Skip to main content

Multispectral Face Imaging and Analysis

  • Chapter
Handbook of Face Recognition

Abstract

This chapter addresses the advantages of using multispectral narrow-band images for face recognition, as opposed to conventional broad-band images obtained by color or monochrome cameras. Narrow-band images are by definition taken over a very small range of wavelengths, while broad-band images average the information obtained over a wide range of wavelengths. There are two primary reasons for employing multispectral imaging for face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bajcsy, P., Groves, P.: Methodology for hyperspectral band selection. Photogramm. Eng. Remote Sens. 70, 793–802 (2004)

    Google Scholar 

  2. Bassett, E.M., Shen, S.S.: Information theory-based band selection for multispectral systems. In: SPIE, vol. 3118, pp. 28–35 (1997)

    Chapter  Google Scholar 

  3. Bozdogan, H.: Akaike’s information criterion and recent developments in information complexity. J. Math. Psychol. 44, 62–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruce, L., Koger, C., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform extraction. IEEE Trans. Geosci. Remote Sens. 40(10), 2331–2338 (2002)

    Article  Google Scholar 

  5. Brusco, M.J.: An enhanced branch-and-bound algorithm for a partitioning problem. Br. J. Math. Stat. Psychol. 56, 83–92 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bruzzone, L., Roli, F., Serpico, S.B.: An extension of the Jeffreys–Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 33(6), 1318–1321 (1995)

    Article  Google Scholar 

  7. Chang, C.I., Du, Q., Sun, T.S., Althouse, M.L.G.: A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37(6), 2631–2641 (1999)

    Article  Google Scholar 

  8. Chang, H., Yao, Y., Koschan, A., Abidi, B., Abidi, M.: Spectral range selection for face recognition under various illuminations. In: IEEE Int’l Conf. on Image Processing, San Diego, CA, October 2008

    Google Scholar 

  9. Chang, H., Yao, Y., Koschan, A., Abidi, B., Abidi, M.: Improving face recognition via narrow-band spectral range selection using Jeffrey divergence. IEEE Trans. Inf. Forensics Secur. 4(1), 111–122 (2009)

    Article  Google Scholar 

  10. Chang, H., Koschan, A., Abidi, B., Abidi, M.: Fusing continuous spectral images for face recognition under indoor and outdoor illuminants. Mach. Vis. Appl. 21, 201–215 (2010)

    Article  Google Scholar 

  11. Du, H., Qi, H., Wang, X., Ramanath, R., Snyder, W.E.: Band selection using independent component analysis for hyperspectral image processing. In: Applied Imagery Pattern Recognition Workshop, pp. 93–98 (2003)

    Google Scholar 

  12. El-ghazawi, T., Kaewpijit, S., Le Moigne, J.: Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality. In: IEEE Int’l Conf. on Cluster Computing (2001)

    Google Scholar 

  13. Finlayson, G.D., Morovic, P.M., Hordley, S.D.: Using the spectracube for multispectral imaging. In: 2nd Conference on Color in Imaging, Vision and Graphics, pp. 268–274 (2004)

    Google Scholar 

  14. Gat, N.: Imaging spectroscopy using tunable filters: a review. In: SPIE, vol. 4056, pp. 50–64 (2000)

    Chapter  Google Scholar 

  15. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, New York (2004)

    Google Scholar 

  16. Gottlieb, M.S.: Acousto-optic tunable filters. In: Design and Fabrication of Acousto-Optic Devices, pp. 197–284. Marcel Dekker, New York (1994)

    Google Scholar 

  17. Hardeberg, J.Y., Schmitt, F., Brettel, H.: Multispectral image capture using a liquid crystal tunable filters. Opt. Eng. 41(10), 2532–2548 (2002)

    Article  Google Scholar 

  18. Healey, G., Slater, D.: Invariant recognition in hyperspectral images. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 438–443, Ft. Collins, CO, June 1999

    Google Scholar 

  19. http://www.identix.com/pages/101-faceit-sdk

  20. Imai, F.H., Berns, R.S.: High-resolution multispectral image archives: a hybrid approach. In: IS&T SID Sixth Color Imaging Conf., pp. 185–189 (1998)

    Google Scholar 

  21. Imai, F.H., Rosen, M.R., Berns, R.S.: Multi-spectral imaging of a van Gogh’s self-portrait at the National Gallery of Art, Washington, D.C. In: IS&T PICS, pp. 185–189 (2001)

    Google Scholar 

  22. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. 186, 453–461 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, L., Mann, B., Mathur, A.: Wavelet transform for dimensionality reduction in hyperspectral linear unmixing. In: IEEE Int’l Geoscience and Remote Sensing Symposium, vol. 6, pp. 3513–3515 (2002)

    Google Scholar 

  24. Jimenez, L.O., Landgrebe, D.A.: Supervised classification in high dimensional space: geometrical statistical and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybern. 28(1), 39–54 (1998)

    Article  Google Scholar 

  25. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  26. Koller, D., Sahami, M.: Towards optimal feature selection. In: Int’l Conf. on Machine Learning, pp. 284–292, Bari, Italy, July 1996

    Google Scholar 

  27. Korycinski, D., Crawford, M.M., Barnes, J.W.: Adaptive feature selection for hyperspectral data analysis using a binary hierarchical classifier and tabu search. In: Int’l Geoscience and Remote Sensing Symposium, pp. 297–299 (2003)

    Google Scholar 

  28. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 33(1), 25–41 (2000)

    Article  Google Scholar 

  29. Kuman, S., Ghosh, J., Crawford, M.M.: Best basis feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 39(7), 1368–1379 (2001)

    Article  Google Scholar 

  30. Lennon, M., Mercier, G., Mouchot, M., Hubert-Moy, L.: Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral image. In: IEEE Int’l Geoscience and Remote Sensing Symposium, vol. 6, pp. 2893–2895 (2001)

    Google Scholar 

  31. Liu, C., Wechsler, H.: A unified Bayesian framework for face recognition. In: IEEE Int’l Conf. on Image Processing, pp. 151–155, Chicago, IL, October 1998

    Google Scholar 

  32. Mugdadi, A.R., Munthali, E.: Relative efficiency in kernel estimation of the distribution function. J. Stat. Res. 37(2), 203–218 (2003)

    MathSciNet  Google Scholar 

  33. Ohta, N., Takahashi, K., Urabe, H., Miyagawa, T.: Image simulation by use of a laser color printer. O plus E 22, 57–64 (1981)

    Google Scholar 

  34. Pan, Z., Healey, G., Prasad, M., Tromber, B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)

    Article  Google Scholar 

  35. Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Hyperspectral face recognition under variable outdoor illumination. In: SPIE, vol. 5425, pp. 520–529 (2004)

    Chapter  Google Scholar 

  36. Parkkinen, J., Oja, E., Jaaskelainen, T.: Color analysis by learning subspaces and optical processing. In: Int’l Conf. on Neural Networks (1988)

    Google Scholar 

  37. Parzen, E.: On estimation of a probability density function and model. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  39. Poger, S., Angelopoulou, E.: Selecting components for building multispectral sensors. In: IEEE CVPR Technical Sketches (2001)

    Google Scholar 

  40. Rosen, M., Jiang, X.: Lippmann2000: a spectral image database under construction. In: Int’l Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp. 117–122 (1999)

    Google Scholar 

  41. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  42. Slater, D., Healey, G.: Physics-based model acquisition and identification in airborne spectral images. In: Int’l Conf. on Computer Vision, pp. 257–262, Vancouver, British Columbia, Canada, July 2001

    Google Scholar 

  43. Sotoca, J.M., Pla, F., Klaren, A.C.: Unsupervised band selection for multispectral images using information theory. In: Int’l Conf. on Pattern Recognition, vol. 3, pp. 510–513, Cambridge, UK, August 2004

    Google Scholar 

  44. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  45. Tominaga, S.: A multi-channel vision system for estimating surface and illuminant functions. J. Opt. Soc. Am. A 13, 2163–2173 (1996)

    Article  Google Scholar 

  46. Vidal-Naquet, M., Ullman, S.: Object recognition with informative features and linear classification. In: IEEE Int’l Conf. on Computer Vision, pp. 281–288, Nice, France, October 2003

    Chapter  Google Scholar 

  47. Wang, H., Angelopoulou, E.: Sensor band selection for multispectral imaging via average normalized information. J. Real-Time Image Process. 1(2), 109–121 (2006)

    Article  Google Scholar 

  48. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the DOE University Research Program in Robotics under grant DOE-DEFG02-86NE37968 and NSF-CITeR grant 01-598B-UT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Koschan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Koschan, A., Yao, Y., Chang, H., Abidi, M. (2011). Multispectral Face Imaging and Analysis. In: Li, S., Jain, A. (eds) Handbook of Face Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-932-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-932-1_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-931-4

  • Online ISBN: 978-0-85729-932-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics