Skip to main content

Face Alignment Models

  • Chapter
Book cover Handbook of Face Recognition

Abstract

In order to interpret images of faces (e.g., for recognition), it is important to have a model of the different ways that a face may appear. Though faces vary widely, changes can be broken down into two categories—changes in shape and changes in the texture (patterns of pixel values) across the face—that are largely due to differences between individuals, but also due to changes in expression, viewpoint and lighting conditions. In this chapter, we describe a powerful method of generating compact models of shape and texture variation, and describe two methods—the Active Shape Model (ASM) and Active Appearance Model (AAM)—that fit an appearance model to an unseen image of the face so that we can interpret its underlying properties (e.g., identity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Matthews, I.: Lucas–Kanade 20 years on: A unifying framework. Part I: The quantity approximated, the warp update rule and the gradient descent approximation. Int. J. Comput. Vis. (2004)

    Google Scholar 

  2. Batur, A.U., Hayes, M.H.: Adaptive active appearance models. IEEE Trans. Med. Imaging 14(11), 1707–1721 (2005)

    Google Scholar 

  3. Belkin, M., Nigoyi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Benson, P.J., Perrett, D.I.: Synthesizing continuous-tone caricatures. Image Vis. Comput. 9, 123–129 (1991)

    Article  Google Scholar 

  5. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. (2003)

    Google Scholar 

  6. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  7. Cootes, T.F., Kittipanya-ngam, P.: Comparing variations on the active appearance model algorithm. In: 13th British Machine Vision Conf., vol. 2, pp. 837–846, September 2002

    Google Scholar 

  8. Cootes, T., Taylor, C.J.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–574 (1999)

    Article  Google Scholar 

  9. Cootes, T.F., Taylor, C.J.: Constrained active appearance models. In: 8th Int’l Conf. on Comp. Vis., vol. 1, pp. 748–754, July 2001. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  10. Cootes, T.F., Taylor, C.J.: On representing edge structure for model matching. Comput. Vis. Pattern Recognit. 1, 1114–1119 (2001)

    Google Scholar 

  11. Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  12. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) 5th European Conf. on Comp. Vis., vol. 2, pp. 484–498. Springer, Berlin (1998)

    Google Scholar 

  13. Cootes, T.F., Edwards, G.J., Taylor, C.J.: A comparative evaluation of active appearance model algorithms. In: British Machine Vision Conf., vol. 2, pp. 680–689, September 1998

    Google Scholar 

  14. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  15. Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image Vis. Comput. 20, 657–664 (2002)

    Article  Google Scholar 

  16. Costen, N., Cootes, T.F., Taylor, C.J.: Compensating for ensemble-specificity effects when building facial models. Image Vis. Comput. 20, 673–682 (2002)

    Article  Google Scholar 

  17. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog., vol. 1 (2005)

    Google Scholar 

  18. Craw, I., Cameron, P.: Parameterising images for recognition and reconstruction. In: 2nd British Machine Vision Conf., pp. 367–370. Springer, London (1991)

    Google Scholar 

  19. Craw, I., Cameron, P.: Face recognition by computer. In: Hogg, D., Boyle, R. (eds.) 3rd British Machine Vision Conf., pp. 489–507. Springer, London (1992)

    Google Scholar 

  20. Cristinacce, D., Cootes, T.: Facial feature detection using AdaBoost with shape constraints. In: Proc. British Machine Vision Conf. (2003)

    Google Scholar 

  21. Cristinacce, D., Cootes, T.F.: Automatic feature localisation with constrained local models. Pattern Recognit. 41, 3054–3067 (2008)

    Article  MATH  Google Scholar 

  22. Donner, R., Reitner, M., Langs, G., Peloschek, P., Bischof, H.: Fast active appearance model search using canonical correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1690–1694 (2006)

    Article  Google Scholar 

  23. Dryden, I., Mardia, K.V.: The Statistical Analysis of Shape. Wiley, London (1998)

    Google Scholar 

  24. Edwards, G.J., Lanitis, A., Taylor, C.J., Cootes, T.F.: Statistical models of face images—improving specificity. Image Vis. Comput. 16(3), 203–211 (1998)

    Article  Google Scholar 

  25. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  26. Gao, X., Su, Y., Li, X., Tao, D.: A review of active appearance models. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 40(2), 145–158 (2010)

    Article  Google Scholar 

  27. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53(2), 285–339 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Gu, L., Kanade, T.: A generative shape regularization model for robust face alignment. In: Proc. European Conf. on Computer Vision (2008)

    Google Scholar 

  29. Gu, L., Xing, E.P., Kanade, T.: Learning GMRF structures for spatial priors. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2007)

    Google Scholar 

  30. Hill, A., Cootes, T.F., Taylor, C.J.: Active shape models and the shape approximation problem. Image Vis. Comput. 14, 601–607 (1996)

    Article  Google Scholar 

  31. Hou, X., Li, S., Zhang, H., Cheng, Q.: Direct appearance models. In: Computer Vision and Pattern Recognition Conf. 2001, vol. 1, pp. 828–833 (2001)

    Google Scholar 

  32. Huang, Y., Liu, Q., Metaxas, D.N.: A component based deformable model for generalized face alignment. In: Proc. IEEE Int’l Conf. on Comp. Vis., pp. 1–8 (2007)

    Google Scholar 

  33. Jones, M.J., Poggio, T.: Multidimensional morphable models: A framework for representing and matching object classes. Int. J. Comput. Vis. 2(29), 107–131 (1998)

    Article  MATH  Google Scholar 

  34. Kirby, M., Sirovich, L.: Application of the Karhumen–Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)

    Article  Google Scholar 

  35. la Torre, F.D., Collet, A., Quero, M., Cohn, J.F., Kanade, T.: Filtered component analysis to increase robustness to local minima in appearance models. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2007)

    Google Scholar 

  36. Lee, H.-S., Kim, D.: Tensor-based AAM with continuous variation estimation: Application to variation-robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1102–1116 (2009)

    Article  Google Scholar 

  37. Liang, L., Wen, F., Xu, Y.-Q., Tang, X., Shum, H.-Y.: Accurate face alignment using shape constrained Markov network. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2006)

    Google Scholar 

  38. Liang, L., Xiao, R., Wen, F., Sun, J.: Face alignment via component-based discriminative search. In: Proc. European Conf. on Computer Vision (2008)

    Google Scholar 

  39. Liu, X.: Discriminative face alignment. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1941–1954 (2009)

    Article  Google Scholar 

  40. Lu, H.-M., Fainman, Y., Hecht-Nelson, R.: Image manifolds. In: Proc. SPIE Symposium on Electronic Imaging: Science and Technology (1998)

    Google Scholar 

  41. Lucey, S., Wang, Y., Saragih, J., Cohn, J.F.: Non-rigid face tracking with enforced convexity and local appearance consistency constraint. Image Vis. Comput. 28(5), 781–789 (2010)

    Article  Google Scholar 

  42. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 26(10), 135–164 (2004)

    Article  Google Scholar 

  43. Matthews, I., Xiao, J., Baker, S.: 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting. Int. J. Comput. Vis. 75(1), 93–113 (2007)

    Article  Google Scholar 

  44. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Proc. European Conf. on Computer Vision (2008)

    Google Scholar 

  45. Paquet, U.: Convexity and Bayesian constrained local models. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2009)

    Google Scholar 

  46. Romdhani, S., Gong, S., Psarrou, A.: A multi-view non-linear active shape model using kernel PCA. In: 10th British Machine Vision Conf., vol. 2, pp. 483–492, September 1999

    Google Scholar 

  47. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science (2000)

    Google Scholar 

  48. Saragih, J., Goecke, R.: A nonlinear discriminative approach to AAM fitting. In: Proc. IEEE Int’l Conf. on Comp. Vis. (2007)

    Google Scholar 

  49. Saragih, J., Goecke, R.: Learning AAM fitting through simulation. Pattern Recognit. 42(11), 2628–2636 (2009)

    Article  MATH  Google Scholar 

  50. Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting with a mixture of local experts. In: Proc. IEEE Int’l Conf. on Comp. Vis. (2009)

    Google Scholar 

  51. Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: Proc. IEEE Int’l Conf. on Comp. Vis. (2009)

    Google Scholar 

  52. Sclaroff, S., Isidoro, J.: Active blobs. In: 6th Int’l Conf. on Comp. Vis., pp. 1146–1153 (1998)

    Google Scholar 

  53. Scott, I.M., Cootes, T.F., Taylor, C.J.: Improving appearance model matching using local image structure. In: Information Processing in Medical Imaging, pp. 258–269. Springer, Berlin (2003)

    Chapter  Google Scholar 

  54. Sozou, P.D., Cootes, T.F., Taylor, C.J., Mauro, E.C.D.: Non-linear generalization of point distribution models using polynomial regression. Image Vis. Comput. 13(5), 451–457 (1995)

    Article  Google Scholar 

  55. Stegmann, M.B., Ersbøll, B.K., Larsen, R.: FAME—a flexible appearance modelling environment. IEEE Trans. Med. Imaging 22(10), 1319–1331 (2003)

    Article  Google Scholar 

  56. Stegmann, M.B., Larsen, R.: Multi-band modelling of appearance. Image Vis. Comput. 21(1), 66–67 (2003)

    Article  Google Scholar 

  57. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  58. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  59. van Ginneken, B., Frangi, A.F., Stall, J.J., ter Haar Romeny, B.M.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21, 924–933 (2002)

    Article  Google Scholar 

  60. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Proc. European Conf. on Computer Vision (2002)

    Google Scholar 

  61. Vetter, T.: Learning novel views to a single face image. In: 2nd Int’l Conf. on Automatic Face and Gesture Recognition 1996, pp. 22–27, October 1996

    Chapter  Google Scholar 

  62. Wu, H., Liu, X., Doretto, G.: Face alignment via boosted ranking model. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2008)

    Google Scholar 

  63. Zhou, S.K., Comaniciu, D.: Shape regression machine. In: Proc. Int’l Conf. on Information Processing in Medical Imaging (2007)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank their numerous colleagues who have contributed to the research summarised in this chapter, including C. Beeston, F. Bettinger, D. Cooper, D. Cristinacce, G. Edwards, A. Hill, J. Graham, H. Kang, P. Kittipanya-ngam and M. Roberts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Cootes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tresadern, P., Cootes, T., Taylor, C., Petrović, V. (2011). Face Alignment Models. In: Li, S., Jain, A. (eds) Handbook of Face Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-932-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-932-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-931-4

  • Online ISBN: 978-0-85729-932-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics