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1 Introduction

In a recent paper, Jean-Yves Girard commented that ”it has been a long time
since philosophy has stopped intereacting with logic”[17]. Actually, it has not
been such a "long” time since, e.g., Dag Prawitz and Michael Dummett devel-
oped philosophical arguments within the paradigm of Gentzen-style systems in
favour of the adoption of intuitionistic logic. But recent developments within
logic have left philosophers far behind. Prawitz’s timely book Natural Deduction
[?], along with a key result obtained at around the same time, the Curry-Howard
isomorphism [21], initiated deep changes within logic; to wit, the development of
the substructural logics [?, ?]. Dummett developed within proof-theoretical se-
mantics a mature version of his anti-realist challenge, closely allied to Prawitz’s
own philosophical considerations. But within the debate generated since by
Dummett’s anti-realism, philosophers have for the most part not paid much at-
tention to the developments within logic since the 1970s. The almost complete
absence of any discussion of linear logic within this context should convince any
one that there is something seriously amiss here. The present paper is related
to an attempt by Jacques Dubucs to provide a new impetus to the anti-realism
debate by providing a radical anti-realist line of argument that also ties the
debate more closely to issues of concern within substructural logics [?, 9, 10].
We shall only make brief remarks about his argument in section 1. Our inten-
tion is to push it a few steps further and explore the possibilities for a radically
anti-realist epistemic logic.

In a nutshell, it has been suggested that a radical form of anti-realism should
force one to look at structural rules within Gentzen-style systems that are re-
sponsible for the idealizations of the full structural logic. By ’idealization’ we
merely mean features of structural logic which allow for infinities to creep in,
so to speak, and which should not go without notice within the interpretation
of proofs as actions that has dominated much of the thinking about proof-
theoretical semantics since the days of Prawitz and Dummett (e.g., in the work
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of Girard or of Martin-Lof). Linear logic, by forbidding contraction and weak-
ening as structural rules and by simultaneously introducing the exponentials !
and 7 to recover them in some way, appears at first blush to be a promising
candidate. Since its beginning, epistemic logic has been plagued with a serious
case of idealization, the problem of logical omniscience. We shall propose here
one new avenue for coping with this problem. Here again we build on ideas set
forth by Dubucs [?]. This new approach requires that one develops a modal
linear logic. In section 2, we shall discuss only two candidates for epistemic
linear logic and eliminate one. The radical anti-realism advocated for here re-
quires that issues concerning complexity should not be ignored, as they have
been traditionally, precisely because, when discussing idealizations, complexity
is part of the diagnosis. This is a serious problem for epistemic logics, where one
seems not to be able to escape exponential complexity, especially in multi-agent
systems. In the concluding section of our paper, we shall suggest one way out,
namely the encoding of proofs in the proof assistant Coq [7].

The following considerations are of an exploratory and programmatic -in
other words: philosophical- nature. There are no new results, except an coding
in Coq of two different fragments of modal linear logic and the proof of the
puzzle known as the wise men puzzle or King, 3 wise men, and 5 hats puzzle,
which is a well-known version of the muddy children puzzle. This proof is given
in the appendix. This paper is rather an informal discussion which should help
to orient and to motivate future research. Although we shall go over some
elementary points in order to make our philsoophical points, especially in the
next section, some basic knowledge is presupposed.

2 Radical Anti-Realism and Linear Logic

The stance adopted here is that of radical anti-realism. It is the result of a
radicalization of the anti-realist philosophy of Michael Dummett, on the basis
of an argument already presented in other places [?, ?, 10]. This argument
certainly needs to be butressed by further philosophical considerations but this
is not the place to do so. We should like merely to insist here on a few con-
sequences from this argument, since they provide the initial impetus for the
following. In these papers, it is argued that the traditional form of anti-realism
propounded by Dummett is not satisfactory because, in a nutshell, it relies on
the notion of assertability-conditions, where assertability is claimed to be effec-
tive in principle. This very notion is claimed to be as obscure as the realist
notion of truth-conditions (which transcend our cognitive capacities) and it is
argued that one should replace effectivity in principle by the notion of feasibility
in practice. The argument is in essence as follows:

According to the definition of assertability-conditions, a statement is as-
sertable if there exists an effective proof of it, that is a finite sequence of state-
ments of which it is the last and of which every statement follow another as the
result of an application of a rule of inference (there is only a finite number of
such rules). Such as definition does not allow for an hypothetical being whose



cognitive capacities would be such that it could, say, recognize the truth of a
universal statement by inspection of an infinity of particular cases. The realist
could still point out, however, that when the anti-realist admits of finite proofs
that can be carried out merely in principle he does not fare much better than
someone who admits of truth-conditions which transcend our cognitive capaci-
ties. Therefore, the definition must be such that our cognitive capacities must
allow us always to recognize a sentence as assertable when it is, that is that one
must be able to recognize the object Pr(s) which is an effective proof of s, when
there is one. This statement is ambiguous, since one may understand this either,
as Dummett did, as the weaker claim that one has to be able recognize a proof
of s when presented with one or as the stronger claim that one must be able to
produce or reproduce the object Pr(s). For the anti-realist really to distinguish
his position from that of the realist on this rather crucial point, he must claim
not only that circumstances in which an assertion is justified must be such that
we should recognize them when we are in a position to do so, he must also claim
that we must always be able in practice to put ourselves in such a position when-
ever such circumstances exist. Otherwise, it would be open for the realist to
admit there should always exist circumstances under which we would recognize
that an assertion is justified and merely to deny that we should always have the
practical capacity to put ourselves in that position. To repeat, the weaker claim
that one has to be able recognize a proof of s when presented with one won’t do,
because there may simply be situations where we could recognize a proof when
presented with one, but we would never be able in practice to put ourselves in
such a position. Therefore, in order to develop a coherent alternative to the
realist, the anti-realist must develop a notion of assertability-conditions based
on the fact that our own cognitive capacities must allow us not only always to
recognize a sentence as assertable when it is, that is that one must be able to
recognize the object Pr(s) which is an effective proof of s, when there is one,
but also to be able in practice to produce or construct the object Pr(s). (In
the jargon of computer scientists, once an answer to a problem is obtained, one
may further produce a polynomial-time certificate while the algorithm had an
exponential-time worst-case running time.)

There have already been arguments in favour of a radical form of construc-
tivism known as ’strict finitism’, e.g. [?], but Dubucs’ proposal differs from
these in two fundamental ways. First, the discussion is not anymore conducted
in terms of the Hilbert-Style systems to which the notion of ’effectivity’ is asso-
ciated. It is conducted in terms of Gentzen-style systems, more precisely: it is
about sequent calculi and their structural rules (and not even about introduc-
tion and elimination rules for natural deduction systems, as it was for Dummett
and Prawitz). Secondly, Dubucs argues for feasibility in a more principled way,
i.e., by looking at a weakening of structural rules as opposed to, say, a mere
bounding of the length of computations. In other words, bounds should remain
hidden, i.e., the logic for radical anti-realism should reflect limitations to human
cognitive capacities in a ’structural’ fashion. Furthermore, the key to the whole
argument is seriously to take into account the physical cost of the proof, which
is precisely the initial motivation for the development of linear logic, according



to Girard (see, e.g., [16]).

The optional discharge in the case of the introduction rule for implication
has the structural rule of weakening on the left as its counterpart. Relevant
logic and linear logic both reject it, as opposed to intuitionistic logic, which
merely distinguishes itself from the full structural logic by its restriction on
weakening on the right. However, the counterpart of obligatory discharge is
contraction on the left, which is still accepted by relevant logic but rejected by
linear logic, where discharge is obligatory but not multiple. Now, once the focus
is on strutural rules, a radical anti-realist may argue that there are no specific
reasons to adopt intuitionistic logic, for which traditional anti-realists such as
Dummett had argued. The relevance of relevant logic is not clear either, since
the cause of idealizations, from the radical anti-realist point of view, is the rules
of contraction, here shown with weakening:

A AFA THAAA

Contraction AFA Left '-AA Right
r-A A ,
Weakening T',AF A Left I'EAA Right

But relevant logic consists in rejecting weakening (both left and right) while
keeping contraction. Moreover, in absence of weakening, one needs to introduce
ad hoc distributivity rules in order to keep to classical logic. In linear logic,
rules for contraction do not disappear entirely (the resulting system would not
be expressive enough); they reappear as the rules for special connectives, the
exponentials. The sequent rules for exponentials are:

IAFA | !FI—B,?A'
Of Course T,IAF A 'L T riA,7A 1
T, AR?A 'kAA
o aon (L 5+~ 'R
Why Not TN 7AE?TA I' F?A, Delta
Linear contraction and weakening are shown below:
[VIAJVAEA HIAJTAJA
Contraction TJIAEA Left T'FIAA Right
I'EA A ,
Weakening T'JAF A Left 1A A Right

Classical contraction enables us to use a formula infinitely many times in
a proof (this is an idealization). Classical weakening, on the other hand, al-
lows us to bring unused hypotheses into our proofs, with that we may be left



with unrelated hypotheses. In linear logic, the exponentials are used to control
the structural rules of contraction and weakening. An infinite resource, i.e., a
resource that can be consumed more than once is shown using the linear expo-
nentials and be written as !A and its De Morgan dual 7A. The idea behind this
move in linear logic is to control the use of contraction, e.g., the length of proof
search or of normalization procedures. This ability to control contraction should
be a prime topic for investigation from our radical anti-realist standpoint.

We should wrap up this section with some basic remarks about other connec-
tives, which will turn out useful in the following section. A sequent of the form
I' = A in linear logic means that resources presented by I' are to be consumed
yielding resources A deduced. This makes linear logic a resource-sensitive logic.
We can also think of the sequent I' - A as a process that consumes the resources
I' to produce the resources A. This resource-sensitive property of linear logic
makes the conjunction and disjunction of classical logic ambiguous. For example
We can use AA B both for producing A and also AA B itself (see [14] for a more
detailed discussion). To overcome these ambiguities, linear logic introduces two
distinct connectives for each of conjunction and disjunction, resp., the multi-
plicatives and the additives respectively. We write A ® B and A& B for the two
connectives for additives, and A ® B and A ® B for the two multiplicatives.
Negation is defined by means of the following sequent rules:

LEAD [ on LEAB pont
Negation I',AtFA I'FA+ A
One should note that according to the follwoing sequent rules, the two mul-
tiplicatives are De Morgan duals of each other. The same is true for the two
additives. Linear implication will be the same as linear deduction and will be
denoted by A —o B. Multiplicatives, additives and linear implication have the
following left and right sequent rules:

DABEA T'HAAl TFB A2
Times T,A@BFA © TF A B ALA2
T,AFC T2,AFD T'HA BA
R L 5 < ® R
Par T1,02,A% BFC,D TFA% BA
IAFA T,BFA PHAA . TEBA
Plus TLAoBFA P Traesa ! TraeBa®

I AFA I BFA I AAl TF B, A2
With T, A&BF A L T agBr A Y2 TTF ALB, AL A2

[LBFA T2k4 T,AF B,A
Implies T1,12,A cBFA TFA oBA °

R



3 Epistemic Logic and Modal Linear Logic

Reasoning about knowledge is one of the many areas where problems about
computational complexity cannot be eluded. The problem of logical omniscience
in epistemic logic is a perfect case of an idealization in the above sense. It
is usually presented in Hintikka’s original Hilbert-style system [19]. We shall
present a Gentzen-style version below. Informally the problem is this: if an
agent knows that p and knows that 'p implies ¢’, deductive closure requires that
the agent also knows that ¢. This is obviously not the case for real agents: for
example, one does not know all the consequences of the axioms of elementary
arithmetic. Nor would it be true of a computer because the resources necessary
for the knowledge of ¢ might not be available, if, for example, the computation
involves exponential complexity. Here too, philosophers have not been able to
engage with the issues raised by the logicians. Joseph Halpern’s remark still
stands today:
reasoning about knowledge has found applications in such diverse

fields as economics, linguistics, artificial intelligence, and computer sci-

ence. While researchers in these areas have tended to look to philosophy

for their initial inspiration, it has also been the case that their more practi-

cal concerns, which often centred around more computational issues such

as the difficulty of computing knowledge, have not been treated in the

philosophical literature.[?], p. 2

The literature contains many attempted solutions to the problem of logical
omniscience, from Hintikka’s own ideas about ’impossible possible worlds’ [?],
based on Rantala’s urn’ models [?, ?], to the syntactical solutions of [?, ?],
Parikh’s "knowledge algorithms’ [?, ?], and the logic of ’awareness’ [12]. This is
not the place for a critical evaluation of these alternatives. It should be pointed
out, however, that number of these solutions can be characterized by the wish
to adhere come what may to the full structural logic: a sort of superstructure
-one is tempted to say: epicycle- is then added to it within which one could
talk about agents reasoning about knowledge without conceiving of them as
omniscient. There are no reasons, except philosophical prejudice, not to explore
the substructural world. We prefer here to follow Dubucs [9] and try and look
for a weaker logic relatively to which agents can be said to be omniscient, with-
out this omniscience being problematic. In that paper, Dubucs only discussed
intuitionistic logic as a posssible alternative but in [?] linear logic is discussed.
Intuitionistic logic is not an interesting candidate for us precisely because it
does not keep contraction and weakening under control and, in that sense it is
no more likely than classical logic (as the full structural logic) to be the weaker
logic that we are looking for, relatively to which agents can be said to be omni-
scient. Further reasons for its inadequacy in the epistemic context will surface
below.

The only attempt that we know of at developing an epistemic logic by using
a substructural logic is by Hector Levesque [24, 25], who used relevant logic.



Levesque’s approach is original in many respects. First, he distinguishes be-
tween 'implicit’ and ’explicit’ knowledge. According to Levesque, the possible
worlds semantics is an idealization because it is not about what is known by
an agent, but what is true given what is known. One must distinguish between
what is known in this sense from what is ezplicitely known by the agent. Im-
plicit knowledge is therefore defined as something that is true in all the worlds
that agent considers as possible and explicit knowledge is what is known as true
for the agent. Levesque introduces the operator I and E as, resp.,’E;¢ is true
if ¢ is explicitely known’ and ’I;¢ is true if ¢ is implicitely in what is known’.
(It is on the basis of this distinction that Fagin and Halpern introduced a logic
of ’awareness’ [?], where an agent knows explicitely ¢ if she is aware that ¢ and
knows implicitely that ¢.) Secondly, Levesque uses the situation semantics of
[3] to deal with the explicit knowledge of agents. In a given situation, some
formulas will have a truth-value assigned to them but it is possible some other
formulas can have no truth-value. Levesque also uses the notion of an ’inco-
herent’ situation, which is not compatible with any possible worlds. In such
sitations some formulas can be seen as both true and false. Levesque identifies
explicit knowledge as a set of situations and gives a semantics and a proof the-
ory for it. The proof theory consists of propositional tautologies, modus ponens
and axioms of propositional logic. He adds axioms for £ and I which include
closure under implicit knowledge. He also proves the following theorem:

E (F:¢ D Ex) iff ¢ entails

The proof of this theorem can be found in [25]. This theorem allows Levesque
to complete his axiomatization by using the axioms of entailment for explicit
knowledge F.

From our radical anti-realist point of view, relevant logic is not an interest-
ing alternative to the full structural logic. It may go further than intuitionistic
logic in rejecting weakening on both right and left sides but it leaves contrac-
tion untouched and the resulting system are unappealing from a computational
point of view. On top of this, Levesque’s approach suffer from many defects of
its own. To begin with, it is limited to only one agent and there seems to be no
room for the multi-agent case, which is needed for a full epistemic logic. Sec-
ondly, a clear philosophical motivation for the distinction between 'implicit’ and
‘explicit’ knowledge is lacking. Thirdly, the notion of an ’incoherent’ situation
needs to be clearly distinguished from that of impossible possible worlds. These
last two defects would require a fuller philosophical discussion for which this is
not the appropriate forum. It remains, however, that in absence of control over
contraction within relevant logic, it is not clear that the idea that remain omni-
scient for their explicit knowledge really solves the problem of omniscience. For
these reasons, it is worth looking at an epistemic linear logic. In order to deal
with the logic of knowledge and belief, we must extend linear logic by introduc-
ing modalities. In this paper, we cannot do more that merely explore various
ways of doing so. Semantical considerations cannot be truly dealt with at this
stage. Jaakko Hintikka’s seminal discussion in [19] is a model of clarity and
elegance that has had no equivalent and we are certainly not yet in a position



to present our own. But the following considerations should help us to select a
candidate for further semantical and philosophical elaboration.

There are two main strategies for introducing modalities within linear logic.
First, one could interpret exponentials as modalities, as in [2], the system would
be a form of linear S4 with indexed modalities. However, the resulting con-
nectives would both control contraction and weakening and serve as modalities.
They would appear in both structural and modal rules; a very bizarre cocktail.
Secondly, one could add modalities to fragments of linear logic. Some such com-
binations and their semantics have been studied in [27].In what follows, we shall
assess only two of them, namely the multi-modal linear logic or MMLL of [22],
which has been inspired by and shown to have applications in reasoning about
location-dependent distributed network processes, and the system KDT4p,;,
developed in [27]. In what follows we first give a brief overview of both of these
logics. (Some familiarity with both linear and modal logics is assumed.) We
then give examples of the application of these logics to the problem of logical
omniscience and the wise men puzzle. The proofs of these problems will be
compared with each other and a short presentation of our encoding of modal
linear logic in Cog will be given (the full proof tree and Cog code are in the
Appendix). Finally, we shall give our reasons for choosing K DT4,;,, which is
classical, over MMLL, which is intuitionistic.

MMLL uses the proof-search-as-computation paradigm where formulas of
linear logic are seen as processes. The concurrency aspects and location of
processes in the network are dealt by using the added modality L. The semantics
is based on the resource-indexed model of [29], it is of a set of located resources
with different combinations of these resources. These combinations correspond
to the additive and multiplicative connectives of linear logic. An algebra of
resources and a resource structure on this algebra are defined and the semantics
is proved to be sound and complete in [22]. The BNF of the logic is:

A= a|lA|L;A|A ® AJALAJA —o Al
where:
e ¢ is an atomic formula
e 1 is the unit for tensor ((A® 1) = A)
e [ is the modal operator
e i is a natural number ranging over a denumerably infinite set
e [;A intuitively means that resource A is available at location 4.
e ® and & are the multiplicative and additive connectives of linear logic.

(Note that this system does not contain negation or dual operators.) The
sequent rules for this logic are the same as for linear logic except for the following
two cases that are used for the congruences:

TLAFD A=A PFA A=A

TA-rD - T T.FA R




This system is intuitionistic, i.e., its sequents have a single formula on their
right-hand side. There is no sequent rule for introduction and elimination of
modalities. The only way to work with modalities is the following congruences
over formulas:

1. Li(A®B)=L;A ® L;B
L;(A&B)=L;A & L;B
Li(A—-oB)=L;A — L;B
LA =LA

L;1=1

L;L;A=L;A

AR AR

The system MMLL has some advantages. First, it has the same contraction
rules as linear logic and thus avoids idealizations. Secondly, as we can see from
the syntax, this system has indexed modalities that make it a multi-modal sys-
tem; one that can be applied to multi-agent systems. But the indexed modalities
of this system are problematic, as opposed to those in K DT4,;,, which will be
discussed below, because of the existence of the last congruence in the above
list. This congruence allows for connections between the knowledge of different
agents. In one direction it says that if agentl knows that agent2 knows A, then
agent2 himself knows A. In the other direction, it says that if agent1 one knows
A, then there is another agent, say, agent2, who knows that agentl knows A.
This is a bit counterintuitive. One should note that it is not necessary that
whenever I know A, there exists someone else that knows that I know A, but
the existence of that other agent is not impossible. (In other words, there are
no explicit quantifiers over the indexed modalities, so this congruence is not so
counterintuitive.) Had it not been so counterintuitive, this congruence would
have made MMLL of interest not only for reasoning about knowledge, but also
for a discussion of the intersubjectivity in knowledge; it is a sort of iteration
principle. However for reasons that will apprear below, MMLL is at any rate
not suited for some crucial epistemic purposes.

K DT4,;, has an algebraic semantics and it has been proven to be sound and
complete in [27]. The BNF of this logic is shown below:

A= allAPA|KA|A® AJA R A|A® AJALA|A —o AJAS|1]0[T] L

where:
e ¢ is an atomic formula
e 1,1, T, and 0 are the units for ®, % , &, and @ respectively
e K is the modal operator
e j is a natural number ranging over a denumerably infinite set
e K; A intuitively means that i knows A.

The sequent rules of this logic are the same as the full propositional classical
linear logic, in which we take sequents I' = A for lists of formulas. These lists,



together with the Exzchange rule, will have the properties of multisets. The
sequent calculus will also have three modal sequent rules shown below. These
rules correspond to T, KD, and S4 axioms of the classical Hilbert-style modal
logics:

LAFBA LARB
TRules KT IGAF BA “¢/ K[, KAF KB Y
T,AFO I,AF B .
KDRules K. K Ar0 “el! KT.K AL KB ot
I AFB,A KT, K,A-B .
. 4 Left Right

S4Rules T, K;AF B, A KT KA+ K;B
Where T' is a multiset of formulas and KT is the multiset {K; A|A € T'}. (Note that
Trule-Right and KDrule-Right are the same, because we have chosen to work
on one modality K; as opposed to dual modalities K; and Bj;; the dismissed
modality B; would distinguish between the two rules.)

One should observe that all the connectives input linear propositions, but
K; takes as input a list of linear propositions. The modality sequent rules need
our modality to operates over a list of formulas rather than a single formula.
The modality is also an indexed modality, making our logic a multi-modal linear
logic where the modality K; expresses the knowledge of agent ¢. For example
K1 D intuitively means that agent 1 knows that D, i.e., he knows all of the
formulas of the list D. The modality operator can be seen as a binary operator
with two operands: an integer and a list of formulas.

The system K DT4,;, has many advantages. It avoids idealization, as it
keeps the exponentials and also all the structural rules of linear logic. Hence,
it is capable of controlling the resources by marking them with exponentials.
It also fares better for epistemic purposes than Levesque’s system in [24, 25]
because it is multi-modal. There is also no trace of the problematic congruence
that we found in MMLL.

We shall now encode both MMLL and K DT4;;, in the proof assistant Cog,
developped in [8] on the basis of the Calculus of Constructions (CC) of [7].
Systems can be encoded in Cog’s higher-order logic; these encodings allows us
to state and prove theorems using facilities of this proof assistant. Intuitionistic
linear logic has been previously encoded in Cog, in [32], by associating the
constructs of Cog together with linear logic proofs. Modal logic, too, has been
previously encoded in Cog in [23]. Our encoding method will be based on that
of [12], in which the system to be encoded is treated as the object logic and
Cog’s Calculus of Constructions (CC) as the metalogic.

We are here encoding for the first time modalities in classical linear logic.
(Our sequents are classical in the sense that we are not limiting ourselves to
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sequents with single formulas on the right hand side.) The encoding has been
done in two steps: (i) defining modal linear logic formulas and (ii) modal linear
logic sequent rules inductively, using the set of inductive datatypes of Cogq, and
(iii) proving some lemmas to work with lists.

In the first phase, we define inductively a set of linear logic propositions:
MLinProp, which stands for Modal LINear PROPosition. The smallest formulas
of our modal linear logic will be the different cases of induction.The definition
in Cogq is:

Inductive MLinProp : Set =

| Implies : (MLinProp) — (MLinProp) — MLinProp
| Times : (MLinProp) — (MLinProp) — MLinProp
| Par : (MLinProp) — (MLinProp) — MLinProp
| Plus : (MLinProp) — (MLinProp) — MLinProp
| With : (MLinProp) — (MLinProp) — MLinProp
| 0fCourse : (MLinProp) — MLinProp
| WhyNot : (MLinProp) — MLinProp
| Box : (mat) — (list MLinProp)—(1list MLinProp)
| Negation : (MLinProp) — MLinProp

| One : MLinProp
| Zero : MLinProp
|L : MLinProp
| T MLinProp

Now we can use our MLinProp as a Coq type. We can define variables of
this type. For example we can define A and B as modal linear propositions,
and D as a list of Modal linear proposition:

Variable A, B: MLinProp. Variable D : (list MLinProp).

We can also define predicates over this type. For example red is a l-ary
modal linear predicate:

Variable red: nat — MLinProp.

Using Cog’s syntax definition and pretty-printing facilities, we can give a
notation to each of our modal linear connectives. This will allow us to infix and
prefix our connectives.The Cog code for Bang, Times, and modality is given
below. We are augmenting the grammar rules and giving pretty-printing rules
to represent Bang as “!”, Times as “*”, and modality as “K”.The reader is
assumed to be familiar with the syntax of these Cog commands (see section
6.7.3 and 6.7.4 in [8)]).

Grammar command command2 :=

OfCourse [“‘!’’ command2($c)] — [(((0fCourse $c)))].

Syntax constr level 2:

[{((0fCourse $c)))I—[¢<!”" $cl.

Grammar command command6 :=

Times [command5($cl) ‘‘*’’ command6($c2)] — [(((Times $cl $c2)))].
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Box [command5($cl) ¢‘K’’ command6($c2)] — [(((Box $cl $c2)))].
Syntax constr level 6:

PTimes [{((Times $c1 $c2)))] — [ $ci:L "*" $c2:E ].

Syntax constr level 6:

PBox [(((Box $c1 $c2)))]1— [ $ci:L "K" $c2:E ].

The notation for all of our modal linear connectives is given in the table
below for further reference.

| Connective | Symbol | Syntax in Coq | Example |

Times ® K AxxB
Par £ % A%%B
Plus &) ® A++B

With & & A&B
Box K K KD

OfCourse ! ! 1A
Implies —o —o A—oB

In the second phase of our encoding, we will implement the sequent calculus
of our modal linear logic. The sequent rules are defined inductively. The induc-
tion is made on the linear sequent relation I' = A. The sequent relation LinCons
has been represented as a 2-ary function. It takes two arguments as input: the
hypothesis I" and the conclusion A. Remember that I' and A are implemented
as lists of formulas. These lists together with the exchange and permutation
rules will act as multisets. The output of the function, which is either true or
false, is defined as a Cog proposition Prop. The Coq code for LinCons is:

Inductive LinCons : (list MLinProp) — (list MLinProp) —
Prop :=

The connective “F” is defined as a binary operator with a low precedence
using the Cog Syntax and pretty-printing commands:

Grammar command command9 :=

LinCons [command8($t1) ‘‘F’’ command9($t2)] — [(((LinCons $t1 $t2)))].
Syntax constr level 9:

PLinCons [(((LinCons $t1 $t2)))1— [ $t1 “‘F’> $t2 1.

The axiom and the sequent rules of the modal linear logic will be the cases
of the induction. They are added individually. For example the axiom Identity
is added as follows:

Identity :
(A : MLinProp)
(FAF A
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The sequents of our system are of the form D1~ ‘A + D2 ™ ‘B, where D1
and D2 are lists of formulas of type MLinProp, and A and B are formulas
of the type MLinProp. Note that we have lists on both sides of the sequent.
Following the encoding of [32], two symbols ~ and ¢ are used to work with lists
in Cog; ~ is used to concatenate two lists and ‘ presents a singleton list. For
example, D17 ‘A concatenates two list D1 and the singleton A. The empty list
will be shown asEmpty. Logical and structural rules of modal linear logic are
added next. These rules are coded using Coq’s implication — for deduction.
For example the Cut rule:

Fl FA,Al FQ,AF AQ
', ok Ay Ay

ut

is coded as:

| Cut :
(A, B : MLinProp)(D1,D2,D3,D4 : (list MLinProp))
((D1FD3 ™ ¢A)— (D2~ ‘AF D4) — (D1 = D2+ D3,D4))

As examples of logical rules, consider the Coq code for Par Left and Times
Right:

| ParLeft :

(A, B, C1 , C2 : MLinProp) (D1, D2 : (list MLinProp))
(D1~ Ak < Cl) - (D2~ ‘BF ‘C2) — (D1~ D2~

“(A%%B) + <C1 = <C2)

|TimesRight :

(A, B : MLinProp)(D1, D2 , D3 , D4: (list MLinProp))
D1+ AT D3) - (D2F ‘B~ D4) — (D1~ D2+ ‘(A
*x B) 7 D37 D)

The modal sequent rules are KD, T, and S4.The different thing about them
is that the modal operator has two operands: an index ¢ and a list of formulas
D. K;D will be shown as iK' D in Coq.For example the KD rule below:

T,AF B
iKT,iKAF iKB

KD

will be code as:

| KDRule :
(¢ : nat)(A,B : MLinProp)(D : (list MLinProp))
(D~ ‘AF ‘B) — (‘“(iKD) ~ ‘(iK‘A)F ‘(iK*‘B)))

In the third phase of our encoding we will deal with some lemmas to work
with lists. Our sequent rules have lists to the right and left of the sequents.
That will cause difficulty while working with the sequents that do not contain
lists on one side or on both sides. For example sequents of the form A - A
or A+ A® B are not accepted in our encoding. Moreover, a deduction using
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these sequents, which is an acceptable deduction, will not be accepted in our
system.One such deduction would be:

A A

A Ao p Of1

To solve the problem we will have to make lists out of single formulas. This
will be done by adding Nil lists to the left hand side of them. Applying these
changes to the above deduction makes it look like:

Empty, AF Empty, A
Empty, A+ Empty, A® B

ORIl

This will be done using two lemmas: AddNilLeft and AddNilRight. AddNil-
Front is shown below:

Lemma AddNilLeft: (D1,D2: (1ist MLinProp))

((Empty = D1+ D2) — (D1F D2)).

Each of these lemmas has a dual to eliminate the added Nils. This is necessary
because we are working with sequents with distinguished formulas. So we need
to have a list and a single formula on both sides of the sequent.By adding Nil
we will have sequents without distinguished formulas. So we have to eliminates
the nils that we added before. Eliminating Nils will be done using ElimNilLeft
and ElimNilRight lemmas. ElimNilRight is shown below.

Lemma ElimNilRight : (D1, D2: (1ist MLinProp))

((D1F D2) — (D1 FEmpty ~ D2)).
List concatenation and singleton lists are dealt with the same way as the en-
coding of [32].

As examples of encoding, we shall state the problem of logical omniscience
and the wise men puzzle as theorems and then prove them, in both MMLL and
K DT4;,. In [23], Lescanne has already encoded in Cog the latter along with
the muddy children puzzle. But those are in Hilbert-style classical modal logic.
The sequent calculus version of logical omniscience is the following:

KlA,Kl(A —0 B) F KlB
The proof tree for the K DT4;;,is:

AHA BFB
A (A= B)F B
KlA,KlA—OBl_KlB

—o L
KDRule

The proof in Cogq is done as in the above proof tree, using the sequent rules
encoded in Cog. Some extra work has to be done while working with lists of
formulas, namely adding Nil to the left and right of our sequents to be able to
apply the ImpliesLeft and ImpliesRight rules and the Identity axiom. The Cogq
code is thus:
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Intros.

Apply KDRule.
Apply AddNilleft.
Apply ImpliesLeft.
Apply AddNilLeft.
Apply Identity.
Apply Identity.

The proof tree in MMLL is:

LAFLA LBELB

[, A I A o L,BF LB ?:;CO once
ner 11

[1A,Li(A - B)F L. B st

One of the standard puzzles for multi-modal epistemic logic is 'wise men’ or
'King, three wise men and 5 hats’ puzzle (see [11], p. 12): a king has three wise
men and 5 hats: 2 green and 3 red. He asks the wise men to close their eyes
and puts a hat on the head of each of them. Then asks them to open their eyes
and poses a question to each of them in order. He asks the first man: Do you
know the colour of your hat?’ He answers: 'No’. The same question is asked
from the second man and he, too, answers: ’No’. But when the third man is
asked the same question, he answers: 'Yes! The colour of my hat is red’. How
this is possible? This conclusion is based on the information provided by the
answers of previous wise men, together with the fact that each agent knows the
color of the hats of the other agents except for himself. In more formal terms
we have: if agent 3 knows that agent 1 does not know the colour of his hat,
and he knows that agent 2 does not know the colour of his hat and moreover
he knows that agent 2 knows that agent 1 does not know the colour of his hat,
he will know the colour of his own hat. Therefore, agent 3 knows three things
that help him, together with a good number of assumptions and some lemmas,
to reach a conclusion about the colour of his own hat (red). These three things
are:

1. Agent 1 does not know the color of his hat.
2. Agent 2 does not know the color of his hat.
3. Agent 2 knows that agent 1 does not know the color of his hat.

These three pieces of information will help agent 3 to conclude that the
colour of his own hat is red. From (1) it can be concluded that at least one of
the agents 2 and 3 wear a red hat. Indeed, if both of them had green hats, since
we only have two green hats, agent 1 would know the colour of his hat. So a
corollary of (1) is that agents 2 and 3 both know the following fact: At least one
of agents 2 or 3 wears a red hat (or both of them do) This fact, together with
(2) and (3) above help agent 3 to conclude that his hat is red. The fact that
agent 2 does not know the colour of his hat shows that agent 3 is not wearing a
green hat. Because if this were the case, agent 2, who knows that at least one
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of them is wearing a red hat, would have easily concluded the color of his own
hat.

In order to prove this theorem in Cog, we need three agents, two colour
predicates and one definition:

1. Three agents:
agentl, agent2, agent3 : nat.
2. Two color predicates:

e (red i): the color of the hat of ith agent is red

e (green i): the color of the hat of ith agent is green
3. Definition

When each agent knows the color of his hat, it means he knows
whether it is red or green. This can be shown using the additive
@ because it expresses a choice between two cases, where both
of the cases cannot happen at the same time.

(Lhat 4): agent ¢ knows that his hat is either red or
green.

or in Coq terms:
Definition Lhat := [i: mnat] (K; ‘(red 7)) & (K;
‘(green 1)) .

We will use the proof method in [23], with linear logic axioms:

1. AOne:Each hat is either red or green. This can again be shown using the
additive @ because (green i) and (red i) cannot both happen at the same
time, i.e. each hat cannot be both red and green at the same time.

(i:nat) (D : (list MLinProp))( DF ‘((green )@ (red i))).

2. ATwo:ATwo says that if two agents wear a green hat then the third one
wears a red one. In this axiom, as opposed to the previous one, we want
to be able to express that two cases happen at the same time, i.e., both
agents wear a green hat. A multiplicative connector is called for and we
are going to use % .

Axiom ATwo : (‘((green agent2) % (green agent3)) F ‘(red
agent1)).

3. AThree: If agent2 has a green hat, then agent one knows it. The reason
is obvious because he is seeing the hat of agent2.

(‘(green agent2) F ‘(agentl K ‘(green agent2))).

4. AFour: If agent3 has a green hat, then agent one knows it. The reason is
obvious because he is seeing the hat of agent3.
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(“(green agent3) F ‘(agentl K ‘(green agent3))).

5. AFive : If an agent is wearing a red hat, then he is not wearing a green
one.

(‘(red i) F ‘(Not (green i))).

6. ASix : If an agent is wearing a green hat, then he is not wearing a red
one.

(‘(green i)) F “(Not (red i))).
The theorem to be proved in sequent calculus is:
(agent2 K (Not (Lhat agent1))), (Not (Lhat agent2)) - (red agent3)

Or in Cog terms:
Theorem ThirdKnows :

(“(Not (Lhat agent2)) ~ (‘(agent2 K ‘(Not(Lhat agent1)))) F ‘(red
agent3)).

The proof is done mostly with cuts. The proof tree and the Cog code are
given in the Appendix.

An attempt at this encoding with MMLL will fail. This system is intu-
itionistic so the first encoding of our logic has lists only in the left-hand side
of sequents and only single formulas on the right-hand side. Therefore, this
fragment does not have all the connectives of linear logic. It misses % , the dual
of ®, because the sequent rules for ® are not intuitionistic:

LEAB I,AFC T2,BFD
TFA® B I1,15,A% BFC,D

The problem with this fragment is that in the proof of the puzzle we need at
one stage the dual of ®. We had to prove the following sequent:

Not ((red 1) ® (red 2)) F (green 1) B (green 2)

Thus, the puzzle cannot be proved in the fragment without % . This does
not settle the matter entirely, as one could attempt to re-phrase the puzzle
(without any loss of meaning) so that it could be expressed in MMLL and use
the intuitionistic version of % introduced in [4], but this is mere speculation.
Therefore, in order to be able to solve the puzzle, we had to work with the full
modal linear logic. So we had to add lists to both sides of our sequents:

D1~ ‘Ar-D2 " ‘B

One very important consequence of this is that there seem to be no real prospect
for an intuitionistic epistemic linear logic.
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4 Complexity

From our radical anti-realist point of view, computational complexity is to be
taken seriously. Furthermore, the issue of complexity cannot be avoided when
dealing with practical applications, e.g, in case of epistemic logic, applications
in the domain of cognitive science or artificial intelligence. The key idea here
is that the brain can be analysed as a computational system and one would
propose models for cognitive activities in terms of computational tasks. But, to
put it crudely, such tasks can hardly have an exponential lower bound, because
one would not know how this task or cognitive activity is physically possible:
idealizations must be avoided. Although the topic was hardly dealt with a mere
25 years ago, computational complexity is by now a well-studied phenomenon,
with proof-theoretical measures of complexity, see, e.g., the survey in [33]. One
obvious proposal here would be to limit oneself to polynomial time. (This
has been suggested, e.g., in [26] for epistemic logic, because of applications
to cognitive science.) There are candidates for this in linear logic, such as
the Bounded Linear Logic (BLL) of [18], in which the use of exponentials is
bounded in advance, or the more recent Light Linear Logic (LLL) of [17], that
has a (locally) polynomial-time cut-elimination. Both BLL and LLL are strong
enough to represent all polynomial-time functions. We would like to suggest,
however, that this is not, prima facie, the right approach. We shall give here,
in very brief outline, three arguments. These will hardly settle the question but
we hope to initiate a discussion.

First, it seems that epistemic logic is a hopeless case from the point of view
of complexity, especially if we deal with multi-agent systems. At any rate,
MMLL and K DT4;;, are mere variants on the full classical linear logic, which
is exponential. Moreover, it is not clear if the system resulting from an hypo-
thetical addition of modalities to BLL or LLL would remain polynomial-time.
Secondly, there is a conflict, so to speak, between theory and practice. This
can be illustrated by considering a well-known algorithm, the simplex method
in linear programming. This is a perfectly constructive method: when opti-
mal solutions to linear programming problems exist, it gives us an algorithm to
compute them. However, this algorithm is exponential-time. Still, in practice
it outperformed a polynomial-time algorithm and cases where the simplex run
for an exponential amount of time hardly ever occurred in practice. Thirdly, on
a more philosophical note, the issue of complexity is, from a proof-theoretical
standpoint, rather paradoxical. Indeed, use of cut, which corresponds to the
use of lemmas in ordinary mathematics, allows for proofs that can be taken
in. Now, if we keep in mind applications to domains such as reasoning about
knowledge, the proof-theoretical approach creates a paradoxical situation:

The idea of lengths of proofs is quite amusing from the perspective of
reasoning. It suggests that there are some statements that are true that
we cannot understand in practice because it would take too long, and that
there are statements which we can understand if we permit ourselves to
use cuts and not otherwise[6], p.137

It is for these reasons, which need to be argued for in a more substantial
manner (counterarguments easily spring to mind), that we chose to deal with
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the problem from a computational viewpoint and we chose to have an encod-
ing in Coq. The computational approach to linear logic initiated in [1] links
it to functional programming languages and the key here is an extension the
Curry-Howard isomorphism [21], which establishes a correspondence between
linear logic proofs and computer programs and allows us to see cut-elimination
as computation. This is a powerful paradigm that has taken over proof theory
but, although it has been argued for in, e.g., [28], it has hardly been noticed
by philosophers. The Curry-Howard isomorphism is extended in [1] to classical
as well as to the intuitionistic fragment of linear logic. Through this compu-
tational interpretation we are able to reduce the complexity of our proofs to
the complexity of programs and we think that a first step here should be to
limit programs to constuctive programs. In order to be able to get constructive
programs out of proofs we need tools and one such tool is the proof assistant
Cog, which is a higher-order logic based on the calculus of constructions, whose
ancestors are to be found in de Bruijn’s Automath, Girard’s system F [13] and
Martin-Lof’s intuitionistic type theory [28]. The calculus of constructions en-
ables us constructively to encode other logics in Coq. These logics are treated
as object logics vs the metalogic, which is the higher-order logic of Cog. The
key point here is that, once theorem-proving in these logics becomes automated
in Cog, then one has constructive programmes [5]. Hence, the encoding of our
two modal linear logics in Coq provides us with automated proofs which lead to
constructive programs. Proof automation has not been examined in this paper
but, as mentioned before, our encoding is similar to that of [32], where issues
related to proof automation are discussed, with a context-handling system and
a general proof strategy. Guidelines for context-handling are mentioned and
used succesfully in [32]. The general proof strategy can be found in the linear
logic programming approach in [20]. Once proofs are automated, Cog provides a
mechanism for construction of programmes out of automated theorem proving.
As we just pointed out, automated proofs in Cog are constructed proofs that
are correct-by-construction. This also provides us with a decision algorithm.
Although the issue about complexity is hardly settled, this suggests encoding
in Coq as a step towards the right direction.
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5 Appendix: Proving the King, three wisement,
and five hats puzzle

5.1 Proof Tree

Identity
Identity
Identity (red2) ® (red3) + (red3)
Identity ®L
My Not(Lhat2), (red2) ® (red3) + (red2) ® (red3) (red2) ® (red3) + (red3) cuT
Ko(Not(Lhatl)) F (red2) @ (red3) Not(Lhat2), (red2) ® (red3)  (red3) cuT
Ko (Not(Lhatl)), Not(Lhat2) F (red3)
H1 :
Identity
— Identity
(redl) + (redl)
DR
(redl) F (redl) @ (greenl)
KD
Kj(redl) - Ky ((redl) @ (greenl))
Unfold
K1 (redl) - (Lhatl) Ty
Negation
Not(Lhatl) - Not(Kq(redl) Not(Kq(redl) b (red2) @ (red3)
cuT
Not(Lhatl) + (red2) ® (red3)
Ko(Not(Lhatl)) k (red2) ® (red3)
H2 :
A3 A4
(green2) F Kq(green2) (green3) - Ki(green3) A2 A5 A5
38 :28 L (red2) - Not(green?2) (red3) + Not(green3)
(green2) (green3) - Kq(green2), Ki(green3) (green2) 28 (green3) - (redl) Negation
R T (red2), (green2) - Empty (red3), (green3d) - Empty
(green2) R (green3) - K1 (green2) % K1(green3) Kq(green2) % K1(green3) + Kq(redl) (red2), (red3), (green2), (green3d) - Empty
cuT
(green?2) :28 (green3) F Kj(redl) (red2), (red3) - Not((green?2) :28 (green3))
Negation
Not(Kq(redl)) - Not((green?2) ?8 (green3d)) (red2) ® (red3) - Not((green2) ?8 (green3d))

Not(Kq(redl))  (red2) @ (red3)
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5.2 Coq Code

Section Hats.

Load MALL.

Variables red, green : nat — MLinProp.

Variables agentl, agent2, agent3 : nat.

Definition Lhat := [i:nat](i K ‘(red 1)) ++ (i K ‘(green 1i)).
Axiom AOne :

(i:nat) (D : (list MLinProp))

(DF ¢ ((green i) %% (red i))).

Axiom ATwo :

(‘((green agent2) %% (green agent3)) F ‘(agentl K ‘(red agentl))).
Axiom AThree :

(‘(green agent2) F ‘(agentl K ‘(green agent2))).

Axiom AFour :

(‘(green agent3) F ‘(agentl K ‘(green agent3))).

Axiom AFive :

(i : nat)(‘(red i) F “(Not (green i))).

Axiom ASix :

(i : nat)(‘(green i) F ‘(Not (red i))).

Lemma Duals :

(i, j : nat)

(“(Not ((green i)Proof.
Apply TimesLeft.
Apply AddNilRight.
Apply NegationRight.
Apply NegationRight.
Apply ParLeft.

Apply NegationRight.
Apply AFive.

Apply NegationRight.
Apply AFive.

Qed.

(* Main Theorem *)
Theorem ThirdKnows :
(“(Not (Lhat agent2))
agent3)).

(* Proof x*)

Intros.

Apply Cut with (Times (red agent2) (red agent3)).
Apply AddNilLeft.

Apply S4Rulel.

Apply Cut with (Negation (agentl K ‘(red agentl))).
Apply AddNilLeft.

Apply NegationLeft.

Apply AddNilRight.

o~

(“(agent2 K ‘(Not(Lhat agentl))))F ‘(red
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Apply ExchangeRight.
Apply ElimNilRight.
Apply NegationRight.
Unfold Lhat.

Apply PlusRightl.
Apply Identity.
Apply Cut with (Negation (Par (green agent2) (green agent3))).
Apply AddNilleft.
Apply NegationLeft.
Apply AddNilRight.
Apply ExchangeRight.
Apply ElimNilRight.
Apply NegationRight.
Apply ElimNillLeft.
Apply ATwo.

Apply ElimNilLeft.
Apply Duals.

Apply Cut with (red agent3).
Apply AddNilleft.
Apply TimesLeft.
Apply ElimNilLeft.
Apply Identity.
Apply Identity.

End Hats.
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