Skip to main content

Session-Based Recommender Systems

  • Chapter
  • First Online:
Book cover Recommender Systems Handbook

Abstract

Session-based recommendation is concerned with the problem of tailoring item suggestions according to the short-term needs and assumed intents of the user.

The input in this recommendation scenario consists of an often very short sequence of user interactions that are observed in an ongoing usage session, and in many cases longer-term preferences of the users are not available. Such problems are highly relevant in practice because (i) recommendations should often be made also to anonymous and first-time users and because (ii) the users’ intents can change from session to session. In this chapter, we first elaborate on practical application scenarios for session-based recommender systems, provide a characterization of the problem class, and outline key challenges. Afterwards, we review technical approaches to session-based recommendation and report common practices of evaluating such systems. The chapter ends with a discussion of open challenges and an outlook on future directions in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not connecting click data with individual user accounts may in some cases also be beneficial in terms of user privacy and the General Data Protection Regulation in the European Union.

  2. 2.

    These discussions apply both for session-based and for session-aware recommender systems. For the sake of brevity, we will use the term session-based in this chapter, and will explicitly state when not both types of problems are meant.

  3. 3.

    For the sake of readability, we use the terms “user action (on an item)” and “user-item interaction” interchangeably.

  4. 4.

    https://docs.aws.amazon.com/personalize/latest/dg/native-recipe-hrnn.html (Date visited: 2020/06/01).

  5. 5.

    Bias terms are omitted to enhance readability.

  6. 6.

    This should not to be confused with the common definition of context in recommender systems, which often refers to the set of contextual variables, such as location, time, etc., that can influence a user’s decisions.

  7. 7.

    https://github.com/rn5l/session-rec.

References

  1. 30Music Listening and Playlists Dataset (2015). http://recsys.deib.polimi.it/datasets/. Accessed 15 May 2020

  2. H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima, J. Krasnodebski, L. Pizzato, Multistakeholder recommendation: Survey and research directions. User Model. User-Adapt. Interact. 30, 127–158 (2020)

    Article  Google Scholar 

  3. G. Adomavicius, B. Mobasher, F. Ricci, A. Tuzhilin, Context-aware recommender systems. AI Mag. 32(3), 67–80 (2011)

    Google Scholar 

  4. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (1993), pp. 207–216

    Google Scholar 

  5. R. Agrawal, R. Srikant, Mining sequential patterns, in Proceedings International Connference on Data Engineering, ICDE’95 (1995), pp. 3–14

    Google Scholar 

  6. T.G. Armstrong, A. Moffat, W. Webber, J. Zobel, Improvements that don’t add up: ad-hoc retrieval results since 1998, in Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM’09 (2009), pp. 601–610

    Google Scholar 

  7. Art of the Mix (2004). http://www.ee.columbia.edu/~dpwe/research/musicsim/. Accessed 15 May (2020)

  8. P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  9. Avito Context Ad Clicks (2015). https://www.kaggle.com/c/avito-context-ad-clicks/. Accessed 15 May 2020

  10. G. Bonnin, D. Jannach, Automated generation of music playlists: survey and experiments. ACM Comput. Surv. 47(2), 26:1–26:35 (2014)

    Google Scholar 

  11. L. Bottou, J. Peters, J. Quiñonero-Candela, D.X. Charles, D.M. Chickering, E. Portugaly, D. Ray, P. Simard, E. Snelson, Counterfactual reasoning and learning systems: the example of computational advertising. J. Mach. Learn. Res. 14(1), 3207–3260 (2013)

    MathSciNet  MATH  Google Scholar 

  12. B. Brost, R. Mehrotra, T. Jehan, The music streaming sessions dataset, in Proceedings of the TheWebConf (2019), pp. 2594–2600

    Google Scholar 

  13. P.G. Campos, F. Díez, I. Cantador, Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24(1–2), 67–119 (2014)

    Article  Google Scholar 

  14. D. Carraro, D. Bridge, Debiased offline evaluation of recommender systems: a weighted-sampling approach (extended abstract), in Proceedings of the ACM RecSys 2019 Workshop on Reinforcement and Robust Estimators for Recommendation (REVEAL ’19) (2019)

    Google Scholar 

  15. S. Chen, J.L. Moore, D. Turnbull, T. Joachims, Playlist prediction via metric embedding, in Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’12 (2012), pp. 714–722

    Google Scholar 

  16. S. Chen, J. Xu, T. Joachims, Multi-space probabilistic sequence modeling, in Proceedings ACM SIGKDD International Conference on Knowledge Discovery, KDD’13 (2013), pp. 865–873

    Google Scholar 

  17. M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, E.H. Chi, Top-k off-policy correction for a reinforce recommender system, in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM’19 (2019), pp. 456–464

    Google Scholar 

  18. C. Cheng, H. Yang, M.R. Lyu, I. King, Where you like to go next: successive point-of-interest recommendation, in Proceedings International Joint Conference on Artificial Intelligence, IJCAI’13 (2013), pp. 2605–2611

    Google Scholar 

  19. K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, in Proceeedindgs of Empirical Methods in Natural Language Processing, EMNLP’14 (2014), pp. 1724–1734

    Google Scholar 

  20. CIKM, The CIKM Cup 2016 (2016). https://competitions.codalab.org/competitions/11161. Accessed March 2020

  21. P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algorithms on top-n recommendation tasks, in Proceedings ACM Conference on Recommender Systems, RecSys’10 (2010), pp. 39–46

    Google Scholar 

  22. P. Cremonesi, F. Garzotto, R. Turrin, Investigating the persuasion potential of recommender systems from a quality perspective: an empirical study. Trans. Interact. Intell. Syst. 2(2), 1–41 (2012)

    Article  Google Scholar 

  23. Delicious (2008). http://www.dai-labor.de/en/competence_centers/irml/datasets/. Accessed 15 May 2020

  24. G. de Souza Pereira Moreira, D. Jannach, A.M. da Cunha, Contextual hybrid session-based news recommendation with recurrent neural networks. IEEE Access 7, 169185–169203 (2019)

    Google Scholar 

  25. Diginetica CIKM Cup 2016 Dataset (2016). https://competitions.codalab.org/competitions/11161. Accessed 15 June 2020

  26. M.D. Ekstrand, F.M. Harper, M.C. Willemsen, J.A. Konstan, User perception of differences in recommender algorithms, in Proceedings of the 2014 ACM Conference on Recommender Systems, RecSys’14 (2014), pp. 161–168

    Google Scholar 

  27. M. Ferrari Dacrema, P. Cremonesi, D. Jannach, Are we really making much progress? A worrying analysis of recent neural recommendation approaches, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys’19 (2019), pp. 101–109

    Google Scholar 

  28. M. Ferrari Dacrema, S. Boglio, P. Cremonesi, D. Jannach, A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. 39, 1–49 (2021)

    Article  Google Scholar 

  29. F. Garcin, C. Dimitrakakis, B. Faltings, Personalized news recommendation with context trees, in Proceedings of the ACM Confererence on Recommender Systems, RecSys’13 (2013), pp. 105–112

    Google Scholar 

  30. F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, A. Huber, Offline and online evaluation of news recommender systems at swissinfo.ch, in Proceedings of the ACM Confererence on Recommender Systems, RecSys’14 (2014), pp. 169–176

    Google Scholar 

  31. D. Garg, P. Gupta, P. Malhotra, L. Vig, G. Shroff, Sequence and time aware neighborhood for session-based recommendations: stan, in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19 (2019), pp. 1069–1072

    Google Scholar 

  32. A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, S. Dollé, Offline a/b testing for recommender systems, in Proceedings of the ACM International Conference on Web Search and Data Mining, WSDM’18 (2018), pp. 198–206

    Google Scholar 

  33. C.A. Gomez-Uribe, N. Hunt, The Netflix recommender system: algorithms, business value, and innovation. Trans. Manag. Inf. Syst. 6(4), 13:1–13:19 (2015)

    Google Scholar 

  34. M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, D. Sharp, E-commerce in your inbox: product recommendations at scale, in Proceedings ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’15 (2015), pp. 1809–1818

    Google Scholar 

  35. X. Guo, C. Shi, C. Liu, Intention modeling from ordered and unordered facets for sequential recommendation, in Proceedings of The Web Conference 2020, WWW’20, New York, NY, USA, (2020), pp. 1127–1137

    Google Scholar 

  36. N. Hariri, B. Mobasher, R. Burke, Context-aware music recommendation based on latent topic sequential patterns, in Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys’12 (2012), pp. 131–131

    Google Scholar 

  37. Q. He, D. Jiang, Z. Liao, S.C.H. Hoi, K. Chang, E.-P. Lim, H. Li, Web query recommendation via sequential query prediction, in Proceedings International Conference on Data Engineering, ICDE’09 (2009), pp. 1443–1454

    Google Scholar 

  38. J.L. Herlocker, J.A. Konstan, L.G. Terveen, J.T. Riedl, Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  39. B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recommendations with recurrent neural networks, in Proceedings International Conference on Learning Representatinos, ICLR’16 (2016)

    Google Scholar 

  40. B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk, Parallel recurrent neural network architectures for feature-rich session-based recommendations, in Proceedings ACM Conference on Recommender Systems, RecSys’16 (2016), pp. 241–248

    Google Scholar 

  41. B. Hidasi, A. Karatzoglou, Recurrent neural networks with top-k gains for session-based recommendations, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM’18 (2018), pp. 843–852

    Google Scholar 

  42. M. Hosseinzadeh Aghdam, N. Hariri, B. Mobasher, R. Burke, Adapting recommendations to contextual changes using hierarchical hidden markov models, in Proceedings of the 9th ACM Conference on Recommender Systems, RecSys’15 (2015), pp. 241–244

    Google Scholar 

  43. L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, Z. Gu, Diversifying personalized recommendation with user-session context, in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17 (2017), pp. 1858–1864

    Google Scholar 

  44. D. Jannach, M. Jugovac, Measuring the business value of recommender systems. ACM Trans. Manag. Inf. Syst. 10(4), 1–23 (2019)

    Article  Google Scholar 

  45. D. Jannach, M. Ludewig, When recurrent neural networks meet the neighborhood for session-based recommendation, in Proceedings of the 11th ACM Conference on Recommender Systems, RecSys’17 (2017), pp. 306–310

    Google Scholar 

  46. D. Jannach, M. Zanker, Collaborative filtering: matrix completion and session-based recommendation tasks, in Collaborative Recommendations: Algorithms, Practical Challenges and Applications, ed. by S. Berkovsky, I. Cantador, D. Tikk (World Scientific, Singapore, 2019), pp. 1–38

    Google Scholar 

  47. D. Jannach, L. Lerche, M. Jugovac, Adaptation and evaluation of recommendations for short-term shopping goals, in Proceedings of the ACM Conference on Recommender Systems, RecSys’15 (2015), pp. 211–218

    Google Scholar 

  48. D. Jannach, L. Lerche, I. Kamehkhosh, M. Jugovac, What recommenders recommend: an analysis of recommendation biases and possible countermeasures. User Model. User-Adapt. Interact. 25(5), 427–491 (2015)

    Article  Google Scholar 

  49. D. Jannach, M. Jugovac, L. Lerche, Supporting the design of machine learning workflows with a recommendation system. ACM Trans. Interact. Intell. Syst. 6(1), 1–35 (2016)

    Article  Google Scholar 

  50. D. Jannach, I. Kamehkhosh, L. Lerche, Leveraging multi-dimensional user models for personalized next-track music recommendation, in Proceedings of the ACM Symposium on Applied Computing, ACM SAC2017 (2017)

    Google Scholar 

  51. D. Jannach, M. Ludewig, L. Lerche, Session-based item recommendation in e-commerce: on short-term intents, reminders, trends, and discounts. User-Model. User-Adapt. Interact. 27(3–5), 351–392 (2017)

    Article  Google Scholar 

  52. D. Jannach, L. Lerche, M. Zanker, Recommending based on implicit feedback, in Social Information Access, ed. by P. Brusilovsky, D. He (Springer, Berlin, 2018)

    Google Scholar 

  53. JD Dataset (2019). https://github.com/alicogintel/SDM. Accessed 15 May 2020

  54. M. Jugovac, D. Jannach, L. Lerche, Efficient optimization of multiple recommendation quality factors according to individual user tendencies. Exp. Syst. Appl. 81, 321–331 (2017)

    Article  Google Scholar 

  55. I. Kamehkhosh, D. Jannach, User perception of next-track music recommendations, in Proceedings of the 2017 Conference on User Modeling Adaptation and Personalization, UMAP’17 (2017), pp. 113–121

    Google Scholar 

  56. K. Kapoor, V. Kumar, L. Terveen, J.A. Konstan, P. Schrater, I like to Explore Sometimes: adapting to dynamic user novelty preferences, in Proceedings of the 9th ACM Conference on Recommender Systems (2015), pp. 19–26

    Google Scholar 

  57. B.P. Knijnenburg, M.C. Willemsen, Z. Gantner, H. Soncu, C. Newell, Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 22, 441–504 (2012)

    Article  Google Scholar 

  58. P. Kouki, I. Fountalis, N. Vasiloglou, X. Cui, E. Liberty, K. Al Jadda, From the lab to production: a case study of session-based recommendations in the home-improvement domain, in Fourteenth ACM Conference on Recommender Systems, RecSys’20 (2020), pp. 140–149

    Google Scholar 

  59. S. Latifi, N. Mauro, D. Jannach, Session-aware recommendation: a surprising quest for the state-of-the-art. Inf. Sci. 573, 291–315 (2021)

    Article  MathSciNet  Google Scholar 

  60. D. Lee, K. Hosanagar, Impact of recommender systems on sales volume and diversity, in Proceedings of the International Conference on Information Systems, ICIS 2014 (2014)

    Google Scholar 

  61. D. Lee, K. Hosanagar, How do recommender systems affect sales diversity? A cross-category investigation via randomized field experiment. Inf. Syst. Res. 30(1), 239–259 (2019)

    Google Scholar 

  62. S. Levine, V. Koltun, Guided policy search, in International Conference on Machine Learning (2013), pp. 1–9

    Google Scholar 

  63. L. Li, W. Chu, J. Langford, X. Wang, Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms, in Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM’11 (2011), pp. 297–306

    Google Scholar 

  64. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, J. Ma, Neural attentive session-based recommendation, in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM’17 (2017), pp. 1419–1428

    Google Scholar 

  65. Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks for sequence learning (2015). CoRR, 1506.00019

    Google Scholar 

  66. Q. Liu, Y. Zeng, R. Mokhosi, H. Zhang, STAMP: short-term attention/memory priority model for session-based recommendation, in Proceedings ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’18 (2018), pp. 1831–1839

    Google Scholar 

  67. Y. Liu, A. Swaminathan, A. Agarwal, E. Brunskill, Off-policy policy gradient with state distribution correction (2019). arXiv:1904.08473

    Google Scholar 

  68. B. Loepp, T. Donkers, T. Kleemann, J. Ziegler, Impact of item consumption on assessment of recommendations in user studies, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys’18 (2018), pp. 49–53

    Google Scholar 

  69. M. Ludewig, D. Jannach, Evaluation of session-based recommendation algorithms. User-Model. User-Adapt. Interact. 28(4–5), 331–390 (2018)

    Article  Google Scholar 

  70. M. Ludewig, D. Jannach, User-centric evaluation of session-based recommendations for an automated radio station, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys’19 (2019)

    Google Scholar 

  71. M. Ludewig, N. Mauro, S. Latifi, D. Jannach, Performance comparison of neural and non-neural approaches to session-based recommendation, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys’19 (2019), pp. 462–466

    Google Scholar 

  72. M. Ludewig, N. Mauro, S. Latifi, D. Jannach, Empirical analysis of session-based recommendation algorithms. User Model. User-Adapt. Interact. 31, (2021)

    Google Scholar 

  73. Y. Ma, B.M. Narayanaswamy, H. Lin, H. Ding, Temporal-contextual recommendation in real-time, in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD’20 (2020), pp. 2291–2299

    Google Scholar 

  74. N.R. Mabroukeh, C.I. Ezeife, A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43(1), 1–41 (2010)

    Article  Google Scholar 

  75. S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine learning forecasting methods: concerns and ways forward. PloS One 13(3), e0194889 (2018)

    Google Scholar 

  76. A. Maksai, F. Garcin, B. Faltings, Predicting online performance of news recommender systems through richer evaluation metrics, in Proceedings of the ACM Confererence on Recommender Systems, RecSys’15 (2015), pp. 179–186

    Google Scholar 

  77. S. Martin, B. Faltings, V. Schickel, Context-tree recommendation vs matrix-factorization: algorithm selection and live users evaluation, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33 (2019), pp. 9534–9540

    Google Scholar 

  78. Microsoft Anonymous Web Data (1998). http://kdd.ics.uci.edu/databases/msweb/msweb.html. Accessed 15 May 2020

  79. T.M. Mitchell, The Need for Biases in Learning Generalizations. Department of Computer Science, Laboratory for Computer Science Research (1980)

    Google Scholar 

  80. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing atari with deep reinforcement learning (2013) . arXiv:1312.5602

    Google Scholar 

  81. B. Mobasher, H. Dai, T. Luo, M. Nakagawa, Using sequential and non-sequential patterns in predictive web usage mining tasks, in Proceedings of IEEE International Conference on Data Mining, ICDM’02 (2002), pp. 669–672

    Google Scholar 

  82. NYC Taxi Trips (2013). http://www.andresmh.com/nyctaxitrips/. Accessed 15 May 2020

  83. T.M. Phuong, T.C. Thanh, N.X. Bach, Neural session-aware recommendation. IEEE Access 7, 86884–86896 (2019)

    Article  Google Scholar 

  84. P. Pu, L. Chen, R. Hu, A user-centric evaluation framework for recommender systems, in Proceedings of the 5th ACM Conference on Recommender Systems, RecSys’11 (2011), pp. 157–164

    Google Scholar 

  85. M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi, Personalizing session-based recommendations with hierarchical recurrent neural networks, in Proceedings of the ACM Conference on Recommender Systmes, RecSys’17 (2017)

    Google Scholar 

  86. M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems. ACM Comput. Surv. 54, 1–36 (2018)

    Google Scholar 

  87. R. Ragno, C.J.C. Burges, C. Herley, Inferring similarity between music objects with application to playlist generation, in Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval, MIR’05 (2005), pp. 73–80

    Google Scholar 

  88. RecSys Challenge 2015 (2015). http://2015.recsyschallenge.com/challenge.html. Accessed 15 May 2020

  89. S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in Proceedings of the Conference on Uncertainty in Artificial Intelligence, UAI’09 (2009), pp. 452–461

    Google Scholar 

  90. S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized markov chains for next-basket recommendation, in Proceedings of the World Wide Web Conference, WWW’10 (2010), pp. 811–820

    Google Scholar 

  91. S. Rendle, L. Zhang, Y. Koren, On the difficulty of evaluating baselines: a study on recommender systems (2019). CoRR, abs/1905.01395

    Google Scholar 

  92. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, Grouplens: an open architecture for collaborative filtering of netnews, in Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW’94 (1994), pp. 175–186

    Google Scholar 

  93. D. Rohde, S. Bonner, T. Dunlop, F. Vasile, A. Karatzoglou, Recogym: a reinforcement learning environment for the problem of product recommendation in online advertising (2018). arXiv:1808.00720

    Google Scholar 

  94. N. Sachdeva, G. Manco, E. Ritacco, V. Pudi, Sequential variational autoencoders for collaborative filtering, in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM’19 (2019), pp. 600–608

    Google Scholar 

  95. A. Said, D. Tikk, K. Stumpf, Y. Shi, M.A. Larson, P. Cremonesi, Recommender systems evaluation: a 3d benchmark, in RUE Workshop at ACM RecSys 2012 (2012), pp. 21–23

    Google Scholar 

  96. J. Sanz-Cruzado, P. Castells, E. López, A simple multi-armed nearest-neighbor bandit for interactive recommendation, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys’19 (2019), pp. 358–362

    Google Scholar 

  97. G. Shani, A. Gunawardana, Evaluating recommendation systems, in Recommender Systems Handbook (Springer, Berlin, 2011), pp. 257–297

    Book  Google Scholar 

  98. G. Shani, D. Heckerman, R.I. Brafman, An MDP-based recommender system. J. Mach. Learn. Res. 6, 1265–1295 (2005)

    MathSciNet  MATH  Google Scholar 

  99. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  100. E. Smirnova, F. Vasile, Contextual sequence modeling for recommendation with recurrent neural networks (2017). CoRR, abs/1706.07684

    Google Scholar 

  101. H. Steck, Training and testing of recommender systems on data missing not at random, in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’10 (2010), pp. 713–722

    Google Scholar 

  102. A. Swaminathan, T. Joachims, The self-normalized estimator for counterfactual learning, in Advances in Neural Information Processing Systems, NIPS’15 (2015), pp. 3231–3239

    Google Scholar 

  103. A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudik, J. Langford, D. Jose, I. Zitouni, Off-policy evaluation for slate recommendation, in Advances in Neural Information Processing Systems (2017), pp. 3632–3642

    Google Scholar 

  104. P. Symeonidis, L. Kirjackaja, M. Zanker, Session-aware news recommendations using random walks on time-evolving heterogeneous information networks. User Model. User-Adapt. Interact. 30, 727–755 (2020)

    Article  Google Scholar 

  105. J. Tang, K. Wang, Personalized top-n sequential recommendation via convolutional sequence embedding, in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM’18 (2018), pp. 565–573

    Google Scholar 

  106. M.M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, J. McAuley, Attentive sequential models of latent intent for next item recommendation, in Proceedings of The Web Conference 2020, WWW’20 (2020), pp. 2528–2534

    Google Scholar 

  107. M. Tavakol, U. Brefeld, Factored MDPs for detecting topics of user sessions, in Proceedings of the 8th ACM Conference on Recommender Systems, RecSys’14 (2014), pp. 33–40

    Google Scholar 

  108. The Music Streaming Sessions Dataset (2019). https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge-old. Accessed 10 June 2020

  109. R. Turrin, A. Condorelli, R. Pagano, M. Quadrana, P. Cremonesi, Large scale music recommendation, in Proceedings of the LSRS Workshop at ACM RecSys 2015 (2015)

    Google Scholar 

  110. R. Turrin, M. Quadrana, A. Condorelli, R. Pagano, P. Cremonesi, 30music listening and playlists dataset, in ACM RecSys 2015 Posters (2015)

    Google Scholar 

  111. F. Vasile, D. Rohde, O. Jeunen, A. Benhalloum, A gentle introduction to recommendation as counterfactual policy learning, in Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP’20 (2020), pp. 392–393

    Google Scholar 

  112. B. Vassøy, M. Ruocco, E. de Souza da Silva, E. Aune, Time is of the essence: a joint hierarchical RNN and point process model for time and item predictions, in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, WSDM’19 (2019), pp. 591–599

    Google Scholar 

  113. M. Wan, J. Ni, R. Misra, J. McAuley, Addressing marketing bias in product recommendations, in Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM’20 (2020), pp. 618–626

    Google Scholar 

  114. Q. Wang, C. Zeng, W. Zhou, T. Li, S.S. Iyengar, L. Shwartz, G.Y. Grabarnik, Online interactive collaborative filtering using multi-armed bandit with dependent arms. IEEE Trans. Knowl. Data Eng. 31(8), 1569–1580 (2018)

    Article  Google Scholar 

  115. M. Wang, P. Ren, L. Mei, Z. Chen, J. Ma, M. de Rijke, A collaborative session-based recommendation approach with parallel memory modules, in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19 (2019), pp. 345–354

    Google Scholar 

  116. S. Wang, L. Cao, Y. Wang, A survey on session-based recommender systems (2019). CoRR, abs/1902.04864

    Google Scholar 

  117. S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan, Session-based recommendation with graph neural networks, in Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI (2019), pp. 346–353

    Google Scholar 

  118. W. Yang, K. Lu, P. Yang, J. Lin, Critically examining the neural hype: weak baselines and the additivity of effectiveness gains from neural ranking models, in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19 (2019), pp. 1129–1132

    Google Scholar 

  119. G.-E. Yap, X.-L. Li, P.S. Yu, Effective next-items recommendation via personalized sequential pattern mining, in Proceedings International Conference on Database Systems for Advanced Applications, DASFAA’12 (2012), pp. 48–64

    Google Scholar 

  120. F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, T. Tan, TAGNN: target attentive graph neural networks for session-based recommendation, in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’20 (2020)

    Google Scholar 

  121. F. Yuan, A. Karatzoglou, I. Arapakis, J.M. Jose, X. He, A simple convolutional generative network for next item recommendation, in Proceedings of the 12th ACM International Conference on Web Search and Data Mining, WSDM’19 (2019), pp. 582–590

    Google Scholar 

  122. M. Zaheer, A. Ahmed, Y. Wang, D. Silva, M. Najork, Y. Wu, S. Sanan, S. Chatterjee, Uncovering hidden structure in sequence data via threading recurrent models, in Proceedings ACM International Conference on Web Search and Data Mining, WSDM’19 (2019), pp. 186–194

    Google Scholar 

  123. J. Zhang, G. Adomavicius, A. Gupta, W. Ketter, Consumption and performance: understanding longitudinal dynamics of recommender systems via an agent-based simulation framework. Inf. Syst. Res. 31, 76–101 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Jannach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Jannach, D., Quadrana, M., Cremonesi, P. (2022). Session-Based Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2197-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2197-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2196-7

  • Online ISBN: 978-1-0716-2197-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics