lexing, parsing, and type
checking are in an interpreter done just as in a compiler. But instead of generating
code from the syntax tree, the syntax tree is processed directly to evaluate
expressions, execute statements, and so on. An interpreter may need to process the
same piece of the syntax tree (for example, the body of a loop) many times and,
hence, interpretation is typically slower than executing a compiled program. But
writing an interpreter is often simpler than writing a compiler, and an interpreter is
easier to move to a different machine, so for applications where speed is not of
essence, or where each part of the program is executed only once, interpreters are
often used.

Compilation and interpretation may be combined to implement a programming
language. For example, the compiler may produce intermediate-level code which is
then interpreted rather than compiled to machine code. In some systems, there may
even be parts of a program that are compiled to machine code, some parts that are
compiled to intermediate code that is interpreted at runtime, while other parts may
be interpreted directly from the syntax tree. Each choice is a compromise between
speed and space: Compiled code tends to be bigger than intermediate code, which
tend to be bigger than syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is more
important to be able to test a program modification quickly rather than run the

viii Preface

program efficiently. And since interpreters do less work on the program before exe-
cution starts, they are able to start running the program more quickly. Furthermore,
since an interpreter works on a program representation that is closer to the source code
than is compiled code, error messages can be more precise and informative.

We will discuss interpreters briefly in Chap. 4, but they are not the main focus of
this book.

Why Learn About Compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Java, or SML. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are

(a) It is considered a topic that you should know in order to be “well-cultured” in
computer science.

(b) A good craftsman should know his tools, and compilers are important tools for
programmers and computer scientists.

(c) The techniques used for constructing a compiler are useful for other purposes as
well.

(d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.

Reason “b” is more convincing: Understanding how a compiler is built will
allow programmers to get an intuition about what their high-level programs will
look like when compiled, and use this intuition to tune programs for better effi-
ciency. Furthermore, the error reports that compilers provide are often easier to
understand when one knows about and understands the different phases of com-
pilation, such as knowing the difference between lexical errors, syntax errors, type
errors, and so on.

The third reason is also quite valid. In particular, the techniques used for reading
(lexing and parsing) the text of a program and converting this into a form (abstract
syntax) that is easily manipulated by a computer, can be used to read and manip-
ulate any kind of structured text such as XML documents, address lists, etc.

Reason “d” is becoming more and more important as domain-specific languages
(DSLs) are gaining in popularity. A DSL is a (typically small) language designed for
a narrow class of problems. Examples are database query languages, text-formatting
languages, scene description languages for ray-tracers, and languages for setting up
economic simulations. The target language for a compiler for a DSL may be tra-
ditional machine code, but it can also be another high-level language for which
compilers already exist, a sequence of control signals for a machine, or formatted

Preface ix

text and graphics in some printer-control language (e.g., PostScript), and DSLs are
often interpreted instead of compiled. Even so, all DSL compilers and interpreters
will have front-ends for reading and analyzing the program text that are similar to
those used in compilers and interpreters for general-purpose languages.

In brief, the methods needed to make a compiler front-end are more widely
applicable than the methods needed to make a compiler back-end, but the latter is
more important for understanding how a program is executed on a machine.

About the Second Edition of the Book

The second edition has been extended with material about optimisations for
function calls and loops, and about dataflow analysis, which can be used for various
optimisations. This extra material is aimed at advanced BSc-level courses or
MSc-level courses.

To the Lecturer

This book was written for use in the introductory compiler course at DIKU, the
Department of Computer Science at the University of Copenhagen, Denmark.

At times, standard techniques from compiler construction have been simplified
for presentation in this book. In such cases, references are made to books or articles
where the full version of the techniques can be found.

The book aims at being “language neutral”. This means two things

e Little detail is given about how the methods in the book can be implemented in
any specific language. Rather, the description of the methods is given in the
form of algorithm sketches and textual suggestions of how these can be
implemented in various types of languages, in particular imperative and func-
tional languages.

e There is no single through-going example of a language to be compiled. Instead,
different small (sub-)languages are used in various places to cover exactly the
points that the text needs. This is done to avoid drowning in detail, hopefully
allowing the readers to “see the wood for the trees”.

Each chapter has a section on further reading, which suggests additional reading
material for interested students. Each chapter has a set of exercises. Few of these
require access to a computer, but can be solved on paper or blackboard. After some
of the sections in the book, a few easy exercises are listed as suggested exercises. It

X Preface

is recommended that the student attempts to solve these exercises before continuing
reading, as the exercises support understanding of the previous sections.

Teaching with this book can be supplemented with project work, where students
write simple compilers. Since the book is language neutral, no specific project is
given. Instead, the teacher must choose relevant tools and select a project that fits
the level of the students and the time available. Depending on the amount of project
work and on how much of the advanced material added in the second edition is
used, the book can support course sizes ranging from 5-10 ECTS points.

The following link contains extra material for the book, including solutions to
selected exercises—http://www.diku.dk/ ~ torbenm/ICD/.

Copenhagen, Denmark Torben Zgidius Mogensen

http://www.diku.dk/~torbenm/ICD/

Acknowledgements

“Most people return small favors, acknowledge medium ones
and repay greater ones—with ingratitude.”

Benjamin Franklin (1705-1790)

The author wishes to thank all people who have been helpful in making this book a
reality. This includes the students who have been exposed to earlier versions of the
book at the compiler courses “DatlE”, “Oversattere”, “Implementering af pro-
grammeringssprog” and “Advanced Language Processing” at DIKU, and who have
found numerous typos and other errors in the earlier versions. I would also like to
thank co-teachers and instructors at these courses, who have pointed out places
where things were not as clear as they could be.

Copenhagen, Denmark Torben Agidius Mogensen
August 2017

xi

Contents

1 Lexical Analysis
1.1 Regular Expressions
1.1.1. Shorthands

1.1.2 Examples............ ...

1.2 Nondeterministic Finite Automata
1.3 Converting a Regular Expression to an NFA
1.3.1 Optimisations

1.4 Deterministic Finite Automata
1.5 Converting an NFAtoaDFA
1.5.1 Solving Set Equations.

1.5.2 The Subset Construction

1.6 Size Versus Speed.
1.7 Minimisation of DFAs.
1.7.1 Example.

1.72 Dead States0u ...

1.8 Lexers and Lexer Generators
1.8.1 Lexer Generators

1.9 Properties of Regular Languages
1.9.1 Relative Expressive Power

1.9.2 Limits to Expressive Power.

1.9.3 Closure Properties

1.10 Further Reading
LI1 EXErCISeSot
References L
2 Syntax Analysis.
2.1 Context-Free Grammars.
2.1.1 How to Write Context Free Grammars.

2.2 Derivation.
2.2.1 Syntax Trees and Ambiguity

Xiii

Xiv

Contents

2.3 Operator Precedence 48
2.3.1 Rewriting Ambiguous Expression Grammars 50

24 Other Sources of Ambiguity 53
2.5 Syntax Analysis 54
2.6 Predictive Parsing 54
2.7 Nullable and FIRST. 55
2.8 Predictive Parsing Revisited. 59
2.9 FOLLOW 61
2.10 A Larger Example................................. 63
2.11 LLA)Parsing 65
2.11.1 Recursive Descent 66

2.11.2 Table-Driven LL(1) Parsing 68

2113 Conflicts 70

2.12 Rewriting a Grammar for LL(1) Parsing 70
2.12.1 Eliminating Left-Recursion 70

2.12.2 Left-Factorisation 72

2.12.3 Construction of LL(1) Parsers Summarised 73

213 SLRParsing i i i . 74
2.14 Constructing SLR Parse Tables 77
2.14.1 Conflicts in SLR Parse-Tables.................. 81

2.15 Using Precedence Rules in LR Parse Tables. 82
2.16 Using LR-Parser Generators. 84
2.16.1 Conflict Handling in Parser Generators 84

2.16.2 Declarations and Actions. 86

2.16.3 Abstract Syntax 86

2.17 Properties of Context-Free Languages 89
2.18 Further Reading 90
2,19 EXErCiSes 91
References 95
Scopes and Symbol Tables 97
3.1 Symbol Tables 98
3.1.1 Implementation of Symbol Tables 98

3.1.2 Simple Persistent Symbol Tables. 99

3.1.3 A Simple Imperative Symbol Table 100

3.14 Efficiency Issues. 101

3.1.5 Shared or Separate Name Spaces................ 101

3.2 Further Reading 102
33 Exercises 102
Reference. 102
Interpretation 103
4.1 The Structure of an Interpreter. 104

4.2 A Small Example Language 104

Contents XV
4.3 An Interpreter for the Example Language 105
4.3.1 Evaluating Expressions 106

4.3.2 Interpreting Function Calls 108

4.3.3 Interpreting a Program 108

44 Advantages and Disadvantages of Interpretation 110
4.5 Further Reading 111
4.6 EXercises 111
References 113
5 TypeChecking 115
5.1 The Design Space of Type Systems 115
52 Attributes 117
53 Environments for Type Checking. 117
54 Type Checking of Expressions. 118
5.5 Type Checking of Function Declarations 120
5.6 Type Checking a Program 121
5.7 Advanced Type Checking 122
5.8 Further Reading 124
5.9 EXercises 125
References 126
6 Intermediate-Code Generation 127
6.1 Designing an Intermediate Language 128
6.2 The Intermediate Language 129
6.3 Syntax-Directed Translation. 131
6.4 Generating Code from Expressions 131
6.4.1 Examples of Translation 135

6.5 Translating Statements. 136
6.6 Logical Operators, 138
6.6.1 Sequential Logical Operators. 140

6.7 Advanced Control Statements 142
6.8 Translating Structured Data 143
6.8.1 Floating-Point Values 144

6.8.2 AITAYS . . . 144

6.83 Strings.......... . 149

6.8.4 Records/Structs and Unions. 149

6.9 Translation of Declarations 150
6.9.1 Simple Local Declarations. 151

6.9.2 Translation of Function Declarations 151

6.10 Further Reading 152
6.11 EXercises 152

References 155

XVi

Contents

Machine-Code Generation. 157
7.1 Conditional Jumps 158
7.2 COonStants 159
7.3 Exploiting Complex Instructions 159
7.3.1 Two-Address Instructions 163

7.4 OptimiSations v e et e 164
7.5 Further Reading 166
7.6 EXercises 166
References 167
Register Allocation 169
8.1 Liveness 170
8.2 Liveness Analysis 171
8.3 Interference. 174
8.4 Register Allocation by Graph Colouring. 176
8.5 Spilling 177
8.6 Heuristics 179
8.6.1 Removing Redundant Moves. 180

8.6.2 Using Explicit Register Numbers. 181

8.7 Further Reading 182
8.8 EXercises 182
References 184
Functions 185
9.1 The Call Stack 185
9.2 Activation Records 186
9.3 Prologues, Epilogues and Call-Sequences 187
94 Letting the Callee Save Registers 190
9.5 Caller-Saves Versus Callee-Saves. 191
9.6 Using Registers to Pass Parameters 192
9.7 Interaction with the Register Allocator 194
9.8 Local Variables. 196
9.9 Accessing Non-local Variables. 196
9.9.1 Global Variables. 197

9.9.2 Call-by-Reference Parameters 198

9.10 Functions as Parameters 199
O0.11 Variants 199
9.11.1 Variable-Sized Frames 199

9.11.2 Variable Number of Parameters. 200

9.11.3 Direction of Stack-Growth and Position of FP 200

9.11.4 Register Stacks. i 200

9.12 Optimisations for Function Calls 201
9.12.1 Inlining 201

9.12.2 Tail-Call Optimisation. 203

Contents xvii
9.13 Further Reading 207
9.14 EXEICISES . . .ottt 207
References 209

10 Data-Flow Analysis and Optimisation. 211
10.1 Data-Flow Analysis., 211
10.2 How to Design a Data-Flow Analysis 212
103 Liveness Analysis 212

10.3.1 Improving Liveness Analysis. 213
10.4 Generalising from Liveness Analysis 214
10.5 Common Subexpression Elimination 215
10.5.1 Available Assignments 215
10.5.2 Example of Available-Assignments Analysis 217

10.5.3 Using Available Assignment Analysis for Common
Subexpression Elimination 220
10.6 Index-Check Elimination 221
10.7 Jump-to-Jump Elimination. 224
10.8 Resources Used by Data-Flow Analysis 225
10.9 Pointer Analysis 227
10.10 Limitations of Data-Flow Analyses 231
10.11 Further Reading 232
10.12 EXEerCiSeso 232
References 233

11 Optimisations for Loops 235
T1.L 0 LOOPS. . ottt 235
11.2 Code Hoisting.ottt e 236
11.3 Memory Prefetching 238
11.4 Incrementalisation, .. 240

11.4.1 Rules for Incrementalisation 242

11.5 Further Reading 244

11.6 EXercises 244
Reference. 245
Appendix A: Set Notation and Concepts. 247
Index 255

List of Figures

1.1
1.2
1.3
1.4
L.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
2.1
22
23
24
2.5
2.6
2.7
2.8

29
2.10
2.11

2.12
2.13

Regular expressions and their derivation.
Some algebraic properties of regular expressions
Example of an NFA
Constructing NFA fragments from regular expressions.
NFA for the regular expression (a |[b)*ac
Optimised NFA construction for regular expression shorthands
Optimised NFA for [0-9]"
Example of a DFA
DFA constructed from the NFAin Fig. 1.5
Non-minimal DFA
Minimal DFA.
Combined NFA for several tokens
Combined DFA for several tokens
A 4-state NFA that gives 15 DFA states
From regular expressions to context free grammars
Simple expression grammare e
Simple statement grammar
Example grammar.
Derivation of the string aabbbcc using Grammar 2.4
Leftmost derivation of the string aabbbcc using Grammar 2.4
Syntax tree for the string aabbbcc using Grammar 2.4
Alternative syntax tree for the string aabbbcc using

Grammar 2.4.
Unambiguous version of Grammar 2.4
Fully reduced tree for the syntax tree in Fig. 2.7
Preferred syntax tree for 2+3*4 using Grammar 2.2, and the
corresponding fully reduced tree.
Unambiguous expression grammar.
Syntax tree for 2+3 *4 using Grammar 2.12 , and the corresponding
fully reduced tree

10
11
11
12
12
19
21
23
26
27
31
42
43
43
45
45
45
46

47
47
48

49
52

52

XiX

XX

2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
222
2.23
2.24
2.25
2.26
227
2.28
2.29
2.30
231

2.32
2.33
2.34
2.35
4.1
4.2
4.3
44
5.1
52
53
54
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
7.1

List of Figures

Unambiguous grammar for statements
Fixed-point iteration for calculation of Nullable
Fixed-point iteration for calculation of FIRST.
Recursive descent parser for Grammar 2.9
Tree-building recursive descent parser for Grammar 2.9...........
LL(1) table for Grammar 2.9
Program for table-driven LL(1) parsing
Input and stack during table-driven LL(1) parsing
Tree-building program for table-driven LL(1) parsing
Removing left-recursion from Grammar 2.12...................
Left-factorised grammar for conditionals
Example shift-reduce parsing
SLR table for Grammar 2.9
Algorithm for SLR parsing.
Example SLR parsing.
Example grammar for SLR-table construction
NFAs for the productions in Grammar 2.29
Combined NFA for Grammar 2.29: Epsilon transitions

are added, and A is the only start state.
DFA constructed from the NFA in Fig. 231
DFA table for Grammar 2.9, equivalent to the DFA in Fig. 2.32. . ..
Summary of SLR parse-table construction
Textual representation of NFA states
Example language for interpretation.
Evaluating expressionsttt
Evaluating a function call.
Interpreting a program
The design space of type systems.
Type checking of expressions.
Type checking a function declaration.
Type checking a program.,
The intermediate language
A simple expression language
Translating an eXpressionottt
Statement language.
Translation of statements
Translation of simple conditions.
Example language with logical operators
Translation of sequential logical operators
Translation for one-dimensional arrays.
A two-dimensional array.
Translation of multi-dimensional arrays
Translation of simple declarations.
Pattern/replacement pairs for a subset of the MIPS instruction set . . .

List of Figures

8.1 Example program for liveness analysis and register allocation
82 Genand kill sets.
8.3 succ, gen and kill for the program in Fig. 8.1...................
8.4 Fixed-point iteration for liveness analysis.
8.5 Interference graph for the program in Fig. 8.1
8.6 Algorithm 8.3 applied to the graph in Fig. 8.5............... ...
8.7 Program from Fig. 8.1 after spilling variable a..................
8.8 Interference graph for the program in Fig. 8.7
8.9 Colouring of the graph in Fig. 8.8
9.1 Simple activation record layout.
9.2 Prologue for the header f(py, . ..,p,) using the frame layout

shownin Fig. 9.1
9.3 Epilogue for the instruction RETURN result using the frame

layout shown in Fig. 9.1..
9.4 Call sequence for x := CALL g(ay, ..., a,) using the frame

layout shown in Fig. 9.1.
9.5 Activation record layout for callee-saves
9.6 Prologue for the header f(p1, ..., pn) using callee-saves
9.7 Epilogue for the instruction RETURN result using callee-saves.
9.8 Call sequence for x := CALL g(ay,...,a,) using callee-saves
9.9 Possible division of registers for a 16-register architecture
9.10 Activation record layout for the register division shown

in Fig. 9.9, .. .
9.11 Prologue for the header f(p1, ..., pn,) using the register division

shownin Fig. 9.9
9.12 Epilogue for the instruction RETURN result using the register

division shown in Fig. 9.9
9.13 Call sequence for x := CALL g(ay,...,a,) using the register

division shownin Fig. 99 L
9.14 Variable capture when inlining.
9.15 Renaming variables when inlining
9.16 Recursive inlining.
10.1 Gen and kill sets for available assignments
10.2 Example code for available-assignments analysis................
10.3 pred, gen and kill for the program in Fig. 10.2
10.4 Fixed-point iteration for available-assignment analysis............
10.5 The program in Fig. 10.2 after common subexpression

elimination
10.6 gen and kill sets for index-check elimination
10.7 Intermediate code for for-loop with index check
10.8 Equations for pointer analysis.
11.1 Incrementalisation of nested loop
11.2 Eliminating weakly dead variables

XX1

173

189

188

192

	Preface
	The Phases of a Compiler
	Interpreters
	Why Learn About Compilers?
	About the Second Edition of the Book
	To the Lecturer

	Acknowledgements
	Contents
	List of Figures

