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Abstract This paper studies the structure of the inverse kinematics (IK) map of a
fragment of protein backbone with 6 torsional degrees of freedom. The
images (critical sets) of the singularities of the orientation and position
maps are computed for a slightly idealized kinematic model. They yield
a decomposition of SO(3) and R

3 into open regions where the number
of IK solutions is constant. A proof of the existence of at least one
16-solution cell in R

3
× SO(3) is given and one such case is shown.
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1. Introduction

A protein (Creighton, 1993) is a sequence of amino-acids connected
by peptide bonds. It is often modeled as a serial linkage, the backbone,
with short side-chains. Each amino-acid contributes three atoms – N,
Cα, and C – and two torsional degrees of freedom (dofs) to the backbone
(Fig. 1). These dofs correspond to the dihedral angles φ and ψ around
the N– Cα and the Cα– C bonds. The inverse kinematics of the backbone
is of considerable interest in biology (Coutsias et al, 2004).

Let F be a backbone fragment with 6 dihedral angles φ and ψ, and f
be its forward kinematics. It is well-known that the number of solutions
of the inverse kinematics (IK) map f−1 has 16 as an upper bound, but
it has often been questioned whether this bound is tight (Coutsias et
al, 2004). Available algorithms only compute these solutions for given

poses of the moving frame T of F . Here, we study the global structure
of f−1 over the entire 6-D manifold of poses of T in R3 × SO(3). The
images of the singularities of f are the critical poses, which, according
to the Morse-Sard theorem, decompose the noncritical part of the image
into open regions, such that in each region E, f−1(x) for each x ∈ E

contains the same number of points. These decompositions of the 6-D
manifold can be very complex, so we study the position map p and an
orientation map ρ separately. It turns out ρ is quite easy to understand
and the original question reduces to studying the projection to R3 from



the inverse images of ρ. Given the frame associated to T , the set of
configurations that give the frame is either a copy of (S1)3 or a copy
of the disjoint union (S1)3 t (S1)3. Focusing on these (S1)3, we can
compute p−1 more efficiently and we find regions with 16 inverse image
points. This result is reasonable since a 6-dof protein fragment does not
satisfy any of the conditions under which the IK of a 6-dof serial linkage
has less than 16 solutions (Mavroidis and Roth, 1994).

2. Kinematic Model of a Protein Fragment

Let F be a 6-dof fragment of a protein backbone as illustrated in
Fig. 1. The coordinates of F are the 3 dihedral angles φi around the
bonds Ni– Ci

α, and the 3 dihedral angles ψi around the bonds Ci
α–Ci. For

convenience, we rename φi by θ2i−2 and ψi by θ2i−1, so each conformation
of F is specified by a 6-tuple θ = (θ1, . . . , θ6) ∈ (S1)6.

We represent F by a kinematically equivalent sequence of 3 identical
units, each made of two perpendicular links, a “long” one of length `2
and a “short” one of length `1, as shown in Fig. 2. We number the links
1, 2, . . . , 6, so that each link 2i − 1 is a long link and each link 2i is a
short link. Angle θ2i−1 rotates short link 2i about long link 2i − 1. So,
each short link moves in a plane perpendicular to the preceding long
link. Angle θ2i rotates the long link 2i+1 about an axis parallel to long
link 2i−1 and passing through the extremity of short link 2i. Link 2i+1
makes the constant angle α = 19 degrees with the plane perpendicular
to link 2i − 1. Finally, we add a long link 7 to F . This is the link
associated with the moving frame T .

We summarize these remarks and put them into a mathematical set-
ting as follows. Set

Ri =

[

cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

]

, L =

[

− sin(α) 0 cos(α)
0 −1 0

cos(α) 0 sin(α)

]

,

where α ∼ .105556π is fixed and LT = L−1 = L. Then, the orientations
of the frames are given by

O1 = I3×3, O2i = O2i−1R2i−1, O2i+1 = O2iR2iL,

and f is the composition of p and ρ with

p : (S1)6 → R
3
, θ → (R1;2L + R1;2LR3;4L)v1 + (R1 + R1;2LR3 + R1;2LR3;4LR5)v2, (1)

ρ : (S1)6 → SO(3), θ → R1;2LR3;4LR5;6L, (2)

where Ri;j = RiRj, v1 = [0, 0, `2]
T , and v2 = [`1, 0, 0]T .

This paper studies the structure of the inverse kinematics f−1 =
(p, ρ)−1. Noticing that for any (X,R) ∈ R3 × SO(3),

(p, ρ)−1(X,R) = p−1(X) ∩ ρ−1(R),
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Figure 1. 6-dof fragment
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Figure 2. Equivalent model

we proceed in two steps. First, we derive the inverse orientation map
ρ−1 : SO(3) → (S1)6 and show that in general ρ−1(R) is the disjoint
union of two 3-D tori M1 and M2. Next, we compute p−1

k (X), where
pk, k ∈ 1, 2, is the map p with its domain restricted to Mk.

3. Inverse Orientation Map

Reduction. In Eq. (2) only the sums θ2i−1+θ2i appear. So, we write
τi = θ2i−1 + θ2i, i = 1, 2, 3, and τ = (τ1, τ2, τ3). As θ runs over (S1)6,
τ runs over the 3-D torus (S1)3, and ρ factors as composition

ρ = ρ̂ ◦ (+) : (S1)6 → (S1)3 → SO(3)

where ρ̂ : (S1)3 → SO(3), τ → Rτ1LRτ2LRτ3L. Rτi
is the rotation of

angle τi around the z axis. Given R ∈ SO(3), the values of ρ̂−1(R) are
the solutions of ρ̂(τ) := Rτ1LRτ2LRτ3L = R, which is equivalent to:

ρ̂(τ)L := Rτ1LRτ2LRτ3 = RL. (3)

Since ρ̂(τ)L defines the frame on the z-axis, (which is fixed by Rτ3 ,
we further reduce Eq. (3) by eliminating the variable τ3. To do this, we
define Az : SO(3) → S2, R→ Rz, where z = [0, 0, 1]T and S2 denotes
the unit 2-D sphere. Since Az(Rτ3) = z, applying Az to both sides of
Eq. (3) yields:

Az(ρ̂(τ)L) := Rτ1LRτ2Lz = RLz (4)

where Rτ1LRτ2L defines the orientation of the z-axis of frame 6 in W .
We can solve this equation for (τ1, τ2). The value of τ3 is then uniquely
determined by:

Rτ3 = (Rτ1LRτ2L)TRL. (5)
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Figure 4. The discriminant curve Xd

computed with γ = π and d = −0.32.

To each solution τ = (τ1, τ2, τ3) of Eqs. (4) and (5) corresponds a set of
values of θ = (θ1, ..., θ6) such that θ2i−1 + θ2i = τi for i = 1, 2, 3. This
set is a 3-D torus (S1)3.

Singular set. The singularities of ρ̂ are the points in (S1)3 where the
3 × 3 Jacobian matrix Jρ̂ has rank less than 3. When working with Lie
groups, the Jacobian is (dρ̂)ρ̂−1. This gives a map to the Lie algebra.
The Lie algebra of SO(3) is 3-dimensional and a change of basis gives
Jρ̂ = [z, Rτ1Lz, Rτ1LRτ2Lz], z as above. Jρ̂ has at least rank 2. It
has has rank exactly 2 if and only if: det(Jρ̂) = sin(τ2) cos(α) = 0. As
cos(α) 6= 0, the singular set of ρ̂ is {τ | τ2 = 0} ∪ {τ | τ2 = π}.

Critical set and number of solutions. The quotient map η :
(S1)3 → SO(3) → S2 that appears in the left-hand side of Eq. (4),
has the same singular set as ρ̂. The critical set of η – i.e., the image
of {τ | τ2 = 0} ∪ {τ | τ2 = π} – is the union of C1 = Rτ1Rτ3z = z

and C2 = Rτ1LRπLRτ3z = Rτ1LRπLz for all τ1 ∈ S1. C1 is the
point that corresponds to the situation where the z-axes of W and
frame 6 are parallel. Indeed, when τ2 = 0, the z-axis of frame 6 is
parallel to the z-axis of W for any value of τ1. On the other hand,
Rτ1LRπLz = [(sin(2α) cos(τ1), sin(2α) sin(τ1), − cos(2α)]T , so C2 is the
circle perpendicular to the z-axis and passing through the point LRπLz.
See Fig. 3.

The inverse map η−1, hence ρ̂−1, has a constant structure in C1, C2,
and in each of the two open subsets of S2 bounded by C1 and C2. We
notice that: L(LRτ2Lz) = [cos(α) cos(τ2), cos(α) sin(τ2), sin(α)]T . So,
LRτ2Lz is a circle perpendicular to Lz contained in the subset of S2 be-



tween C1 and C2, except at τ2 = 0 and τ2 = π where it coincides with C1

and C2, respectively (Fig. 3). For any fixed τ1 ∈ S1, the set Rτ1LRτ2Lz

is the circle obtained by rotating LRτ2Lz by τ1 around the z axis. Thus,
for every point s in the region between C1 and C2, Rτ1LRτ2Lz contains
s for two distinct values of τ1. We conclude that η−1 has two values
(τk

1 , τ
k
2 ), k = 1, 2. In C1, s = z and η−1(s) = {(τ1, 0) | τ1 ∈ S1}. For

any s ∈ C2, η
−1(s) has a single value of the form (τ1, π). Elsewhere

η−1(s) is empty.
Corresponding to each value (τ1, τ2) of η−1(s) there is a unique value

of τ3 given by Eq. (5), hence a single value of ρ̂−1(R). Thus, as we
initialize an orientation R ∈ SO(3) not in the critical sets C1 and C2,
ρ−1(R) is the disjoint union of two 3-D tori, written Mk, k = 1, 2.

4. Inverse Position Map

Restriction to Mk. We now study p−1
k (X), where X ∈ R3 and pk,

k ∈ 1, 2, is the position map p with its domain restricted to Mk. Since
θ2j−1 + θ2j, j = 1, 2, 3, are constant on Mk and equal to τk

j , each point
on Mk is uniquely defined by the values of θ1, θ3, and θ5. Eq.(1) yields:

pk : (S1)3 → R3, (θ1, θ3, θ5) → v0,k +(R1 +Rτk
1
LR3 +Rτk

1
LRτk

2
LR5)v2

where v0,k = (Rτk
1
L + Rτk

1
LRτk

2
L)v1 is a constant vector and {R1v2},

{Rτk
1
LR3v2}, and {Rτk

1
LRτk

2
LR5v2} are constant circles of radius `1 con-

tained in three different planes.
Computing p−1

k (X) amounts to solving the equation:

X ′ = p̂k(−θ2, θ3, θ5) := R−2v2 + LR3v2 + LRτk
2
LR5v2, (6)

where X ′ = RT
τk
1

(X − v0,k) and R−2 is the rotation of −θ2 around z.

Critical set. Here we directly determine the critical positions X ′

where the number of solutions of p̂k changes. We rewrite Eq. (6) as:

X ′ − r(w) = q(t, u), (7)

where we rename the variables as t = −θ2, u = θ3, w = θ5, and γ = τk
2 .

X ′−r(w) is a unit circle centered atX ′ and q(t, u) spans a quartic surface
Q in R3. Q is the Minkowski sum of two circles, so it is bounded and
connected. Eq. 7 can be solved by computing the intersections between
X ′ − r(w) and the coss-section curve of Q by the plane containing X ′ −
r(w). We compute r(w) = x̂cw+ŷsw. x̂ = [s2αcγ+c2α, sγsα, sαcα(1−cγ)]T

and ŷ = [−sαsγ , cγ , cαsγ ]T form an orthonormal basis for the plane
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Figure 5. Zoom on a portion of Xd in
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Figure 6. The planar graph determined
by the discriminant curve of Fig. 4. The
number of solutions is shown in each node.

containing the circle r(w). Setting ẑ = x̂× ŷ, the equation of the plane
containing X ′ − r(w) is:

ẑT q = d (8)

where d = ẑTX ′. We let Pd denote the plane defined by this equation.
When X ′ spans R3, Pd translates, but its orientation remains constant.

On the other hand, we can easily compute:

q(t, u) = [ct − sαcu, st − su, cαcu]T . (9)

By replacing q by this expression in Eq. (8), we get the equation of the
cross-section Qd of Q by Pd in terms of (t, u):

c(u−γ) +K(γ)s(t+β) =
d

cα
(10)

where cβ = −
sγ

K(γ) , sβ =
sα(1−cγ)

K(γ) , and K(γ) =
√

s2γ + s2α(1 − cγ)2.

The number of intersection points in Qd ∩ (X ′ − r(w)) varies as X ′

runs over R3. The X ′ such that the circle is tangent to Qd form the
critical set X ⊂ R3 of p̂k. Let dmin and dmax be the extreme values
of d between which the plane ẑT q = d and Q intersect. For any d ∈
[dmin, dmax], the values of X ′ such that X ′ − r(w) lies in the plane Pd

and is tangent to Qd form a curve Xd called the discriminant curve at d.
The union of the discriminant curves for d in [dmin, dmax] is the critical
surface X of p̂k. Fig. 4 shows a discriminant curve, with several cusp
and self-intersection points. An animation of both the cross-section of
Q and the corresponding discriminant curve when d varies is available
at www.stanford.edu/~phwu1/curve when γ = π.
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Figure 8. Four of the 16 solutions.

Decomposition of R3 into regions. The surface X decomposes
R3 into open 3-D regions such that the number of solutions of the inverse
position map is constant over each one. We first compute the decompo-
sition of a plane Pd by Xd. Next, we partition [dmin, dmax] into smaller
open intervals, such that over each such interval the discriminant curves
Xd are equivalent. We get the decomposition of R3 by “stacking” the
decompositions in the successive intervals.

Decomposition of Pd: We sweep a line L parallel to the y-axis across
the plane Pd from left to right to construct a set S of sub-regions and
their adjacency relations. S is initialized to the empty set. During the
sweep, whenever L crosses a cusp point, a self-intersection point, or a
vertical tangency point, sub-regions are added to S and the adjacency
relation is updated. When the sweep is completed, adjacent sub-regions
in S not separated by Xd are merged to form the decomposition of Pd.
The outcome is a planar graph in which the nodes are the computed
regions and the edges represent the adjacency relation. The number
of solutions of the inverse position map varies by 2 at each crossing
of a region boundary. We compute cusp and self-intersection points
numerically by approximating the discriminant curve by line segments.
Fig. 6 shows the graph computed from the discriminant curve shown in
Fig. 4. An animation of the discriminant curve and the corresponding
graph when d varies is available at www.stanford.edu/~phwu1/curve when
γ = π.

Decomposition of R3: As d varies from dmin to dmax, the planar graph
in Pd changes only at a finite number of critical values of d, which we
denote di, i = 1, ...,m. Over each open interval (di, di+1), i = 0, ...,m,
with d0 = dmin and dm+1 = dmax, the discriminant curves are equivalent
and the planar graph remains constant. Let Gi be the planar graph in



interval (di, di+1). The decomposition of R3 is obtained by merging every
pair of regions from Gi and Gi+1, for all i = 0, ...,m, that are adjacent,
but not separated by X . The corresponding nodes of the planar graphs
are also merged to obtain the graph of the decomposition of R3.

The 2-D surface X is made of smooth patches separated by cusp and
self-intersection curves. The cusp (resp. self-intersection) curves are
the locus X cusp (resp. X self) of all the cusp (self-intersction) points of
the discriminant curves Xd when d varies. The critical values of d are
contributed by X\(X cusp∪X self), X cusp, and X self . For lack of space, we
do not describe their computation here. Fig. 7 shows X cusp for γ = π.

5. Existence of a 16-Solution Cell

Theorem 1 There exists a nonempty open region in R3 × SO(3) such

that for all (X,R) in this region, (p, ρ)−1(X,R) contains 16 points.

Proof: Consider first an orientation R0 ∈ SO(3) that lies in the critical
circle C2. ρ

−1(R0) is a copy of (S1)3. There is a nonempty open region
E0 ⊂ C2 such that for all R inE0, p(ρ

−1(R)) has an open region U so that
p−1(X) contains 8 points for X ∈ U (see Fig. 6). Let R′ be a noncritical
orientation that is close to R0. Then ρ−1(R′) is a disjoint union of two
3-D tori Mk, k = 1, 2. For each pk, there exists a nonempty open region
Ek with 8 inverse image points. Moreover, for R′ sufficiently close to
R0, E = E1 ∩E2 is nonempty. Then (p, ρ)−1(X,R′) has 16 solutions for
all X ∈ E.

Using the idea in the proof, we constructed the following pose (X,R)
of T :

X =

[

1.9760
4.5809
−2.2402

]

and R =

[

0.6742 −0.3715 −0.6383
0.2378 −0.7091 0.6638
−0.6992 −0.5993 −0.3897

]

,

such that (p, ρ)−1(X,R) contains 16 solutions (for a fragment in which
`1 = 1 and `2 = 3). Four of them are shown in Fig. 8. (It is easily seen
that the existence of 16-solution cell is independent of the link lengths
as long as the short links all have the same length.)
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