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Abstract Background subtraction is a widely used concept to detect moving ob-
jects in videos taken from a static camera. In the last two decades several algorithms
have been developed for background subtraction and were used in various impor-
tant applications such as visual surveillance, sports video analysis, motion capture,
etc.Various statistical approaches have been proposed to model scene background.
In this chapter we review the concept and the practice in background subtraction.
We discuss several basic statistical background subtraction models, including para-
metric Gaussian models and nonparametric models. We discuss the issue of shadow
suppression, which is essential for human motion analysis applications. We also dis-
cuss approaches and tradeoffs for background maintenance. We also point out many
of the recent developments in background subtraction paradigm

1 Introduction

In many human motion analysis applications stationary cameras or pan-tilt-zoom
(PTZ) cameras are used to monitor activities at outdoor or indoor sites. This is typ-
ical in visual surveillance systems as well as vision-based motion capture systems.
Since the cameras are stationary, the detection of moving objects can be achieved
by comparing each new frame with a representation of the scene background. This
process is called background subtraction and the scene representation is called the
background model. The scene here is assumed to be stationary or quasi stationary.

Typically, the background subtraction process forms the first stage in automated
visual surveillance systems and motion capture applications. Results from back-
ground subtraction are used for further processing, such as tracking targets and un-
derstanding events. One main advantage of pixel-based detection using background
subtraction is that the outcome is an accurate segmentation of the foreground regions
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from the scene background. For human subjects, the process gives accurate silhou-
ettes of the human body which can be further used for tracking, fitting body limbs,
pose and posture estimation, etc.. This is in contrast to classifier-based object-based
detectors which mainly decides whether a bounding box or a region in the image
contains the object of interest or not, e.g.pedestrian detectors. Such object-based
detector will be discussed in Chapter ??.

The concept of background modeling is rooted in photography since the 19th
century where it was shown that film can be exposed for a period of time to capture
the scene background without moving objects [14]. The use of background subtrac-
tion to detect moving objects is deeply rooted in image analysis and emanated from
the concept of change detection, a process in which two images of the same scene
taken at different time instances are compared, for example in Landsat Imagery,
e.g. [8, 26].

The concept of background subtraction has been widely used since the early hu-
man motion analysis systems such as Pfinder [58], W4 [19], etc.. Efficient and more
sophisticated background subtraction algorithms that can address challenging sit-
uations have been developed since then. The success of these algorithms lead to
the growth of many commercial applications, for example sports monitoring and
automated visual surveillance industry. Unlike earlier background subtraction algo-
rithms while the cameras and the scenes are assumed to be stationary, many ap-
proaches have been proposed to overcome these limitations, for example dealing
with quasi-stationary scenes and moving cameras. We will discuss such approaches
later in this chapter.

The organization of this chapter is as follows. Section 2 discusses some of the
challenges in building a background model for detection. Section 3 discusses some
of the basic and widely used background modeling techniques. Section 4 discusses
how to deal with color information to avoid detecting shadows. Section 5 discusses
the tradeoffs and challenges in updating background models. Section 6 discusses
some background models that can deal with moving cameras. Finally in Section 7
we discuss further issues and point out to further readings in the subject.

2 Challenges in Scene Modeling

In any indoor or outdoor scene there are changes that occur over time to the scene
background. It is important for any background model to be able to tolerate these
changes, either by being invariant to them or by adapting to them. These changes
can be local, affecting only parts of the background, or global affecting the entire
background. The study of these changes is essential to understand the motivations
behind different background subtraction techniques. Toyama et al. [54] identified a
list of ten challenges that a background model has to overcome, and denoted them
by: Moved objects, Time of day, Light switch, Waving trees, Camouflage, Bootstrap-
ping, Foreground aperture, Sleeping person, Walking person, Shadows. Elgammal
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et al. [11] classifies the possible changes in a scene background according to their
source:
Illumination changes:

• Gradual change in illumination as might occur in outdoor scenes due to the
change in the relative location of the sun during the day.

• Sudden change in illumination as might occur in an indoor environment by
switching the lights on or off, or in an outdoor environment, e.g.a change be-
tween cloudy and sunny conditions.

• Shadows cast on the background by objects in the background itself (e.g., build-
ings and trees) or by moving foreground objects.

Motion changes:

• Global image motion due to small camera displacements. Despite the assumption
that cameras are stationary, small camera displacements are common in outdoor
situations due to wind load or other sources of motion which causes global mo-
tion in the images.

• Motion in parts of the background. For example, tree branches moving with the
wind, or rippling water.

Structural Changes:
These are changes introduced to the background, including any change in the

geometry or the appearance of the background of the scene introduced by targets.
Such changes typically occur when something relatively permanent is introduced
into the scene background. For example, if somebody moves (introduces) some-
thing from (to) the background, or if a car is parked in the scene or moves out of
the scene, or if a person stays stationary in the scene for an extended period, etc..
Toyama et al. [54] denoted these situations by “Moved Objects”, “sleeping person”
and “walking person” scenarios.

A central issue in building a representation for the scene background is what
features to use for this representation or, in other words, what to model in the back-
ground. In the literature a variety of features have been used for background model-
ing including pixel based features (pixel intensity, edges, disparity) and region based
features (e.g., image block). The choice of the features affects how the background
model will tolerate the changes in the scene and the granularity of the detected fore-
ground objects.

Another fundamental issue in building a background representation is the choice
of the statistical model that explains the observation at a given pixel or region in the
scene. The choice of the proper model depends on the type of changes expected in
the scene background. Such a choice highly affects the accuracy of the detection.
Section 3 discusses some of the statistical models that are widely used in back-
ground modeling context. Beyond choosing the features and the statistical model,
maintaining the background representation is another challenging issue that we will
discuss in Section 5.
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3 Statistical Scene Modeling

In this section we will discuss some of the existing and widely used statistical back-
ground modeling approaches. For each model we will discuss how the model is ini-
tialized and how it is maintained. For simplicity of the discussion we will use pixel
intensity as the observation. Instead, color or any other features can be used. At the
pixel level, the process of background subtraction can be formulated as followed:
Given the intensity observed at a pixel at time t, denoted by xt , we need to classify
that pixel to either the background or foreground classes. This is a two class clas-
sification problem. However, since the intensity of a foreground pixel can arbitrary
take any value, unless some further information about the foreground is available,
we can just assume that the foreground distribution is uniform. Therefore, the prob-
lem reduces to a one class classification problem, i.e., modeling the distribution of
the background class, which can be achieved if a history of background observations
are available at that pixel. If the history observation is not purely coming from the
background, i.e., foreground objects are present in the scene, the problem become
more challenging.

3.1 Parametric Background Models

Pixel intensity is the most commonly used feature in background modeling. In a
completely static scene, a simple noise model that can be used is an independent
stationary additive Gaussian noise model [13]. According to that model, the noise
distribution at a given pixel is a zero mean Gaussian distribution N(0,σ2), it fol-
lows that the observed intensity at that pixel is a random variable with a Gaussian
distribution N(µ,σ2). This Gaussian distribution model for the intensity value of
a pixel is the underlying model for many background subtraction techniques and
widely know as a single Gaussian background model. For the case of color images,
a multivariate Gaussian is used. Typically, the color channels are assumed to be in-
dependent which reduces a multivariate Gaussian to a product of single Gaussians,
one for each color channel. More discussion about dealing with color will be pre-
sented in Section 4

Estimating the parameters for this model, i.e., learning the background model,
reduces to estimating the sample mean and variance from history pixel observations.
The background subtraction process in this case is a classifier that decides whether
a new observation at that pixel comes form the learned background distribution.
Assuming the foreground distribution is uniform, this amounts to putting a threshold
on the tail of the Gaussian, i.e., the classification rule reduces to marking a pixel as
foreground if

‖xt − µ̂‖> kσ̂

where µ̂ and σ̂ are the estimated mean and standard deviation and k is a threshold.
The parameter σ can be even assumed to be the same for all pixels. So, literally,
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this simple model reduces to subtracting a background image B from the each new
frame It and checking the difference against a threshold. In such case the background
image B is the mean of the history background frames.

This basic single Gaussian model can made adaptive to slow changes in the scene
(for example, gradual illumination changes) by recursively updating the mean with
each new frame to maintain a background image

Bt =
t−1

t
Bt−1 +

1
t

It ,

where t ≥ 1. Obviously this update mechanism does not forget the history and, there-
fore, the effect of new images on the model tends to zero. This is not suitable when
the goal is to adapt the model to illumination changes. Instead the the mean and
variance can be computed over a sliding window of time. However, a more practical
and efficient solution is to recursively update the model via temporal blending, also
known as exponential forgetting, i.e.

Bt = αIt +(1−α)Bt−1. (1)

Here, Bt denotes the background image computed up to frame t. The parameter α

controls the speed of forgetting old background information. This update equation
is a low-pass filter with a gain factor α that effectively separates the slow temporal
process (background) from the fast process (moving objects). Notice that the com-
puted background image is no longer the sample mean over the history but captures
the central tendency over time [16]. This basic adaptive model is used in systems
such as the Pfinder [58]. In [30, 29, 33] variations of this recursive update was used
after masking out the foreground regions.

Typically, in outdoor environments with moving trees and bushes, the scene back-
ground is not completely static. For example, one pixel can be the image of the sky in
one frame, a tree leaf in another frame, a tree branch in a third frame and some mix-
ture subsequently. In each situation the pixel will have a different intensity (color),
so a single Gaussian assumption for the probability density function of the pixel
intensity will not hold. Instead, a generalization based on a Mixture of Gaussians
(MoG) has been used in [14, 57, 56] to model such variations. This model was
first introduced in [14], where a mixture of three Gaussian distributions was used to
model the pixel value for traffic surveillance applications. The pixel intensity was
modeled as a weighted mixture of three Gaussian distributions corresponding to
road, shadow and vehicle distribution. Fitting a mixture of Gaussian (MoG) model
can be achieved using the Expectation Maximization (EM) algorithm [6]. However
this is impractical for a realtime background subtraction application. An incremental
EM algorithm [40] was used to learn and update the parameters of the model.

Stauffer and Grimson [57, 56] proposed a generalization to the previous ap-
proach. The intensity of a pixel is modeled by a mixture of K Gaussian distributions
(K is a small number from 3 to 5). The mixture is weighted by the frequency with
which each of the Gaussians explains the background. The probability that a certain
pixel has intensity xt at time t is estimated as
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Pr(xt) =
K

∑
i=1

wi,tG(xt ,µi,t ,Σi,t), (2)

where wi,t , µi,t , and Σi,t = σi,tI are the weight, mean, and covariance for the i-th
Gaussian mixture component at time t respectively.

The parameters of the distributions are updated recursively using online K-means
approximation. The mixture is weighted by the frequency with which each of the
Gaussians explains the background, i.e., a new pixel value is checked against the
existing K Gaussians and when a match is found the weight for that distribution is
updated as follows

wi,t = (1−α)wi,t−1 +αM(i, t),

where M(i, t) is an indicator variable which is 1 if the i-th component is matched, 0
otherwise. The parameter of the matched distributions are updated as follows

µt = (1−ρ)µt−1 +ρxt ,

σ
2
t = (1−ρ)σ2

t−1 +ρ(xt −µt)
T (xt −µt).

The parameters α and ρ are two learning rates. The K distributions are ordered
based on w j/σ2

j and the first B distributions are used as a model of the background
of the scene where B is estimated as

B = argmin
b

(
b

∑
j=1

w j > T

)
. (3)

The threshold T is the fraction of the total weight given to the background model.
Background subtraction is performed by marking any pixel that is more that 2.5
standard deviations away from any of the B distributions as a foreground pixel.

The MoG background model was shown to perform very well in indoor and out-
door situations. Many variations has been suggested to the Stauffer and Grimson’s
model [56], e.g. [38, 27, 20]. The model also was used with in different feature
spaces and/or with a subspace representations. Gao et al. [16] studied the statistical
error characteristic of MoG background models.

3.2 Non-parametric Background Models

In outdoor scenes, typically there are wide range of variations, which can be very
fast. Outdoor scenes usually contains dynamic areas such as waving trees and
bushes, rippling water, ocean waves. Such fast variations are part of the scene back-
ground. Modeling such dynamics areas requires a more flexible representation of
the background probability distribution at each pixel. This motivates the use of non-
parametric density estimator for background modeling [12].
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A particular nonparametric technique that estimates the underlying density and
is quite general is the kernel density estimation (KDE) technique [47, 7]. Given a
sample S = {xi}i=1..N from a distribution with density function p(x), an estimate
p̂(x) of the density at x can be calculated using

p̂(x) =
1
N

N

∑
i=1

Kσ (x− xi), (4)

where Kσ is a kernel function (sometimes called a “window” function) with a band-
width (scale) σ such that Kσ (t) = 1

σ
K( t

σ
). The kernel function K should satisfy

K(t) ≥ 0 and
∫

K(t)dt = 1. Kernel density estimators asymptotically converge to
any density function with sufficient samples [47, 7]. In fact, all other nonparamet-
ric density estimation methods, e.g., histograms, can be shown to be asymptotically
kernel methods [47]. This property makes these techniques quite general and appli-
cable to many vision problems where the underlying density is not known [3, 9]. We
can avoid having to store the complete data set by weighting a subset of the samples
as

p̂(x) = ∑
xi∈B

αiKσ (x− xi),

where αi are weighting coefficients that sum up to one and B is a sample subset. A
good discussion of KDE techniques can be found in [47].

Elgammal et al. [12] introduced a background modeling approach based on ker-
nel density estimation. Let x1,x2, ...,xN be a sample of intensity values for a pixel.
Given this sample, we can obtain an estimate of the probability density function of
the pixel intensity at any intensity value using kernel density estimation using Eq. 4.
This estimate can be generalized to use color features or other high dimensional
features by using kernel products as

Pr(xt) =
1
N

N

∑
i=1

d

∏
j=1

Kσ j(xt j − xi j), (5)

where xt is a d dimensional color feature at time t and Kσ j is a kernel function with
bandwidth σ j in the jth color space dimension.

A variety of kernel functions with different properties have been used in the lit-
erature of nonparametric estimation. Typically kernel functions are symmetric and
unimodal functions that fall off to zero rapidly away from the center, i.e., the ker-
nel function should have finite local support and points beyond certain window will
have no contribution. The Gaussian function is typically used as a kernel for its con-
tinuity, differentiability and locality properties although it violates the finite support
criterion [9]. Note that choosing the Gaussian as a kernel function is different from
fitting the distribution to a Gaussian model (normal distribution). Here, the Gaus-
sian is only used as a function to weight the data points. Unlike parametric fitting of
a mixture of Gaussians, kernel density estimation is a more general approach that
does not assume any specific shape for the density function.
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Using this probability estimate, the pixel is considered a foreground pixel if
Pr(xt)< th, where the threshold th is a global threshold over all the image that can
be adjusted to achieve a desired percentage of false positives. Practically, the prob-
ability estimation in Eq. 5 can be calculated in a very fast way using precalculated
lookup tables for the kernel function values given the intensity value difference,
(xt − xi), and the kernel function bandwidth. Moreover, a partial evaluation of the
sum in equation 5 is usually sufficient to surpass the threshold at most image pixels,
since most of the image is typically from the background. This allows a realtime
implementation of the approach.

(a) (b)

Fig. 1 Example of probability estimation using a nonparametric model (a) original image. (b)
Estimated probability image.

Since kernel density estimation is a general approach, the estimate of Eq. 4 can
converge to any pixel intensity density function. Here the estimate is based on the
most recent N samples used in the computation. Therefore, adaptation of the model
can be achieved simply by adding new samples and ignoring older samples [12],
i.e., using a sliding window over time. Figure 1-b shows the estimated background
probability where brighter pixels represent lower background probability pixels.

This nonparametric technique for background subtraction was introduced in [12]
and has been tested for a wide variety of challenging background subtraction prob-
lems in a variety of setups and was found to be robust and adaptive. We refer the
reader to [12] for details about the approach such as details about model adaptation
and false detection suppression. Figures 2 shows two detection results for targets in
a wooded area where tree branches move heavily and the target is highly occluded.
Figure 3-top shows the detection results using an omni-directional camera. The tar-
gets are camouflaged and walking through the woods. Figure 3-bottom shows the
detection result for a rainy day where the background model adapts to account for
different rain and lighting conditions.

One major issue that needs to be addressed when using kernel density estimation
technique is the choice of suitable kernel bandwidth (scale). Theoretically, as the
number of samples reaches infinity, the choice of the bandwidth is insignificant
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and the estimate will approach the actual density. Practically, since only a finite
number of samples are used and the computation must be performed in real time, the
choice of suitable bandwidth is essential. a too small bandwidth will lead to a ragged
density estimate, while a too wide bandwidth will lead to an over-smoothed density
estimate [7, 9]. Since the expected variations in pixel intensity over time are different
from one location to another in the image, a different kernel bandwidth is used for
each pixel. Also, a different kernel bandwidth is used for each color channel. In [12]
a procedure was proposed for estimating the kernel bandwidth for each pixel as a
function of the median of absolute differences between consecutive frames. In [39]
an adaptive approach for estimation of kernel bandwidth was proposed. Parag et
al. [41] proposed an approach using boosting to evaluate different kernel bandwidth
choices for bandwidth selection.

KDE-Background Practice and Other Nonparametric models:
One of the drawbacks of the KDE background model is the requirement to store a

large number of history samples for each pixel. In KDE literature many approaches
was proposed to avoid storing a large number of samples. Within the context of
background modeling, Piccardi and Jan [43] proposed an efficient mean shift ap-
proach to estimate the modes of a pixel’s history PDF then a few number of Gaus-
sians was used to model the PDF. Mean shift is a nonparametric an iterative mode
seeking procedure [15, 2, 4]. With the same goal of reducing memory requirement,
Han et al. [18] proposed a sequential kernel density estimation approach where vari-
able bandwidth mean shift was used to detect the density modes. Unlike mixture of
Gaussian methods where the number of Gaussian is fixed, technique such as [43, 18]
can adaptively estimate a variable number of modes to represent the density, there-
fore keeping the flexibility of a nonparametric model while achieving the efficiency
of a parametric model.

Efficient implementation of KDE can be achieved through building look-up ta-
bles for the kernel function values, which facilitates realtime performance. Fast
Gauss Transform has been proposed for efficient computation of KDE [10], how-
ever, the Fast Gauss Transform is only justifiable with a large number of samples
required for the density estimation as well as the need for estimation at many pix-
els in batches. For example, Fast Gauss implementation was effectively used in a
layered background representation [42].

Many variations have been suggested to the basic nonparametric KDE back-
ground model. In practice nonparametric KDE has been used at the pixel level as
well as at the region level or in a domain-range representation to model a scene
background. For example, in [42] a layered representation was used to model the
scene background where the distribution of each layer is modeled using KDE. Such
layered representation facilitates detecting the foreground under static or dynamic
background and in the presence of nominal camera motion. In [49] KDE was used
in a joint domain-range representation of image pixel (r,g,b,x,y), which exploits
the spatial correlation between neighboring pixels. Parag et al. [41] proposed an
approach for feature selection for the KDE framework where boosting based en-
semble learning was used to combine different features. The approach also can be
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used to evaluate different kernels bandwidth choices for bandwidth selection. Re-
cently, Sheikh et al. [48] used a KDE approach in a joint domain-range representa-
tion within a foreground/background segmentation framework from freely moving
camera as will be discussed in Section 6.

In [35] a biologically inspired nonparametric background subtraction approach
was proposed where a self-organizing artificial neural network model was used to
model the pixel process. Each pixel is modeled with a sample arranged in a shared
2D grid of nodes where each node is represented with a weight vector with the same
dimensionality as the input observation. An incoming pixel observation is mapped
to the node whose weights are most similar to the input where a threshold function
is used to decide background/foreground. The weights of each node are updated at
each new frame using a recursive filter similar to Eq. 1. A interesting feature of that
approach is that the shared 2D grid of nodes allows the spatial relationships between
pixels to be taken into account at both the detection and update phases.

Fig. 2 Example background subtraction detection results: Left: original frames, Right: detection
results.

4 Moving Shadow Suppression

A background subtraction process on gray scale images, or on color images without
carefully selecting the color space, is bound to detect the shadows of moving objects
along with the objects themselves. While shadows of static objects can typically be
adapted in the background process, shadows casted by moving object, i.e., dynamic
shadows, constitute a sever challenge for foreground segmentation. Since the goal of
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Fig. 3 Top: Detection of camouflaged targets from an omni-directional camera. Bottom: Detection
result for a rainy day.

background subtraction is to obtain accurate segmentation of moving foreground re-
gions for further processing, it is highly desirable to detect such foreground regions
without casted shadow attached to them. This is particularly important for human
motion analysis since shadows attached to silhouettes would cause problems in fit-
ting body limbs and estimating body poses, consider the example shown in Figure 4.
Therefore, extensive researches have addressed the detection/supression of moving
(dynamic) shadows.

Avoiding the detection of shadows or suppressing the detected shadows can be
achieved in color sequences by understanding how shadows affect color images.
This is also useful to achieve a background model that is invariant to illumination
changes. Cast shadows has a dark part (umbra) where a light source is totally oc-
cluded, and a soft transitional part (penumbra) where light is partially occluded [51].
In visual surveillance scenarios, the penumbra shadows are common since diffused
and indirect light is common in indoor and outdoor scenes. Penumbra shadows can
be characterized by low value of intensity while preserving the chromaticity of the
background, i.e.achromatic shadows. Most research on detecting shadows have fo-
cused on achromatic shadows [22, 12, 5].

Let us consider the RGB color space, which is a typical output of a color camera.
The brightness of a pixel is a linear combination or the RGB channels, here denoted
by I

I = wrR+wgG+wbB.

When an object cast a shadow on a pixel, less light reaches that pixel and the pixel
seems darker. Therefore, a shadow casted on a pixel can be characterized by a
change of in brightness of that pixel such that
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Ĩ = αI

where Ĩ is the pixel’s new brightness. Similar effect happens under certain changes
in illumination, e.g., turning on/off the lights. Here α < 1 for the case of shadow,
which means the pixel is darker under shadow, while α > 1 for the case of high-
lights, the pixel seems brighter. A change in the brightness of a pixel will affect all
the three color channels R, G, and B. Therefore any background model based on the
RGB space, and of course gray scale imagery, is bound to detect moving shadows
as foreground regions.

So, which color spaces are invariant or less sensitive to shadows and highlights?
For simplicity, let us assume that the effect of the change in a pixel brightness is the
same in the three channels. Therefore, the observed colors are αR, αG, αB. Any
chromaticity measure of a pixel where the effect of the α factor is cancelled, is in
fact invariant to shadows and highlights. For example, in [12] chromaticity coor-
dinates based on normalized RGB were used for modeling the background. Given
three color variables, R,G and B, the chromaticity coordinates are define as [34]

r =
R

R+G+B
,g =

G
R+G+B

,b =
B

R+G+B
(6)

Obviously only two coordinates are enough to represent the chromaticity since r+
g+b= 1. The above equation describes a central projection to the plane R+G+B=
11. It can be easily seen that the chromaticity variables r,g,b are invariant to shadows
and highlights (according to our assumption) since the α factor does not have an
effect on them. Figure 4 shows the results of detection using both (R,G,B) space
and (r,g) space. The figure shows that using the chromaticity coordinates allows
detection of the target without detecting its shadow.

Some other color spaces also have chromaticity variable that are invariant to
shadows and highlights in the same way. For example, the reader can verify that the
Hue and Saturation variables in the HSV color space are invariant to the α factor
and thus insensitive to shadows and highlights, while the Value variable, which rep-
resents the brightness is variant to them. Therefore, the HSV color space has been
used in some background subtraction algorithms that suppress shadows, e.g. [5].
Similarly, HSL, CIE xy spaces have the same property. On the other hand color
spaces such as YUV,YIQ, YCbCr are not invariant to shadows and highlights since
they are just linear transformations from the RGB space

Although using chromaticity coordinates helps in the suppression of shadows,
they have the disadvantage of losing lightness information. Lightness is related to
the differences in whiteness, blackness and grayness between different objects [17].
For example, consider the case where the target wears a white shirt and walks against
a gray background. In this case there is no color information. Since both white
and gray have the same chromaticity coordinates, the target will not be detected

1 This is analogous to the transformation used to obtain CIE xy chromaticity space from CIE
XYZ color space. The CIE XYZ color space is a linear transformation to the RGB space [1]. The
chromaticity space defined by the variable r,g is therefore analogous to the CIE xy chromaticity
space.
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using only chromaticity variables. In fact in the r,g space all the gray line (R=G=B)
projects to the point (1/3,1/3) in the space, similarly for CIE xy. Therefore, there
is no escape of using a brightness variable! In [12] a third “lightness” variable s =
R+G+B was used besides r,g. While the chromaticity variable r,g are not expected
to change under shadow, s is expected to change within limits which corresponds to
the expected shadows and highlights in the scene.

Most approaches for shadow suppression relies on the above reasoning of sep-
arating the chromaticity distortion from brightness distortion where each of these
distortions are treated differently, e.g. [22, 12, 5, 31, 24] In [22] both brightness
and color distortions are defined using a chromatic cylinder model. By projecting
an observed pixel color to the vector defined by that pixel’s background value in the
RGB color space (chromaticity line), the color distortion is defined as the orthog-
onal distance, while the projection defines the brightness distortion. Here a single
Gaussian background model is assumed. These two measures were used to classify
an observation to either background, foreground, shadows or highlights. Notice that
the orthogonal distance between an observed pixel’s RGB color and a chromaticity
line is affected by brightness of that pixel, while the distance measured in the r-g
space (or xy space) corresponds to the angles between the observed color vector and
the chromaticity line, i.e., the r-g space used in [12] is a projection of a chromatic
cone. In [24] a chromatic and brightness distortion model is used similar to [22, 31],
however using a chromatic cone instead of a chromatic cylinder distortion model.

(a) (b) (c)

Fig. 4 (a) Original frames, (b) Detection using (R,G,B) color space, (c) detection using chro-
maticity coordinates (r,g) and the lightness variable s.

Another class of algorithms for shadow suppression are approaches that depend
on image gradient to model the scene background. The idea is that texture infor-
mation in the background will be consistent under shadow, hence using the image
gradient as a feature will be invariant to cast shadows, except at the shadow bound-
ary. These approaches utilize a background edge or gradient model besides the chro-
maticity model to detect shadows, e.g. [25, 37, 61, 24]. In [24] a multistage approach
was proposed to detect chromatic shadows. In the first stage potential shadow region



14 Ahmed Elgammal

are detected by fusing color (using the invariant chromaticity cone model described
above) and gradient information. In the second stage pixels in these regions are clas-
sified using different cues including spatial and temporal analysis of chrominance,
brightness, and texture distortion; and a measure of diffused sky lighting denoted by
“bluish effect”. The approach can successfully detect chromatic shadows.

5 Tradeoffs in Background Maintenance

As discussed in Section 1 there are different changes that can occur in a scene back-
ground, which can be classified to: Illumination changes, Motion Changes, Struc-
tural Changes. The goal of background maintenance is to be able to cope with these
changes and keep an updated version of the scene background model. In parametric
background models, recursive update in the form of Eq. 1 (or some variant of it)
is typically used for background maintenance, e.g. [30, 33, 56]. In nonparametric
models, the sample of each pixel history is updated continuously to achieve adapt-
ability [12, 39]. These recursive updates along with careful choice of the color space
are typically enough to deal with both the illumination changes and motion changes
previously described.

The most challenging case is where changes are introduced to the background
(objects moved in or from the background) denoted here by “Structural Changes”.
For example, if a vehicle came and parked in the scene. A background process
should detect such a car but should also adapt it to the background model in order
to be able to detect other targets that might pass in front of it. Similarly if a vehicle
that was already part of the scene moved out, a false detection ‘hole’ will appear
in the scene where that vehicle was parked. There are many examples similar to
thesescenarios. Toyama et al. [54] denoted these situations “sleeping person” and
“walking person” scenarios.

Here we point out two interwound tradeoffs that associate with maintaing any
background model

Background update rate: The speed or the frequency in which a background
model gets updated highly influence the performance of the process. In most para-
metric models, the learning rate α in Eq. 1 controls the speed in which the model
adapts to changes. In nonparametric models, the frequency in which new samples
are added to the model has the same effect. Fast model update makes the model able
to rapidly adapt to scene changes such as fast illumination changes, which leads to
high sensitivity in foreground/background classification. However, the model can
also adapt to targets in the scene if the update is done blindly in all pixels or errors
occurs in masking out foreground regions. Slow update is safer to avoid integrating
any transient changes to the model. However, the classifier will lose its sensitivity
in case of fast scene changes.
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Selective vs. Blind update: Given a new pixel observation, there are two alternative
mechanisms to update a background model: 1) Selective Update: update the model
only if the pixel is classified as a background sample. 2) Blind Update: just update
the model regardless of the classification outcome. Selective update is commonly
used by masking out foreground-classified pixels from the update since updating
the model with foreground information would lead to increased false negative, e.g.,
holes in the detected targets. The problem with selective update is that any incorrect
detection decision will result in persistent incorrect detection later, which is a dead-
lock situations, as denoted by Karmann et al. [30]. For example, if a tree branch
is displaced and stayed fixed in the new location for a long time, it would be con-
tinually detected. This is what leads to the ’Sleeping/Walking person’ problems as
denoted in [54].

Blind update does not suffer from this deadlock situations since it does not in-
volve any update decisions; it allows intensity values that do not belong to the back-
ground to be added to the model. This might lead to more false negatives as targets
erroneously become part of the model. This effect can be reduced if the update rate
is slow.

The interwound effects of these two tradeoffs is shown in table 1. Most back-
ground models chose a selective update approach and try to avoid the effects of
detection errors by using a slow update rate. However, this is bound to deadlocks.
In [12] the use of a combination of two models was proposed: a short-term model
(selective and fast) and a long-term model (blind and slow). This combination tries
to achieve high sensitivity and, in the same time, avoids deadlocks.

Table 1 Tradeoffs in Background Maintenance

Fast Update Slow Update

Selective Update Highest sensitivity Less sensitivity
Adapts to fast illumination
changes
bound to Deadlocks bound to Deadlocks

Blind Update Adapts to targets Slow adaptation
(more False Negatives)
No deadlocks No deadlocks

Several approaches have been proposed for dealing with specific scenarios with
structural changes. The main problem is that dealing with such changes requires a
higher level of reasoning about what are the objects causing such structural changes
(vehicle, person, animal) and what should be done with them, which mostly depends
on the application. Such high level of reasoning is typically beyond the design goal
of the background process, which is mainly a low level process that knows only
about pixels’ appearance.

The idea of using multiple background models was further developed by Kim et
al. in [32] to address scene structure changes in an elegant way. In that work, a lay-
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The periodicity of an incoming pixel value is filtered by TH, as we did in the
background modeling (Sec.2.1). The values re-appearing for a certain amount of
time (Tadd) are added to the background model as short-term background. Some
parts of a scene may remain in the foreground unnecessarily long if adaptation is
slow, but other parts will disappear too rapidly into the background if adaptation
if fast. Neither approach is inherently better than the other. The choice of this
adaptation speed is problem dependent.

We assume that the background obtained during the initial background mod-
eling is long-term. This assumption is not necessarily true, e.g., a chair can be
moved after the initial training, but, in general, most long-term backgrounds
are obtainable during training. Background values not accessed for a long time
(Tdelete) are deleted from the background model. Optimally, the long-term code-
words are augmented with permanent flags indicating they are not to be deleted∗.
The permanent flags can be applied otherwise depending on specific applica-
tion needs.

Background model
(long-,short-term)

Input video

Background
Subtraction

Cache

Foreground
Regions

Foreground
Model

Tracking
Final

Output

Short-term
backgrounds

Layers in 2.5D-like space

Foregroundshort-term backgrounds: color-
labeled based on ‘first-access-time’

Updating
Finding
Match

Finding
Match Updating

Fig. 1. The overview of our approach with short-term background layers: the fore-
ground and the short-term backgrounds can be interpreted in a different temporal
order. The diagram items in dotted line, such as Tracking, are added to complete a
video surveillance system.

Thus, a pixel can be classified into four subclasses - (1) background found
in the long-term background model, (2) background found in the short-term
background model, (3) foreground found in the cache, and (4) foreground not
found in any of them. The overview of the approach is illustrated in Fig.1. This
adaptive modeling capability allows us to capture changes to the background
scene. The detailed procedure is given below.

Fig. 5 An overview of Kim et al. approach [32] with short-term background layers: the fore-
ground and the short-term backgrounds can be interpreted in a different temporal order.

ered background model was used where a long term background model is used be-
sides several multiple short term background models that capture temporary changes
in the background. An object that comes to the scene and stops is represented by a
short term background (layer). Therefore, if a second object passes in front of the
stopped object, it will also be detected and represented as a layer as well. Figure 5
shows an overview of the approach and detection results.

6 Background Subtraction from a Moving Camera

A fundamental limitation for background subtraction techniques is the assumption
of stationary camera. Several approaches have been suggested to alleviate this con-
straint and develop background subtraction techniques that can work with moving
camera under some motion constraints. Rather than a pixel-level representation, a
region-based representation of the scene background can help tolerate some degree
of camera motion, e.g. [42]. In particular, the case of pan-tilt-zoom (PTZ) camera
has been addressed because of its importance in surveillance applications. If the
camera motion is a rotation with no translation (or close to zero baseline), camera
motion can be modeled by a Homography and Image Mosaicing approaches can be
used to built a background model. There have been several approaches for building
a background model from a panning camera based on building an image mosaic and
the use of a MoG model, e.g. [46, 38, 44]. Alternatively, in [55] a representation
of the scene background as a finite set of images on a virtual polyhedron is used to
construct images of the scene background at any arbitrary pan-tilt-zoom setting.
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Recently there have been some interests in Background Subtraction/ foreground-
background separation from freely moving cameras, e.g. [21, 28, 48]. There is a
huge literature on motion segmentation [60], which exploits motion discontinuity,
however, these approaches do not necessarily aim at modeling scene background
and segmenting the foreground layers. Fundamentally motion segmentation by it-
self is not enough to separate the foreground from the background in case both of
them constitutes a rigid or close to rigid motion, e.g., a car parked in the street or a
person standing will have the same 3D motion w.r.t. to the camera as the rest of the
scene. Similarly depth discontinuity by itself is not enough since objects of interest
can be at a distance from the camera with no significant depth difference than the
background.

Most notably, Sheikh et al. [48] used affine factorization to develop a framework
for moving camera background subtraction. In this approach, trajectories of sparse
image features are segmented using affine factorization [53]. A sparse representa-
tion of the background is maintained by estimating trajectory basis that span the
background subspace. KDE was then used to model the appearance of the back-
ground and foreground from the sparse features. A Markov Random Field was used
to achieve the final labeling.

7 Further Reading

The statistical models for background subtraction that are described in this chapters
are basis for many other algorithms in the literature. In [54], linear prediction using
the Wiener filter is used to predict pixel intensity given a recent history of values.
The prediction coefficients are recomputed each frame from the sample covariance
to achieve adaptivity. Linear prediction using the Kalman Filter was also used in
[30, 29, 33].

Another approach to model a wide range of variations in the pixel intensity is to
represent these variations as discrete states corresponding to modes of the environ-
ment, e.g., lights on/off, cloudy/sunny. Hidden Markov Model (HMM) (HMM) have
been used for this purpose in [45, 52]. In [45], a three state HMM has been used to
model the intensity of a pixel for traffic monitoring application where the three states
correspond to the background, shadow, and foreground. The use of HMMs imposes
a temporal continuity constraint on the pixel intensity, i.e., if the pixel is detected
as a part of the foreground then it is expected to remain part of the foreground for
a period of time before switching back to be part of the background. In [52], the
topology of the HMM representing global image intensity is learned while learning
the background. At each global intensity state the pixel intensity is modeled using a
single Gaussian. It was shown that the model is able to learn simple scenarios like
switching the lights on-off .

Intensity has been the most commonly used feature for modeling the background.
Alternatively, edge features have also been used to model the background. The use
of edge features to model the background is motivated by the desire to have a rep-



18 Ahmed Elgammal

resentation of the scene background that is invariant to illumination changes, as
discussed in Section 4. In [59] foreground edges are detected by comparing the
edges in each new frame with an edge map of the background which is called the
background “primal sketch”. The major drawback of using edge features to model
the background is that it would only be possible to detect edges of foreground ob-
jects instead of the dense connected regions that result from pixel intensity based
approaches. Fusion of intensity and edge information was used in [25, 37, 61, 24].
Among many other feature studied, Optical Flow was used in [39] to help capture
background dynamics. A general framework for feature selection based on boosting
for background modeling was proposed in [41].

Besides pixel-based approaches, block-based approaches have also been used
for modeling the background. Block matching has been extensively used for change
detection between consecutive frames. In [23] each image block is fit to a second
order bivariate polynomial and the remaining variations are assumed to be noise. A
statistical likelihood test is then used to detect blocks with significant change. In [36]
each block was represented with its median template over the background learning
period and its block standard deviation. Subsequently, at each new frame, each block
is correlated with its corresponding template and blocks with too much deviation
relative to the measured standard deviation are considered to be foreground. The
major drawback with block-based approaches is that the detection unit is a whole
image block and therefore they are only suitable for coarse detection.

Background subtraction techniques can successfully deal with quasi moving
background, e.g.scenes with dynamic textures. The nonparametric model using Ker-
nel Density Estimation (KDE), described in Section 3.2, has very good performance
in scenes with dynamic backgrounds, such as outdoor scenes with trees in the back-
ground. Several approaches were developed to address such dynamic scenes. In [50]
an Auto Regressive Moving Average Model (ARMA) (ARMA) model was pro-
posed for modeling dynamic textures. ARMA is a first order linear prediction model.
In [62] an ARMA model was used for background modeling of scenes with dynamic
texture where a robust Kalman filter was used to update the model. In [39] a com-
bination of optical flow and appearance features was used within an adaptive kernel
density estimation framework to deal with dynamic scenes.
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Glossary

Auto Regressive Moving Average Model (ARMA) Given a time series of data
the ARMA model is a tool for understanding and, perhaps, predicting future
values in this series. The model consists of two parts, an autoregressive (AR)
part and a moving average (MA) part.. 18

Expectation Maximization In statistics, an expectation-maximization (EM) algo-
rithm is a method for finding maximum likelihood or maximum a posteriori
(MAP) estimates of parameters in statistical models, where the model depends
on unobserved latent variables. 5

Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved (hidden)
states. An HMM can be considered as the simplest dynamic Bayesian net-
work.. 17

Homography A homography is an invertible transformation from the real projective
plane to the projective plane that maps straight lines to straight lines.. 16

Image Mosaicing stitching several overlapping images on a surface, e.g.a plane to
construct a combined image.. 16

K-means A statistical clustering method which aims to partition observations into
k clusters in which each observation belongs to the cluster with the nearest
mean.. 6

Kalman Filter In statistics, the Kalman filter is a mathematical method named after
Rudolf E. Kalman. Its purpose is to use measurements observed over time,
containing noise (random variations) and other inaccuracies, and produce val-
ues that tend to be closer to the true values of the measurements and their
associated calculated values.. 17

Markov Random Field A Markov random field, Markov network or undirected
graphical model is a graphical model in which a set of random variables have
a Markov property described by an undirected graph. . 17
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Mixture of Gaussians A statistical mixture model where a distribution is approxi-
mated with a combination of Gaussian distributions. 5

Optical Flow Optical flow or optic flow is the pattern of apparent motion of ob-
jects, surfaces, and edges in a visual scene caused by the relative motion between
an observer (an eye or a camera) and the scene. 18
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