Skip to main content

Model-Based Pose Estimation

  • Chapter

Abstract

Model-based pose estimation algorithms aim at recovering human motion from one or more camera views and a 3D model representation of the human body. The model pose is usually parameterized with a kinematic chain and thereby the pose is represented by a vector of joint angles. The majority of algorithms are based on minimizing an error function that measures how well the 3D model fits the image. This category of algorithms usually has two main stages, namely defining the model and fitting the model to image observations. In the first section, the reader is introduced to the different kinematic parametrization of human motion. In the second section, the most commonly used representations of the human shape are described. The third section is dedicated to the description of different error functions proposed in the literature and to common optimization techniques used for human pose estimation. Specifically, local optimization and particle-based optimization and filtering are discussed and compared. The chapter concludes with a discussion of the state-of-the-art in model-based pose estimation, current limitations and future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We call it articulated Jacobian and not manipulator Jacobian as in Murray et al. [34] because we find it more appropriate in this context.

  2. 2.

    See also Chap. I, Sect. 6.2.2.

References

  1. Allen, B., Curless, B., Popović, Z.: Articulated body deformation from range scan data. In: ACM Transactions on Graphics, pp. 612–619. ACM, New York (2002)

    Google Scholar 

  2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: Reconstruction and parameterization from range scans. In: ACM Transactions on Graphics, pp. 587–594. ACM, New York (2003)

    Google Scholar 

  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24, 408–416 (2005)

    Article  Google Scholar 

  4. Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In: Advances in Neural Information Processing Systems, p. 33. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and pose from images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  6. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. In: ACM Transactions on Graphics, p. 72. ACM, New York (2007)

    Google Scholar 

  7. Besl, P., McKay, N.: A method for registration of 3d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 12, 239–256 (1992)

    Article  Google Scholar 

  8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  9. Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 8–15 (1998)

    Google Scholar 

  10. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. Int. J. Comput. Vis. 56, 179–194 (2004)

    Article  Google Scholar 

  11. Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region and motion-based 3d tracking of rigid and articulated objects. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 402–415 (2010)

    Article  Google Scholar 

  12. Cagniart, C., Boyer, E., Ilic, S.: Free-form mesh tracking: A patch-based approach. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1339–1346 (2010)

    Chapter  Google Scholar 

  13. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Cheung, K.M.G., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2003)

    Google Scholar 

  15. Choo, K., Fleet, D.J.: People tracking using hybrid Monte Carlo filtering. In: IEEE International Conference on Computer Vision, vol. 2, pp. 321–328 (2001)

    Google Scholar 

  16. Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. Int. J. Comput. Vis. 87(1), 156–169 (2010)

    Article  Google Scholar 

  17. Dambreville, S., Sandhu, R., Yezzi, A., Tannenbaum, A.: Robust 3d pose estimation and efficient 2d region-based segmentation from a 3d shape prior. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 5303, pp. 169–182. Springer, Berlin (2008)

    Google Scholar 

  18. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., Thrun, S.: Performance capture from sparse multi-view video. In: ACM Transactions on Graphics, pp. 1–10. ACM, New York (2008)

    Google Scholar 

  19. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 (2000)

    Google Scholar 

  20. Deutscher, J., Davison, A., Reid, I.: Automatic partitioning of high dimensional search spaces associated with articulated body motion capture. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (2001)

    Google Scholar 

  21. Gall, J., Potthoff, J., Schnorr, C., Rosenhahn, B., Seidel, H.: Interacting and annealing particle filters: Mathematics and a recipe for applications. J. Math. Imaging Vis. 28, 1–18 (2007)

    Article  MathSciNet  Google Scholar 

  22. Gall, J., Rosenhahn, B., Seidel, H.: Clustered stochastic optimization for object recognition and pose estimation. In: DAGM. Lecture Notes in Computer Science, vol. 4713, pp. 32–41. Springer, Berlin (2007)

    Google Scholar 

  23. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.: Optimization and filtering for human motion capture. Int. J. Comput. Vis. 87, 75–92 (2010)

    Article  Google Scholar 

  24. Gavrila, D., Davis, L.: 3D model based tracking of humans in action: A multiview approach. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1996)

    Google Scholar 

  25. Grassia, S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3, 29–48 (1998)

    Google Scholar 

  26. Hasler, N., Ackermann, H., Rosenhahn, B., Thormaehlen, T., Seidel, H.: Multilinear pose and body shape estimation of dressed subjects from image sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1823–1830 (2010)

    Chapter  Google Scholar 

  27. Hasler, N., Rosenhahn, B., Thormaehlen, T., Wand, M., Gall, J., Seidel, H.-P.: Markerless motion capture with unsynchronized moving cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 224–231 (2009)

    Google Scholar 

  28. Ju, S.X., Black, M.J., Yacoob, Y.: Cardboard people: A parameterized model of articulated image motion. In: International Workshop on Automatic Face and Gesture Recognition, pp. 38–44 (1996)

    Google Scholar 

  29. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  30. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)

    Article  Google Scholar 

  31. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: A survey. Found. Trends Comput. Graph. Vis. 1(1), 1–89 (2005)

    Article  Google Scholar 

  32. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: ACM Transactions on Graphics, pp. 165–172. ACM, New York (2000)

    Google Scholar 

  33. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, vol. 3, pp. 674–679 (1981)

    Google Scholar 

  34. Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)

    MATH  Google Scholar 

  35. Piccardi, M.: Background subtraction techniques: A review. In: Proc. IEEE Int Systems, Man and Cybernetics Conf., vol. 4, pp. 3099–3104 (2004)

    Google Scholar 

  36. Plankers, R., Fua, P.: Articulated soft objects for video-based body modeling. In: IEEE International Conference on Computer Vision, vol. 1, pp. 394–401 (2001)

    Google Scholar 

  37. Pons-Moll, G., Baak, A., Helten, T., Mueller, M., Seidel, H.-P., Rosenhahn, B.: Multisensor-fusion for 3d full-body human motion capture. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 663–670 (2010)

    Chapter  Google Scholar 

  38. Pons-Moll, G., Rosenhahn, B.: Ball joints for marker-less human motion capture. In: Proc. IEEE Workshop Applications of Computer Vision (WACV) (2009)

    Google Scholar 

  39. Rosenhahn, B., Brox, T.: Scaled motion dynamics for markerless motion capture. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  40. Schmaltz, C., Rosenhahn, B., Brox, T., Cremers, D., Weickert, J., Wietzke, L., Sommer, G.: Region-based pose tracking. In: Proc. 3rd Iberian Conference on Pattern Recognition and Image Analysis, vol. 4478, pp. 56–63 (2007)

    Google Scholar 

  41. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics 19, 245–254 (1985)

    Article  Google Scholar 

  42. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3d human figures using 2d image motion. In: Vernon, D. (ed.) European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 1843, pp. 702–718. Springer, Berlin (2000)

    Google Scholar 

  43. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1), 4–27 (2010)

    Article  Google Scholar 

  44. Sminchisescu, C.: Consistency and coupling in human model likelihoods. In: International Workshop on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  45. Sminchisescu, C., Triggs, B.: Covariance scaled sampling for monocular 3d body tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 (2001)

    Google Scholar 

  46. Sminchisescu, C., Triggs, B.: Building roadmaps of local minima of visual models. In: European Conference on Computer Vision, pp. 566–582 (2002)

    Google Scholar 

  47. Sminchisescu, C., Triggs, B.: Hyperdynamics importance sampling. In: European Conference on Computer Vision, pp. 769–783 (2002)

    Google Scholar 

  48. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3d human tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  49. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: ACM Transactions on Graphics, pp. 399–405. ACM, New York (2004)

    Google Scholar 

  50. Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single uncalibrated image. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 677–684 (2000)

    Google Scholar 

  51. Vondrak, M., Sigal, L., Jenkins, O.C.: Physical simulation for probabilistic motion tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  52. Zhang, Z.: Iterative points matching for registration of free form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Pons-Moll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pons-Moll, G., Rosenhahn, B. (2011). Model-Based Pose Estimation. In: Moeslund, T., Hilton, A., Krüger, V., Sigal, L. (eds) Visual Analysis of Humans. Springer, London. https://doi.org/10.1007/978-0-85729-997-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-997-0_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-996-3

  • Online ISBN: 978-0-85729-997-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics