Skip to main content

Face Recognition in Subspaces

  • Chapter

Abstract

Images of faces, represented as high-dimensional pixel arrays, often belong to a manifold of intrinsically low dimension. Face recognition, and computer vision research in general, has witnessed a growing interest in techniques that capitalize on this observation and apply algebraic and statistical tools for extraction and analysis of the underlying manifold. In this chapter, we describe in roughly chronologic order techniques that identify, parameterize, and analyze linear and nonlinear subspaces, from the original Eigenfaces technique to the recently introduced Bayesian method for probabilistic similarity analysis. We also discuss comparative experimental evaluation of some of these techniques as well as practical issues related to the application of subspace methods for varying pose, illumination, and expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A singular value of a matrix X is the square root of an eigenvalue of XX T.

  2. 2.

    For comparison, note that the objective of PCA can be seen as maximizing the total scatter across all the images in the database.

  3. 3.

    A number of algorithms exist; most notable are Jade [5], InfoMax, and FastICA [16].

  4. 4.

    These eigenfaces are linear combination of the original images, which under the assumptions of ICA should not affect the resulting decomposition.

  5. 5.

    This also provides an estimate of the parameters (e.g., illumination) for the input image.

  6. 6.

    The class of functions attainable by this neural network restricts the projection function f() to be smooth and differentiable, and hence suboptimal in some cases [22].

  7. 7.

    However, computing Σ K in (2.21) requires “centering” the data by computing the mean of Ψ(x i). Because there is no explicit computation of Ψ(x i ), the equivalent must be carried out when computing the kernel matrix K. For details on “centering” K, see Schölkopf et al. [32].

  8. 8.

    In practice, k I >k E often works just as well. In fact, as k E →0, one obtains a maximum-likelihood similarity S=P(ΔΩ I ) with k I =k, which for this data set is only a few percent less accurate than MAP [26].

References

  1. Bartlett, M., Lades, H., Sejnowski, T.: Independent component representations for face recognition. In: Proceedings of the SPIE: Conference on Human Vision and Electronic Imaging III, vol. 3299, pp. 528–539 (1998)

    Google Scholar 

  2. Belhumeur, V., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Bichsel, M., Pentland, A.: Human face recognition and the face image set’s topology. CVGIP, Image Underst. 59(2), 254–261 (1994)

    Article  Google Scholar 

  4. Brunelli, R., Poggio, T.: Face recognition: Features vs. templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  5. Cardoso, J.-F.: High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  6. Comon, P.: Independent component analysis—a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience, New York (1953)

    Google Scholar 

  8. Cover, M., Thomas, J.: Elements of Information Theory. Wiley, New York (1994)

    Google Scholar 

  9. DeMers, D., Cottrell, G.: Nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems, pp. 580–587. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  10. Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J.R.: Recognizing faces with PCA and ICA. Comput. Vis. Image Underst. 91(1–2), 115–137 (2003)

    Article  Google Scholar 

  11. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  12. Gerbrands, J.J.: On the relationships between SVD, KLT and PCA. Pattern Recognit. 14, 375–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hastie, T.: Principal curves and surfaces. PhD thesis, Stanford University (1984)

    Google Scholar 

  14. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hyvärinen, A., Oja, E.: A family of fixed-point algorithms for independent component analysis. Technical Report A40, Helsinki University of Technology (1996)

    Google Scholar 

  16. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  18. Jutten, C., Herault, J.: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  19. Kirby, M., Sirovich, L.: Application of the Karhunen–Loéve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)

    Article  Google Scholar 

  20. Kramer, M.A.: Nonlinear principal components analysis using autoassociative neural networks. AIChE J. 32(2), 233–243 (1991)

    Article  Google Scholar 

  21. Loève, M.M.: Probability Theory. Van Nostrand, Princeton (1955)

    MATH  Google Scholar 

  22. Malthouse, E.C.: Some theoretical results on nonlinear principal component analysis. Technical report, Northwestern University (1998)

    Google Scholar 

  23. Moghaddam, B.: Principal manifolds and Bayesian subspaces for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 780–788 (2002)

    Article  Google Scholar 

  24. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object detection. In: Proceedings of IEEE International Conference on Computer Vision, pp. 786–793, Cambridge, MA, June 1995

    Chapter  Google Scholar 

  25. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)

    Article  Google Scholar 

  26. Moghaddam, B., Jebara, T., Pentland, A.: Efficient MAP/ML similarity matching for face recognition. In: Proceedings of International Conference on Pattern Recognition, pp. 876–881, Brisbane, Australia, August 1998

    Google Scholar 

  27. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognit. 33(11), 1771–1782 (2000)

    Article  Google Scholar 

  28. Murase, H., Nayar, S.K.: Visual learning and recognition of 3D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)

    Article  Google Scholar 

  29. Penev, P., Sirovich, L.: The global dimensionality of face space. In: Proc. of IEEE Internation Conf. on Face and Gesture Recognition, pp. 264–270. Grenoble, France (2000)

    Chapter  Google Scholar 

  30. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 84–91, Seattle, WA, June 1994. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  31. Phillips, P.J., Moon, H., Rauss, P., Rizvi, S.: The FERET evaluation methodology for face-recognition algorithms. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 137–143, June 1997

    Google Scholar 

  32. Schölkopf, B., Smola, A., Muller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  33. Shakhnarovich, G., Fisher, J.W., Darrell, T.: Face recognition from long-term observations. In: Proceedings of European Conference on Computer Vision, pp. 851–865, Copenhagen, Denmark, May 2002

    Google Scholar 

  34. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Technical Report NCRG/97/010, Aston University, September 1997

    Google Scholar 

  35. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  36. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 586–590, Maui, Hawaii, December 1991

    Chapter  Google Scholar 

  37. Vasilescu, M., Terzopoulos, D.: Multilinear Subspace Analysis of Image Ensembles. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 93–99, Madison, WI, June 2003

    Google Scholar 

  38. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Proceedings of European Conference on Computer Vision, pp. 447–460, Copenhagen, Denmark, May 2002

    Google Scholar 

  39. Wang, X., Tang, X.: Unified subspace analysis for face recognition. In: Proceedings of IEEE International Conference on Computer Vision, pp. 318–323, Nice, France, October 2003

    Google Scholar 

  40. Wolf, L., Shashua, A.: Learning over Sets using Kernel Principal Angles. J. Mach. Learn. Res. 4, 913–931 (2003)

    Article  MathSciNet  Google Scholar 

  41. Yamaguchi, O., Fukui, K., Maeda, K.-I.: Face recognition using temporal image sequence. In: Proc. of IEEE Internation Conf. on Face and Gesture Recognition, pp. 318–323, Nara, Japan, April 1998

    Google Scholar 

  42. Yang, M.-H.: Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods. In: Proc. of IEEE Internation Conf. on Face and Gesture Recognition, pp. 215–220, Washington, DC, May 2002

    Chapter  Google Scholar 

  43. Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description length. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 11–18. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

Download references

Acknowledgements

We thank M.S. Bartlett and M.A.O. Vasilescu for kind permission to use figures from their published work and for their comments. We also acknowledge all who contributed to the research described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Shakhnarovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shakhnarovich, G., Moghaddam, B. (2011). Face Recognition in Subspaces. In: Li, S., Jain, A. (eds) Handbook of Face Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-932-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-932-1_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-931-4

  • Online ISBN: 978-0-85729-932-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics