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1. Introduction
This work explores the interconnections between a number of different

perspectives on the formalisation of space. We begin with an informal
discussion of the intuitions that motivate these formal representations.

1.1 Axioms vs Algebras
Axiomatic theories provide a very general means for specifying the

logical properties of formal concepts. From the axiomatic point of view,
it is symbolic formulae and the logical relations between them — es-
pecially the entailment relation — that form the primary subject of
interest. The vocabulary of concepts of any theory can be interpreted in
terms of a domain of entities, which exemplify properties, relations and
functional mappings corresponding to the formal symbols of the theory.
Moreover, by interpreting logical operations as functions of these seman-
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tic denotations, such an interpretation enables us to evaluate the truth
of any logical formula built from these symbols. An interpretation is
said to satisfy, or be a model of a theory, if all the axioms of the theory
are true according to this evaluation.

In general an axiomatic theory can have many different models ex-
hibiting diverse structural properties. However, in formulating a logical
theory, we will normally be interested in characterising a particular do-
main and a number of particular properties, relations and/or functions
that describe the structure of that domain; or, more generally, we may
wish to characterise a family of domains that exhibit common structural
features, and which can be described by the same conceptual vocabulary.

From the algebraic perspective, it is the domain of objects and its
structure that form the primary subject of investigation. Here again,
we may be interested in a specific set of objects and its structure, or a
family of object sets exemplifying shared structural features. And the
nature of the structure will be described in terms of properties, relations
and functions of the objects. To specify a particular structure or family
of structures, one will normally give an axiomatic theory formulated
in terms of this vocabulary, such that the algebraic structures under
investigation may be identified with the models of the theory.

Hence, axiom systems and algebras are intimately related and comple-
mentary views of a conceptual system. The axiomatic viewpoint charac-
terises the meanings of concepts in terms of true propositions involving
those concepts, whereas the algebraic viewpoint exemplifies these mean-
ings in terms of a set of objects and mappings among them. Moreover,
the models of axiomatic theories can be regarded as algebras, and con-
versely algebras may be characterised by axiomatic theories.

Having said this, the two perspectives lead to different emphasis in
the way a conceptual system is articulated. If one starts from axiomatic
propositions, one tends to focus on relational concepts (formalised as
predicates), whereas, if one starts from objects and structures, the fo-
cus tends to be on functional concepts corresponding to mappings be-
tween the objects. Indeed, the term ‘algebra’ is sometimes reserved for
structures that may be characterised without employing any relational
concept apart from the logical equality relation. And the most typical
algebras are those specified purely by means of universally quantified
equations holding between functional terms.
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1.2 Representing Space
1.2.1 Classical Approaches. Our modern appreciation of
space is very much conditioned by mathematical representations. In
particular, the insights into spatial structure given to us by Euclid and
Descartes are deeply ingrained in our understanding.

Euclid described space in terms several distinct categories of geomet-
rical object. These include points, lines and surfaces as well as angles
and plane figures. These entities may be said to satisfy a number of basic
properties (e.g. lines may be straight and surfaces may be planar) and
relationships (e.g. a point may be incident in a line or surface, two lines
may meet at a point or be inclined at an angle). The nature of space was
then characterised by postulates involving these basic concepts, which
were originally stated in ordinary language. Euclid proceeded to define
many further concepts (such as different types of geometrical figure) in
terms of the basic vocabulary.

From Descartes came a numerical interpretation of space, with points
in an n-dimensional space being associated with n-tuples of numerical
values. According to this Cartesian model, the basic elements of space
are points. Their structure and properties can be axiomatised in terms of
the metrical relation of equidistance (see e.g. [101, 104]), and interpreted
in terms of numerical coordinates.

If points are taken as the primary constituents of the universe, lines
and regions have a derivative status. Two distinct points determine a
line, and polygonal figures can be represented by sequence of their vertex
points. To get a more general notion of ‘region’ we need to refer to
more or less arbritray collections of points. This is the representational
perspective of classical point-set topology.

1.2.2 Region-Based Approaches. Although the point-based
analysis has become the dominant approach to spatial representation,
there are a number of motivations for taking an alternative view, in
which extended regions are considered as the primary spatial entities.

An early exponent of this approach was Alfred North Whitehead,
who shared with Bertrand Russell the view that an adequate theory of
nature should be founded on an analysis of sense data, and that elements
of perception can be the only referents of truly primitive terms. On
this basis, Whitehead in his book Concept of Nature [111] argued that
extended regions are more fundamental that points: whereas regions
may be perceived as the spatial correlates colour patches in the visual
field, points cannot be perceived directly but are only constructed by
cognitive abstraction.
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This motivation shares some common ground with that of Stanislaw
Leśniewski, who also wanted to bring the theoretical analysis of the
world more closely in line with phenomenological conceptions of reality,
and believed that perceiving the integrity of extended objects is basic
to our interpretation of the world. Mereology, a formal theory of the
part-whole relation was originally presented by Leśniewski [66] in his
own logical calculus, which he called Ontology.

Whitehead identified the relation of connection between two spatial or
spatio-temporal regions as of particular importance to the phenomeno-
logical description of reality. In further work he attempted to use this
concept as the fundamental primitive in a logical theory of space and
time. A formal theory of this relation was presented in [112].3

The earliest completely rigorous and fully formalised theory of space
where regions are the basic entity is the axiomatisation of a Geometry of
Solids that was given by Tarski in 1929 [98]. Subsequently, a number of
other formalisations have been developed. These include the Calculus of
Individuals proposed by Leonard and Goodman [45, 64] (which are close
to Leśniewski’s mereology) and the spatial theories of Clarke [16, 17]
(which are based on Whitehead’s connection relation.

More recently, region-based theories have attracted attention from
researchers working on Knowledge Representation for Artificial Intelli-
gence systems (AI). The so-called Region Connection Calculus [88] is a
1st-order formalism based on the connection relation and is a modifi-
cation of Clarke’s theory. AI researchers are motivated to study such
representations by a belief that they may be useful as a vehicle for au-
tomating certain human-like spatial reasoning capabilities. From this
point of view it has been argued that the region-based approach is closer
to the natural human conceptualisation of space. In the context of de-
scribing and reasoning about spatial situations in natural language, it
is common to refer directly to regions and the relations between them,
rather than referring to points and sets of points. Therefore, treating
regions as basic entities in a formal language can in many cases allow
simpler representation of high-level human-like spatial descriptions.

1.2.3 Interdefinability of Regions and Points. Despite
the difference in perspective, several formal results show that region
and point-based conceptualisations are in fact interdefinable, given a
sufficiently rich formal apparatus. Whitehead himself had noted that by
considering classes of regions, points can be defined as infinite sets of

3This was subsequently found to be inconsistent and was posthumously corrected in a second
edition [113].
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nested regions which converge to a point. Pratt in [83] and [86] showed
that any sufficiently strong axiomatisation of the polygonal regions of a
plane can be interpreted in terms of the classical point-based model of
the Euclidean plane. So in some sense the region-based theory is not
‘ontologically simpler’ in its existential commitments.

Later in this paper we shall adopt a similar approach, and by iden-
tifying a point with the sets of all regions region to which it belongs,
we shall show that even much weaker and more general region-based
theories can be interpreted in terms of point sets. Hence, the point and
region based approaches should not be regarded as mutually exclusive,
but rather as complementary perspectives.

Nevertheless, we believe that region-based theories deserve more at-
tention than has traditionally been paid them, and that for certain pur-
poses they have clear advantages.

There is an argument that regions are actually more powerful and
flexible than points as a starting point for spatial theories. In Pratt [86] it
is shown that if we have a domain of regions plus a spatial language with
sufficient (in fact rather low) expressive power, we implicitly determine
a corresponding domain of points. Roughly speaking, this is done as
follows: within the region-based theory we can specify pairs of regions
that have a unique ‘point’ of contact. Thus, relations among points can
be recast in the guise of formulae which refer to these region pairs. In
this way points are implicitly definable from regions by first-order means;
whereas, if we start with points as the basic entities, the definition of
regions requires set theory (unless we arbitrarily restrict the geometrical
complexity of regions).

1.3 Alternative Logical Formalisms
We have seen that the representation of space allows alternative views

that invert the perspective of the orthodox picture. The same is also true
for the mode of application of formal representations themselves. First-
order logic provides a standard alignment of syntactic and conceptual
categories. Specifically, the basic nominal symbols of the formal lan-
guage refer to what are considered to be the primitive entities of the
‘domain’ of a theory, while formal predicates correspond to properties
and relations that hold among those entities. This alignment is widely
held to be ‘natural’, in that it seems to accord in some respects with the
syntactic expression of semantics found in natural languages. However,
this intuition is difficult to establish conclusively. Moreover, by alter-
ing the correspondence between syntactic and conceptual categories, one
may obtain alternative calculi that also have a meaningful interpretation
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and proof theory. For instance, one could interpret syntactically basic
symbols as denoting ‘properties’, and represent ‘individuals’ formally as
predicates (the extension of the predicate being the set of properties
satisfied by the corresponding individual).

However, since relations between objects are not in general reducible
to properties of individual objects, a much more powerful abstraction is
obtained by taking relations as the basic entities of a formal system. This
approach was first formalised in an algebraic framework by Tarski [99]
and relation algebras are now a well-established alternative to standard
1st-order formalisms [5, 102].

From the point of view of logic and computation, there are signif-
icant advantages in treating relations as basic entities. In particular
this mode of representation allows quantifier-free formalisation of many
properties and inference patters, which would otherwise require quan-
tification. This is one of the main themes of Algebraic Logic as it is
elaborated in [1, 5, 78].

As we will be concerned with spatial representation based on the
‘contact’ relation, relation algebras are a natural system within which
to formulate theories of this kind.

1.4 Structure of the Chapter
The organisation of this chapter is as follows. In Section 2 we shall

present some basic formal structures and notations that will be used to
develop the theory. These include, Boolean algebras, relation algebras,
topological spaces and proximity spaces. Section 3 introduces the spatial
contact relation, which is the primary focus of our investigation. We
consider the fundamental axioms satisfied by a contact relation and give
standard interpretations of contact in terms of point-set topology. We
then see how the basic properties of this relation can be described in
both first order and relation algebraic calculi.

In Section 4 we introduce Boolean Contact Algebras, which are Boolean
algebras supplemented with a contact relation satisfying appropriate
general axioms. Additional axioms are also considered, which char-
acterise further properties of contact that are exhibited under typical
spatial interpretations. We give representation theorems for the general
class of Boolean Algebras in terms of both topological spaces and prox-
imity spaces, and give more specific representation systems for algebras
satisfying additional axioms. These theorems make concrete the corre-
spondence between the relational approaches which focus on axiomatic
properties of the contact relation, and the more well-known models of
space in terms of point-set topology.
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Section 5 looks at some other well known approaches to formalising
topological relationships, in particular the Region Connection Calculus
[88] and the 9-intersection model. Section 6 considers the problem of
reasoning with topological relations. The methods presented are: com-
positional reasoning, equational reasoning, encoding into modal logic
and a relation algebraic proof theory. Section 6 concludes the chapter
with a consideration of the correspondences that have been established
between different modes of formalising topological information, and of
ongoing and future developments in this area.

2. Preliminary Definitions and Notation
In this section we give definitions and key properties of the basic

formal structures that will underpin our analysis. We start with Boolean
algebras with operators, which provide an extremely general framework
for studying structured domains of objects. Two important special cases
of these algebras are considered: modal algebras, and relation algebras.

2.1 Boolean Algebras
We assume that the reader has some familiarity with Boolean algebras

(BAs), and here only revise the basic details and notation. Our standard
reference for BAs is [61], and we will just review some basic concepts.
Our signature for a BA will be 〈B, ·,+,−,0,1〉. We will usually refer to
an algebra by its base set (in this case B).

Definition 2.1. Boolean Algebra concepts and notations:

i) For all a, b ∈ B, a ≤ b holds iff a+ b = b.

ii) If A ⊂ B, then
∑

B A denotes the least upper bound of A rel-
ative to the ≤ ordering of B. If A is infinite this does not
necessarily exist. Where the relevant algebra is clear, we may
write simply

∑
A.

iii) If A is a subalgebra of B, we denote this by A ≤ B.

iv) The set of non-zero elements of B is denoted by B+.

v) If M is a subset of B+, then M is dense in B, iff

(∀b ∈ B+)(∃a ∈M) a ≤ b .

vi) An atom of B is an element a ∈ B+ such that

(∀c)[c ≤ a⇒ (c = 0 ∨ c = a)] .
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vii) The set of atoms of B will be written as At(B).

viii) B is atomic, iff At(B) is dense in B+.

ix) If f : B → B is a mapping, then its dual is the mapping
f∂ : B → B defined by f∂(x) = −f(−x).

In general, a BA will contain elements corresponding to the meet
and join of any finite subset of its domain. A BA is called complete,
if arbitrary joins and meets exist. The completion of B is the smallest
complete BA A which contains B as a dense subalgebra. It is well known
that each B has a completion which is unique up to isomorphisms.

Definition 2.2. An ultrafilter is a subset F of B such that:

i) If x ∈ F, y ∈ B and x ≤ y, then y ∈ F .

ii) If x, y ∈ F , then x · y ∈ F .

iii) x ∈ F if and only if −x 6∈ F .

The set of all ultrafilters of B will be denoted by Ult(B).

Ultrafilters are often employed as a means to represent ‘point-like’
entities that are implicit in the structure of a BA. From a purely algebraic
point of view, the elements of a BA are abstract entities with no sub-
structure. However, the elements may be and often are intended to
correspond to composite objects (e.g. sets or spatial regions). Thus, as
we shall see later, the elements of a BA are often interpreted as point sets
in some space (e.g. topological space). In such a context, an ultrafilter
can usually be thought of a set of all those elements of a BA that contain
some particular point in the space over which the algebra is interpreted.

Perhaps the simplest example is the BA X∗ whose elements are (inter-
preted as) all subsets of the set X (with the Boolean operations having
their standard set-theoretic interpretation). In this case, for each x ∈ X
the set {Y | Y ⊆ X∗ ∧ x ∈ Y } is an ultrafilter of X∗.

Definition 2.3. A canonical extension of B is an algebra Bσ, which
is a complete and atomic BA containing an isomorphic copy of B as a
subalgebra, and which satisfies the following the properties:

i) Every atom of Bσ is the meet of elements of B.

ii) If A ⊆ B such that
∑

Bσ A = 1,
then there is a finite set of A′ ⊆ A such that

∑
Bσ A′ = 1.

It is well known, that each BA has a canonical extension which is
unique up to isomorphism. One such construction is given by Stone’s
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representation theorem for Boolean algebras: Let Bσ be the powerset
algebra of the set of ultrafilters X of B, and embed B into Bσ by b 7→
{U ∈ X : b ∈ U}. If A ≤ B, then A is called a regular subalgebra of B,
if B is a canonical extension of A.4

For more details and discussions we refer the reader to [56–58, 60].

2.2 Boolean Algebras with Operators
The structure of a Boolean algebra may be further elaborated by

the introduction of additional operators. These Boolean algebras with
operators arose from the investigation of relation algebras, and were
first studied in detail by [60]; a survey can be found in [56]. Many useful
structures have the form of such algebras.

Definition 2.4. Some useful concepts for describing Boolean algebras
with operators are defined as follows:

i) A function f : Bn → B on a BA is called additive in its
i-th argument if f(x0, . . . , xi, . . . xn) + f(x0, . . . , x

′
i, . . . xn) =

f(x0, . . . , (xi + x′i), . . . xn), for all xi ∈ B.

ii) A function f : Bn → B on a BA is called an operator, if it is
additive in each of its arguments.

iii) f : Bn → B is called normal, if it is normal and its value is 0
if any of its arguments is 0.

iv) A structure 〈B, (fi)i∈I〉 is called a Boolean Algebra with Op-
erators (BAO), if B is a BA, and all fi are operators.

v) If all fi are furthermore normal, then we speak of a normal
BAO.

vi) A collection of algebras defined by a given signature and a set
of universally quantified equations is called an equational class
(or variety).

Examples of normal BAOs are modal algebras, relation algebras (both
of which will be discussed below), and cylindric algebras, which provided
an algebraicisation of first order logic. We invite the reader to consult the
classic monographs by Henkin et al. [50, 51] or the recent exposition by

4The notion of canonical extension is equivalent to that of ‘perfect’ extension introduced
in [60]. Our notion of regular sub-algebra is also equivalent to that used in [60], which is
different to that given in [61].
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Andréka et al. [5], which provides a comprehensive (and comprehensible)
introduction to Tarski’s algebraic logic.

The concept of canonical extensions of Definition 2.3 can be extended
to BAOs:

Definition 2.5. Suppose that B is a BA, and f an n-ary normal oper-
ator on B. The canonical extension fσ of f is defined by

fσ(x) =
∑{∏

{f(y) : p ≤ y ∈ Bn} : p ∈ At(Bσ)n and p ≤ x
}

(2.1)

for all x ∈ (Bσ)n. If 〈B, (fi)i∈I〉 is a normal BAO, we call 〈Bσ, (fσ
i )i∈I〉

the canonical extension of 〈B, (fi)i∈I〉.
Proposition 2.1. [60] The canonical extension of a normal BAO
〈B, (fi)i∈I〉 is a complete and atomic normal BAO containing 〈B, (fi)i∈I〉
as a subalgebra.

This is not the place to dwell on the preservation properties of canon-
ical extensions of normal BAOs, and we refer the reader to [56] and [24]
for details.

As the connection of unary normal operators to operators of modal
logics (which will be examined in detail later) is somewhat special, we
make the following convention:

Definition 2.6. If f is a unary normal operator on the BA B, we call
it a modal operator or possibility operator, and the structure 〈B, f〉 a
modal algebra.

Hence, modal algebras form an equational class (or variety) of alge-
bras. That is the class of BAOs with one operator f that satisfy, in
addition to the identities of Boolean algebra, the equations:

f(x+ y) = f(x) + f(y)(2.2)
f(0) = 0(2.3)

A special case of modal algebras (hence, of BAOs) are closure algebras:

Definition 2.7. A possibility operator f on B which also satisfies, for
all a ∈ B,

a+ f(a) = f(a),(2.4)
f(f(a)) = f(a)(2.5)

is called a closure operator, and, in this case, 〈B, f〉 is a closure algebra.

Incidentally, one dimensional cylindric algebras are a special case of
closure algebras [50].
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Definition 2.8. Functions whose duals are possibility operators are called
necessity operators. Thus a necessity operator on B is a function g :
B → B, for which

g(1) = 1, Dually normal(2.6)
g(a · b) = g(a) · g(b) for all a, b ∈ B Multiplicative(2.7)

Definition 2.9. A necessity operator g is called an interior operator if
for all a ∈ B it satisfies

g(a) + a = a,(2.8)
g(a) = g(g(a))(2.9)

If g is an interior operator on B, then the structure 〈B, g〉 is called an
interior algebra.

Modal algebras can be viewed as an algebraic counterpart to the re-
lational structures known as (Kripke) frames:

Definition 2.10. A frame is a pair F = 〈U,R〉, where R is a binary
relation on U , called an accessibility relation.

Every frame F has a corresponding algebra, called the complex alge-
bra of F .

Definition 2.11. If F = 〈U,R〉 is a frame, then the complex algebra
of F is the structure F ∗ = 〈2U ,♦R〉, where ♦R : 2U → 2U is defined by

♦R(X) = {y ∈ U : (∃x ∈ X)xRy},(2.10)

It is not hard to see that F ∗ is a complete and atomic modal algebra.
Conversely, we can construct a frame from a modal algebra:

Definition 2.12. If 〈B, f〉 is a modal algebra, let Rf ∈ Rel(At(B)) be
defined by

aRfb⇐⇒ a ≤ f(b).(2.11)

The structure 〈At(B), Rf 〉 is called the canonical frame of 〈B, f〉, and
Rf its canonical relation.

We now have the following Representation Theorem:

Proposition 2.2. [56, 57, 60] Let 〈B, f〉 be a complete and atomic
modal algebra. Then, 〈B, f〉 is a regular subalgebra of the complex algebra
of its canonical frame. Furthermore, if 〈B, f〉 is isomorphic to a regular
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subalgebra of a complex algebra of some frame 〈U,R〉, then 〈U,R〉 ∼=
〈At(B), Rf 〉.

It may be worthy of mention that that all normal BAOs, not only
the ones with unary operators, are representable as regular subalgebras
of complex algebras of frames. Normality is essential, since non–normal
BAOs do not admit such a representation [72].

Correspondence theory investigates, which relational properties of R
can be expressed by its canonical modal operator and its dual (see e.g.
[107]). We have, for example:

R is reflexive ⇐⇒ (∀X)[X ⊆ ♦R(X)],(2.12)
R is symmetric ⇐⇒ (∀X)[♦R(−♦R(−X)) ⊆ X],(2.13)
R is transitive ⇐⇒ (∀X)[♦R♦R(X) ⊆ ♦R(X)](2.14)

These correspondences, as well as the following result, have appeared
already in [60]:

Proposition 2.3. A modal algebra is a closure algebra if and only if its
canonical relation is reflexive and transitive.

2.3 Binary Relations and Relation Algebras
A binary relation R on a set U is a subset of U×U , i.e. a set of ordered

pairs 〈x, y〉 where x, y ∈ U . Instead of 〈x, y〉 ∈ R, we shall often write
xRy. The smallest binary relation on U is the empty relation ∅, and the
largest relation is the universal relation U × U , which we will normally
abbreviate as U2. The identity relation 〈x, x〉 : x ∈ U will be denoted by
1′, and its complement, the diversity relation, by 0′. Domain and range
of R are defined by

dom(R) = {x ∈ U : (∃y ∈ U)xRy},(2.15)
ran(R) = {x ∈ U : (∃y ∈ U)yRx}.(2.16)

Furthermore, we let R(x) = {y ∈ U : xRy}.
The set of all binary relations on U will be denoted by Rel(U). Clearly,

Rel(U) is a Boolean algebra under the usual set operations:

−R = {〈x, y〉 : ¬(xRz)}(2.17)
R ∪ S = {〈x, y〉 : xRy or xSy}(2.18)
R ∩ S = {〈x, y〉 : xRy and xSy}(2.19)

If R,S ∈ Rel(U), the composition of R and S is defined as

R ; S = {〈x, y〉 : (∃z)[xRz and zSy]}(2.20)
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The converse of R, written as R˘, is the set

R˘ = {〈y, x〉 : xRy}.(2.21)

A detailed analysis of relation algebras can be found in [50], and an
overview in [55]. The following lemma sets out some decisive properties
of composition and converse.

Lemma 2.1.

i) ; is associative and distributes over arbitrary joins.

ii) 1′ ; R = R ; 1′ = R.

iii) ˘ is bijective, of order two, i.e. R ˘ ˘ = R, and distributes
over arbitrary joins.

iv) (R ; S)˘ = S ˘ ; R˘ .

v) (R ; S)∩ T = ∅ ⇐⇒ (R˘ ; T )∩S = ∅ ⇐⇒ (T ; S˘)∩R = ∅.

Note that any equation and any inequality between relations can be
written as T = U2 for some T . To do this, it is convenient to first to
define the operation R ⊗ S, which gives the symmetric difference of R
and S:

R⊗ S = (R ∩ −S) ∪ (S ∩ −R).(2.22)

We then have the following equivalences:

R = S ⇐⇒ −(R⊗ S) = U2,(2.23)

R 6= S ⇐⇒ (U2; ((R⊗ S);U2)) = U2.(2.24)

Implicitly, we use here the concept of discriminator algebras which are
a powerful instrument of algebraic logic, see[110] and also [59].

The full algebra of binary relations on U is the structure

〈Rel(U),∩,∪,−, ∅, U2, ; , ˘ , 1′〉 .

A Boolean subalgebra of Rel(U) which is closed under ; and ˘ and
contains 1′ will be called an algebra of binary relations (BRA).
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Many properties of relations can be expressed by equations (or inclu-
sions) among relations, for example,

R is reflexive ⇐⇒ (∀x)xRx,(2.25)
⇐⇒ 1′ ⊆ R.

R is symmetric ⇐⇒ (∀x, y)[xRy ⇐⇒ yRx],
(2.26)

⇐⇒ R = R˘ .
R is transitive ⇐⇒ (∀x, y, z)[xRy ∧ yRz ⇒ xRz],(2.27)

⇐⇒ R ; R ⊆ R.

R is dense ⇐⇒ (∀x)x(−R)x ∧ (∀x, y)[xRy ⇒ (∃z)xRzRy],(2.28)
⇐⇒ R ∩ 1′ = ∅ ∧R ⊆ R ; R,
⇐⇒ R ∩ (1′ ∪ −(R ; R)) = ∅.

R is extensional ⇐⇒ (∀x, y)[R(x) = R(y) ⇒ x = y],
(2.29)

⇐⇒ [−(R ; −R˘) ∩ −(R˘ ; −R)] ⊆ 1′.

One observes that all formulae above contain at most three variables.
This is no accident, as the following result shows:

Proposition 2.4. [44, 103]

1 The first order properties of binary relations on a set U that can be
expressed by equations using the operators 〈∩,∪,−, ∅, U2, ; , ˘, 1′〉
are exactly those which can be expressed with at most three distinct
variables.

2 If If R is a collection of binary relations on U , then, the closure
of R under the operations 〈∩,∪,−, ∅, U2, ; , ˘, 1′〉 is the set of all
binary relations on U which are definable in the (language of the)
relational structure 〈U,R〉 by first order formulae using at most
three variables, two of which are free.

If A is a complete and atomic BRA, in particular if A is finite, then
the actions of the Boolean operators are uniquely determined by the
atoms. To determine the structure of A it is therefore enough to specify
the composition and the converse operation.

When dealing with an atomic BRA, it is often convenient to specify
the composition operation by means of composition table (CT), which,
for any two atomic relations Ri, Rj , specifies the relation Ri;Rj in terms
of its constituent atomic relations. Formally, a composition table is a
mapping CT : At(A)×At(A) → 2At(A) such that

T ∈ CT(R,S) ⇐⇒ T ⊆ R ; S.(2.30)
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Since A is atomic, we have

R ; S =
⋃

CT(R,S).(2.31)

CT can be conveniently written as a quadratic array (the composition
table of A), where rows and columns are labelled with the atoms of A,
and the cells contain CT(R,S).

BRAs are one instance of the class of relation algebras, which may be
seen of an abstraction of algebras of binary relations [99]:

Definition 2.13. A relation algebra (RA)

〈A,+, ·,−, 0, 1, ; , ˘ , 1′〉
is a structure of type 〈2, 2, 1, 0, 0, 2, 1, 0〉 which satisfies

(R0) 〈A,+, ·,−, 0, 1〉 is a Boolean algebra.

(R1) x ; (y ; z) = (x ; y) ; z.

(R2) (x+ y) ; z = (x ; z) + (y ; z).

(R3) x ; 1′ = x.

(R4) x˘ ˘ = x.

(R5) (x+ y)˘ = x˘ + y˘ .

(R6) (x ; y)˘ = y˘ ; x˘ .

(R7) (x˘ ; − (x ; y)) ≤ −y.

Observe that BRAs and RAs are BAOs: An RA is a BAO where
the additional operators 〈 ; , ˘ , 1′〉 form an involuted monoid, and the
connection between this monoid and the Boolean operations is given by
(R7). The somewhat cryptic character of (R7), can be made clearer by
observing that, in the presence of the other axioms, it is equivalent to
the cycle law

(x ; y) · z = 0 ⇐⇒ (x˘ ; z) · y = 0 ⇐⇒ (z ; y˘) · x = 0.(2.32)

Tarski announced in the late 1940s that set theory and number theory
could be formulated in the calculus of relation algebras:

“It has even been shown that every statement from a given set of ax-
ioms can be reduced to the problem of whether an equation is identically
satisfied in every relation algebra. One could thus say that, in princi-
ple, the whole of mathematical research can be carried out by studying
identities in the arithmetic of relation algebras”. [15]

We invite the reader to consult [103], and, for an overview [1] or [44];
another excellent reference for the theory of RAs is the book by Hirsch
and Hodkinson [52].
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2.4 Topological spaces
We will denote topological spaces by 〈X, τ〉, where X is the base set,

and τ the collection of open sets. If τ is understood, we will usually call
X a topological space. The elements of X will be denoted by lower case
Greek letters, where τ is reserved to denote a topology on X, and its
subsets by lower case Roman letters.

If x ⊆ X, its interior is denoted by int(x), and its closure by cl(x).
Observe that int and cl are an interior operator in the sense of (2.8) –
(2.9), respectively, a closure operator in the sense of (2.4) – (2.5). A
subspace y of X is dense in X, if cl(y) = X.

The boundary ∂(x) of x ⊆ X is the set cl(x) \ int(x). If α ∈ X, and
α ∈ x ∈ τ , then x is called an open neighborhood of α. X is called
connected if it is not the union of two disjoint nonempty open sets.

2.4.1 Separation Conditions. The general framework of
topological spaces includes structures of many different kinds. In par-
ticular the open sets may be more or less densely distributed within
the space. Significant, fundamental properties of this distribution can
often be described in terms of the existence of disjoint separating arbi-
trary points and/or subsets of the space. Such properties are known as
separation conditions.

Later in Section 4.2 we will show how axiomatic properties of spaces
described in terms of the contact relation correspond to separation con-
ditions of their topological interpretations. To this end, the following
conditions are especially relevant:

T1. A topological space X is a called T1 space, if for any two distinct
points α, β, there are x, y ∈ τ such that α ∈ x, β 6∈ x and β ∈ y, α 6∈ y.
This is equivalent to the fact that each singleton set is closed.

T2 (Hausdorff). X is called a T2 or Hausdorff space, if any two
distinct points have disjoint open neighborhoods. It is well known that
each T2 space is a T1 space, and that each regular T1 space is a T2 space.

Regular. A space X is regular if every point α and every closed set
not containing α are respectively included in disjoint open sets.

It is well known [see e.g. 38] that X is regular, if and only if for
each non–empty u ∈ τ and each α ∈ u there is some v ∈ τ such that
α ∈ v ⊆ cl(v) ⊆ u.

Semi-Regular. A space is semi-regular if it has a basis of regular
open sets — i.e. every open set is a union of regular open sets.
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Regularity implies semiregularity, but not vice versa.

Weakly Regular. We call X weakly regular if it is semiregular
and for each non–empty u ∈ τ there is some non–empty v ∈ τ such
that cl(v) ⊆ u. Weak regularity may be called a “pointless version” of
regularity, and each regular space is weakly regular.

Completely Regular. X is called completely regular, if for every
closed x and every point α 6∈ x there is a continuous function f : X →
[0, 1] such that f(β) = 0 for all β ∈ x, and f(α) = 1.

Normal. X is called normal, if any two disjoint closed sets can be
separated by disjoint open sets.

Weakly Normal. X is called weakly normal, if any two disjoint
regular closed sets can be separated by disjoint open sets.5

Entailments among these properties are as follows:
X is normal

=⇒ X is weakly normal
=⇒ X is completely regular

=⇒ X is regular
=⇒ X is weakly regular

=⇒ X is semiregular.

None of these implications can be reversed, see [32] for examples.
A space which is T1 and regular is called a T3 space and a space which

is T1 and normal is a T4 space. The various conditions Ti are successively
stricter as i increases. Thus, T4 =⇒ T3 =⇒ T2 =⇒ T1.

2.4.2 Regular Sets and their Algebras. A set x ⊆ X is
called regular open, if x = int(cl(x)), and regular closed, if x = cl(int(x)).
Clearly, the set complement of a regular open set is regular closed and
vice versa. The collection of regular open sets (regular closed sets) will be
denoted by RegOp(X) (RegCl(X)). It is well known [61] that RegOp(X)
and RegCl(X) can be made into (isomorphic) complete Boolean algebras
by the operations

x+ y = int(cl(x ∪ y)), x+ y = x ∪ y,
x · y = x ∩ y, x · y = cl(int(x ∩ y)),
−x = X \ cl(x), −x = X \ int(x),

5Weak normality has been introduced as ‘κ-normality’ by Shchepin [96].
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0 = ∅, 0 = ∅,
1 = X, 1 = X.

RegOp(X) does not fully determine the topology on X:

Proposition 2.5. [105] If y is a dense subspace of X, then RegOp(X) ∼=
RegOp(y).

If we only want to consider the regular closed sets (or regular open
sets), it suffices to look at semiregular spaces: Let us call the topology
r(τ) on X which is generated by RegOp(τ) the semi–regularisation of
〈X, τ〉.
Proposition 2.6. Suppose that 〈X, τ〉 is a topological space. Then,
〈RegOp(τ)〉 = 〈RegOp(r(τ))〉.
Proof: Let a ⊆ X. Then,

clr(τ)(a) = −
⋃{

m ∈ RegOp(τ) : m ∩ clτ (a) = ∅
}

⊇ −
⋃{

m ∈ τ : m ∩ clτ (a) = ∅
}

= clτ (a).

Let a ∈ RegOp(τ). Then,

intr(τ) clr(τ)(a) = intr(τ)

(
−

⋃
{m ∈ RegOp(τ) : m ∩ clτ (a) = ∅}

)
,

=
⋃
{t ∈ RegOp(τ) : t ∩m = ∅ for all m ∈ RegOp(τ)

with m ∩ clτ (a) = ∅},
= a,

since a and t are regular open, and thus, t ⊆ clτ (a) implies t ⊆ a.
Conversely, let a ∈ RegOp(r(τ)). Then,

a = intr(τ) clr(τ)(a) =
⋃
{t ∈ RegOp(τ) : t ⊆ clr(τ)(a)}.

Now, intτ clτ (a) ∈ RegOp(τ), and thus,

a ⊆ intτ clτ (a) ⊆ intr(τ) clr(τ)(a) = a.

If a ∈ RegOp(τ), then, by the preceding consideration, −τa = −r(τ)a,
and thus, clτ (a) = clr(τ)(a). This implies the claim. ¥
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2.4.3 Closure Algebras and Topologies.
The study of topologies via the closure or interior operator is sometimes
called pointless topology, see, for example, Johnstone [54]. Already in
1944, McKinsey and Tarski [75] showed that the closure algebras (as
specified by Definition 2.7) give rise to the collection of closed sets of a
topological space, by proving the following representation theorem:

Proposition 2.7. [75]

i) If 〈X, τ〉 is a topological space, then 〈2X , cl〉 is a closure algebra,
called the closure algebra over 〈X, τ〉.

ii) If 〈B, f〉 is a closure algebra, then there is some T1 space 〈X, τ〉
such that 〈B, f〉 is a subalgebra of 〈2X , cl〉.

Dual statements holds for interior algebras and the topological int
operator:

Proposition 2.8.

i) If 〈X, τ〉 is a topological space, then 〈2X , int〉 is an interior
algebra, called the interior algebra over 〈X, τ〉.

ii) If 〈B, g〉 is an interior algebra, then there is some T1 space
〈X, τ〉 such that 〈B, g〉 is a subalgebra of 〈2X , int〉.

2.4.4 Heyting Algebras and Topologies. Another way
of looking at these algebras is via a certain class of lattices: An alge-
bra 〈A,+, ·,⇒,0,1〉 of type 〈2, 2, 2, 0, 0〉 is called a Heyting algebra (or
pseudo–Boolean algebra [89]) if 〈A,+, ·,0,1〉 is a bounded lattice, and
⇒ is the operation of relative complementation: If a, b ∈ A, then

a⇒ b is the largest x ∈ A for which a · x ≤ b.(2.33)

In other words,

a · x ≤ b if and only if x ≤ a⇒ b.(2.34)

If a ∈ A, then its pseudocomplement a∗ is the element a ⇒ 0, i.e.
a∗ is the largest x ∈ A for which a · x = 0. Heyting algebras form
an equational class — i.e. a collection of algebras defined by a set of
universally quantified equations (for details see [89] or [6]). Furthermore,
if 〈B, g〉 is an interior algebra, then the collection O(B) of its open sets
forms a Heyting algebra with ⇒ defined as

a⇒ b = g(−a+ b).(2.35)
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In view of Proposition 2.8 we now have the following Representation
Theorem [75]:

Proposition 2.9. For each Heyting algebra A, there exists a T1 space
X such that A is isomorphic to a subalgebra of the Heyting algebra of
open sets of X.

2.5 Proximity Spaces
Proximities were introduced by Efremovič [34] in the early 1950s. The

intuitive meaning of a proximity ∆ is that x∆y holds for some x, y ⊆ X,
when x is close to y in some sense. Their axiomatisation is very similar
to that of Boolean contact algebra to be discussed in Section 4. The
main source on proximity spaces is the monograph by Naimpally and
Warrack [77].

From the point of view of this investigation proximity spaces play a
very useful role. On the one hand, the proximity approach is close to
that of point set topology, and mappings between proximity spaces and
corresponding topological spaces are well established. On the other hand
the formulation of proximity spaces is based on a binary relation between
point sets, whose meaning can be correlated with the contact relation
that is taken as a primitive in many axiomatic and algebraic approaches
to representing topological relationships between regions (which will be
considered further in Section 3 below). Hence, proximity spaces provide
a link between these axiomatic or algebraic formulations and point-set
topological models of space.

Formally, a binary relation ∆ on the powerset of a set X is called a
proximity, if it satisfies the following axioms for x, y, z ⊆ X:6

(P1) If x ∩ y 6= ∅ then x∆y.

(P2) If x∆y then x, y 6= ∅.

(P3) ∆ is symmetric.

(P4) x∆(y ∪ z) if and only if x∆y or x∆z.

(P5) If x(−∆)y then x(−∆)z and y(−∆)− z for some z ⊆ X.

Definition 2.14. The pair 〈X,∆〉 is called a proximity space.

6Sometimes the term proximity space has been used to include structures that do not satisfy
axiom P(P5) . Those satisfying P(P5) are sometimes called Efremovič proximity spaces
[34].
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Definition 2.15. A proximity is called separated if it satisfies

{α}∆{β} implies α = β(Psep)

Thus, in a separated proximity space, no two distinct singleton sets
are related by the proximity relation.

2.5.1 The Topology Associated with a Proximity Space.

Each proximity space determines a topology on X in the following way:
we take the closure of any set x as the set of all points α, such that {α}
is proximal to x:

cl(x) = {α ∈ X : {α}∆x}.(2.36)

Proposition 2.10. [77]

i) The operation of (2.36) defines the closure operator of a topol-
ogy τ(∆) on X (which is not necessarily T1).

ii) 〈X, τ(∆)〉 is a completely regular space.

iii) If ∆ is separated, then 〈X, τ(∆)〉 is a T1 space.

iv) x∆y if and only if cl(x)∆ cl(y).

A proximity which is relevant to our investigation is the standard
proximity on a normal T1 space X [77]: For x, y ⊆ X, let

x∆y ⇐⇒ cl(x) ∩ cl(y) 6= ∅.(2.37)

Observe that ∆ is separated, since X is T1 and thus, singletons are
closed.

3. Contact Relations
The relation of ‘contact’ is fundamental to the spatial description of

configurations of objects or regions. Contact relations have been stud-
ied in the context of qualitative approaches to geometry going back as
far as the work of [23, 79, 112] and subsequently of [16]. More recently
the idea of considering contact7 relation has been studied in the field
of Qualitative Spatial Reasoning [13, 20, 84, 85, 88, 97] (see also Sec-
tion 5.1 below. This has emerged as a significant sub-field of Knowledge

7In AI and Qualitative Spatial Reasoning, the contact relation is often called ‘connection’.
In the present work we use contact to avoid confusion with the slightly different notion of
‘connection’ employed in topology.
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Representation, which is itself a major strand of research in Artificial
Intelligence.

The contact relation can be seen as a weaker and more fine-grained
cousin of the “overlap relation”, which is straightforwardly defined8 the
“part of” relation. The properties of this relation were first formalised
by Leśniewski [65], as the basic relation of his Mereology [see also 67].

Definition 3.1. A contact relation C is a relation satisfying the follow-
ing axioms:

∀x[ xCx ] Reflexivity,9(C1)
∀xy[ xCy → yCx ] Symmetry,(C2)
∀xy[ ∀z[ zCx ↔ zCy ] → x = y ] Extensionality.(C3)

These axioms correspond to axioms A0.1 and A0.2 given by Clarke
[16] for the mereological part of his calculus of individuals.

Our main interest will be contact relations which are defined on open
or closed sets of a topological space. Primary examples are collections
M of nonempty regular closed (or regular open) sets of some topological
space X.

If we identify regions with elements of RegCl(X), it is natural to define
C as the relation that holds just in case two regions share at least one
point:

xCy ⇐⇒ x ∩ y 6= ∅,(3.1)

Whereas, if our domain of regions is RegOp(X), it is usual to define
C as holding whenever the closures of two regions share a point.

xCy ⇐⇒ cl(x) ∩ cl(y) 6= ∅ .(3.2)

It is easy to see that these interpretations fulfil the contact relation
axioms C1–3. In the sequel, they will be called the standard contact
relations on RegCl(X) and RegOp(X) respectively.

It is often useful to consider contact relations over other, more specific
domains. Take, for example, the set D of all closed disks in the Euclidean
plane, and define C by (3.1). Then, C obviously is a contact relation on
D.

When describing properties of the C relation, it is often convenient
to refer to the set of all regions connected to a given region. Thus, we

8xOy ≡def ∃z[ zPx ∧ zPy ].
9In theories whose domain includes an ‘empty’ region, this axiom is normally weakened to
∀x[x = ∅ ∨ xCx].
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define

C(x) ≡def {y | xCy}(3.3)

In terms of this notation, the extensionality axiom can be stated as:

C(x) = C(y) ⇐⇒ x = y.(3.4)

Many other useful relations can be defined in terms of contact (see
[16, 88] and 5.1 below). A particularly important definable relation is
that which is normally interpreted as the part relation:

xPy ≡def ∀z[ zCx → zCy ](3.5)

This definition (by itself) ensures that P is reflexive and transitive —
i.e. it is a pre-order. And if we assume the extensionality of C (i.e. C3)
it can be proved that P is antisymmetric, so that it must be a partial
order.

The C relation is a very expressive primitive for defining topological
relationships between regions. In terms of C the following useful rela-
tions can be defined. These definitions have been used to define the
relational vocabulary of the well-known Region Connection Calculus,
which will be discussed further in Section 5.1 below.

xPPy ≡def xPy ∧ ¬yPx x is a Proper Part of y(3.6)
xOy ≡def ∃z[zPx ∧ zPy] x Overlaps y(3.7)
xDRy ≡def ¬xOy x is DiscRete from y(3.8)
xDCy ≡def ¬xCy x is disconnected from y(3.9)
xECy ≡def xCy ∧ ¬xOy x is Externally Connected to y(3.10)
xPOy ≡def xOy ∧ ¬xPy ∧ ¬yPx x Partially Overlaps y(3.11)

xEQy ≡def xPy ∧ yPx x is Equal to y10(3.12)
xTPPy ≡def xPPy ∧ ∃z[zECx ∧ zECy]

x is a Tangential Proper Part of y
(3.13)

xNTPPy ≡def xPPy ∧ ¬∃z[zECx ∧ zECy]
x is a Non-Tangential Proper Part of y

(3.14)

xTPPI y ≡def yTPPx
x is an Inverse Tangential Proper Part of y

(3.15)

xNTPPI y ≡def yNTPPx
x is an Inverse Non-Tangential Proper Part of y

(3.16)
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It should be noted that for the defined relations to have their intuitive
meaning, one should not include in the domain a ‘null’ region that is not
connected to any other region. If such a null region is present, it would
be be part of every other region. Consequently xOy would hold for
all x and y and other relations defined in terms of O would also have
un-intuitive interpretations.

Under typical interpretations of the C relation (not including a null
region in the domain), the relations defined by (3.9)–(3.16) form a jointly
exhaustive and pairwise-disjoint partition of possible relations between
any two spatial regions (i.e. every two regions satisfy exactly one of the
relations). This set of eight relations introduced in [88] is often known
as RCC-8, and is widely referred to in the AI literature on Qualitative
Spatial Reasoning (see also section 5.1 below).

3.1 Contact Relation Algebras
If C is taken to be a relation in a relation algebra, the properties C1–3

of the contact relation correspond to the following relation algebraic
conditions:

1′ ≤ C, Reflexivity,(CRA1)
C = C ˘, Symmetry,(CRA2)
[−(C ; − C) ∩ −(C ; − C)˘] ≤ 1′, Extensionality.(CRA3)

Definition 3.2. A relation algebra generated from a single relation C
satisfying conditions CRA1–3 will be called a contact relation algebra
(CRA).

Contact Relation Algebras were introduced and studied in [29], where
many fundamental properties are demonstrated. CRAs provide a rich
language within which many other useful topological relations can be de-
fined. In the relation algebra setting, the part relation has the following
definition:

P ≡def −(C ; − C)(3.17)

Many other relations are relationally definable from C. Indeed all
the relations that were defined above using first-order logic can also be

10In the presence of the extensionality axiom, this is equivalent to simply x = y.
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defined using the algebraic operators of relation algebra:

PP =def P ∩ −1′. proper part of(3.18)
O =def P ˘ ; P overlap(3.19)

DR =def −O discrete(3.20)
DC =def −C disconnected(3.21)
EC =def C ∩ −O external contact(3.22)
PO =def O ∩ −(P ∪ P ˘) partial overlap(3.23)
EQ =def (P ∪ P ˘) (= 1′) equality(3.24)

TPP =def PP ∩ (EC ; EC) tangential proper part(3.25)
NTPP =def PP ∩ −TPP non-tangential proper part(3.26)
TPPI =def TPP ˘ tangential proper part inv.(3.27)

NTPPI =def NTPP ˘ non-tang’l proper part inv.(3.28)

In view of Proposition 2.4, this comes as no surprise, since RAs cap-
ture exactly those first order properties of C that can be expressed with
up to three variables, and this is sufficient for all the definitions given
above.

Depending on the base set, some of these relations might be empty
or coincide. If, for example, B is a BA, and xCy ⇐⇒ x · y 6= 0, then C
coincides with the overlap relation, and EC = ∅. A picture of some of
these relations over the domain D of (non–empty) closed disks is given
in Figure 3.1.

It turns out that the relations

1′, DC, PO,EC, TPP, TPP ˘, NTPP,NTPP ˘(3.29)

are the atoms of the relation algebra Dc generated by C over D, hence-
forth called the (closed) disk relations. (The ‘composition table’ for the
RCC-8 relations over the domain Dc will be given in Table 6.2 below.)

4. Boolean Contact Algebras
While the contact relations of Section 3 did not assume a particular

algebraic structure on the base set, we will often be interested in cases
where the set of regions has further structure; and, in particular, we will
often want to consider the set of regions as having the structure of a
Boolean algebra.

A first order theory intended to model topological properties of re-
gions, the region connection calculus (RCC), has been introduced by
Randell et al. [88] in 1992, and has since gained popularity in the spatial
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Figure 3.1. Topological Relations on the Domain of Closed Discs

reasoning community; we will examine the RCC more closely in Section
5.1. First, we will consider a more general class of structures:

Definition 4.1. A Boolean contact algebra is a pair 〈B,C〉, such that B
is a non–trivial (i.e. 0 6= 1) Boolean algebra, and C is a binary relation
on B+, called a contact relation, with the following properties:

BCA0) aCb⇒ a, b 6= 0

BCA1) a 6= 0 ⇒ aCa

BCA2) C is symmetric.

BCA3) aCb and b ≤ c⇒ aCc (The compatibility axiom)

BCA4) aC(b+ c) ⇒ aCb or aCc (The sum axiom)

While axioms BCA0–4 characterise the properties of Boolean contact
algebras in general, we shall often be interested in BCAs that satisfy
additional axioms. In particular, we shall be interested in the following
axioms:

BCA5) C(a) ⊆ C(b) ⇒ a ≤ b (Extensionality)
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a b

c

Figure 4.2. Illustration of the Interpolation Axiom

BCA6) a(−C)b⇒ (∃c)[a(−C)c and − c(−C)b] (Interpolation)

BCA7) a 6∈ {0,1} ⇒ aC − a (Connection)

A BCA which satisfies BCA5 and BCA7 will be called an RCC alge-
bra, since these axioms are satisfied by the 1st-order Region Connection
Calculus theory proposed by [88] (which will be considered in further
detail in Section 5.1 below).

Clearly, C is a contact relation in the sense of Section 3, and therefore,
all relations specified by the definitional formulae (3.5)–(3.14) are at our
disposal. It is easy to see that

BCA5 ⇐⇒ P is the Boolean order,(4.1)
BCA6 ⇐⇒ ∀(x, y)(∃z)[xNTPPz ∧ zNTPPy],(4.2)
xOy ⇐⇒ x · y 6= 0.(4.3)

Simple structural properties include

Proposition 4.1. Let 〈B,C〉 be a BCA.

i) [31] O is the smallest contact relation on B.

ii) [31] If B is a finite–cofinite algebra, then O is the only contact
relation on B.

iii) [30] If C satisfies BCA7, then B is atomless.

4.1 Interpretations of BCAs
As intended, the regions and relations of the BCA theory can be

interpreted in terms of classical point-set topology. In fact, there are
two dual interpretation that are equally reasonable.

Closed Interpretation:

• A region is identified with a regular closed set of points.

• Regions are connected if they share at least one point.
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• Regions overlap if their interiors share at least one point.

Open Interpretation:

• A region is identified with a regular open set of points.

• Regions are connected if their closures share at least one point.

• Regions overlap if they share at least one point.

The axioms for C translate into topological properties as follows:

Proposition 4.2 (Properties of standard contact on a topological space).
[32] Suppose that 〈X, τ〉 is a topological space, and that Cτ is the stan-
dard contact relation on RegCl(X).

i) Cτ satisfies BCA0–4.

ii) Cτ satisfies BCA5 if and only if X is weakly regular.

iii) Cτ satisfies BCA6 if and only if X is weakly normal.

iv) Cτ satisfies BCA7 if and only if X is connected.

In fact the BCA axioms are also satisfied by dense subalgebras of
RegCl(X). Hence, proposition 4.2 can be generalised:

Proposition 4.3. Suppose that 〈X, τ〉 is a topological space, and that Cτ

is the standard contact relation on some dense sub-algebra of RegCl(X);
then each of the clauses i–iv of proposition 4.2 are true for Cτ .

The preceding propositions give us many examples of BCAs. We
would like to mention a countable example of a BCA which is, in some
sense, one dimensional; in particular, this algebra is not complete.11

Suppose that L is the ordered set of non–negative rational numbers
enhanced by a greatest element ∞. Let B be the collection of all finite
unions of left–closed, right–open intervals of L, together with the empty
set. It is well known [61] that B is a Boolean subalgebra of 2L, called the
interval algebra of L, and that each a ∈ B+ has a unique representation
as

a = [x0, y0) ∪ . . . ∪ [xn, yn),(4.4)

where x0 � y0 � x1 � y1 � . . . � xn � yn. The set {xi : i ≤ n} ∪ {yi :
i ≤ n} is called the set of relevant points of a, denoted by rel(a). If we

11I.e. it does not contain infinite sums of its elements.
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define C on B+ by

aCb⇐⇒ (a ∩ b) ∪ (rel(a) ∩ rel(b)) 6= ∅,(4.5)

then 〈B,C〉 is a BCA which satisfies BCA6 and BCA7 [31]; other
constructions of countable BCAs can be found in [70]. In Sections 5 and
5.1 we will present BCAs arising from spatial theories.

We now exhibit some constructions that allow us to obtain new BCAs
from old (these were described in [31]):

Proposition 4.4 (Adding an ultra-contact). Given any atomless BCA
〈B,C〉 it is possible to augment the connection relation by picking any
two ultrafilters F and G of the algebra and stipulating that C(f, g) for
any two regions f and g, where f ∈ F and g ∈ G. In formal terms this
means that 〈B,C ′〉 is a BCA where

C ′ = C ∪ (F ×G) ∪ (G× F ) .(4.6)

More generally, for a contact relation C, let RC = {〈F,G〉 : F ×
G ⊆ C}, and, for a reflexive and symmetric relation R on Ult(B), set
CR =

⋃{F ×G : 〈F,G〉 ∈ R}.
Proposition 4.5. 1 [28] CR satisfies BCA0–4.

2 [33] If R is a reflexive and symmetric relation on Ult(B) which is
closed in the product topology of Ult(B)×Ult(B), then CR satisfies
BCA0–4.

3 [33] The collection of all relations on B that satisfy BCA0–4 can
be made into an atomistic complete co–Heyting algebra in which
join is set union.

Proposition 4.6 (Restriction and Extension with respect to a Dense
Subalgebra). If A is a dense subalgebra of B, then the restriction of C
to A is a contact relation on A which satisfies BCA7 if B does.

If B is a dense subalgebra of A, then the relation C ′ defined on A by

aC ′b⇐⇒ (∀s, t ∈ B)[a ≤ s and b ≤ t⇒ sCt]

is a contact relation on A, and, if C satisfies BCA7, so does C ′. Fur-
thermore, C ′ is the largest contact relation on A whose restriction to B
is C.

4.2 Representation Theorems for BCAs
Theorems that characterise the class of models of a given axiomatic

theory are know as representation theorems. In most cases, such theo-
rems are sought after for one (or both) of the following reasons:



30

a) to find an axiomatisation for a given class of structures,

b) to show that a given axiom system is complete for an intended
class of models.

Famous representation results include Cayley’s theorem that every group
is isomorphic to a group of permutations, and Stone’s theorem which
shows that each Boolean algebra is isomorphic to an algebra of sets. If
an axiom system has models outside an intended class of models, the
existence of such non-standard models shows that the system is incom-
plete with respect to that intended class. In the sequel, we will exhibit
both positive and negative representation results for contact relations in
topological spaces.

Apart from the earlier topological representation results of Roeper
[93] and Mormann [76], which do not result in the standard topological
contact, the first “standard” representation result for a class of contact
algebras was discovered by Vakarelov et al. [106]. It utilises the theory of
proximity spaces which have been briefly described in Section 2.5. Sub-
sequently, making use of similar techniques, topological representation
results were obtained for BCAs [32].

4.2.1 Constructing a Topology to Represent a BCA.
The proof of the representation result takes a form similar to that of
Stone’s theorem. The plan is to devise a way to use the elements of
a BCA to construct entities that can be correlated with points in a
topological or proximity space. However, instead of taking ultrafilters as
the base set for the topology (as is done in Stone’s theorem), a somewhat
different construction is required to generate suitable sets of regions that
can be identified with ‘points’ in a proximity space or topological model.

We begin with the following definition:

Definition 4.2. A non–empty subset Γ of B is called a clan if, for all
x, y ∈ B, we have:

CL1) If x, y ∈ Γ then xCy.

CL2) If x+ y ∈ Γ then x ∈ Γ or y ∈ Γ.

CL3) If x ∈ Γ and x ≤ y, then y ∈ Γ.

A clan can be regarded as a set of regions which share at least one
point of mutual contact. The difference from a Boolean filter arises be-
cause regions may share a point of contact even though their intersection
is empty. Moreover, as is illustrated in Figure 4.3, even where regions do
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b c

Figure 4.3. Illustration of why clans are not closed under intersection.

have a non-empty intersection, the regions may have a point of contact
that is not in this intersection.

Definition 4.3. A clan Γ that is maximal (i.e. there is no clan Γ′ such
that Γ ( Γ′) will be called a cluster. The set of all clusters in B will be
denoted by Clust(B). Clearly, every clan is contained in some cluster.

Since clusters will represent points in a topological space, each region
will be associated with a set of clusters. Hence, to construct the topolog-
ical representation of a BCA, we need to find a suitable mapping from
the elements of the BCA to sets of clusters. Again the construction is
similar to that used in the Stone theorem.

We define a mapping h : B → 2Clust(B) by

h(a) = {Γ ∈ Clust(B) : a ∈ Γ},(4.7)

In [32] it was shown that for any BCA with domain B, we can specify
a topology 〈Clust(B), τB〉, determined by h. This is done by taking
{h(x) : x ∈ B} as a basis for the closed sets of 〈Clust(B), τB〉. In other
words the open sets τB are arbitrary unions of sets whose complements
are in the range of h:

τB =
{ ⋃

{Clust(B)\h(x) : x ∈ S} : S ⊆ B
}

Lemma 4.1. The following properties of 〈Clust(B), τB〉 were demon-
strated in [32]:

i) The range of h(x) for x ∈ B is a dense subalgebra AB of the
regular closed algebra over 〈Clust(B), τB〉.

ii) h preserves the Boolean structure of B in AB (i.e. h is a
Boolean homomorphism from B to AB).
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iii) For all a, b ∈ B, aCb if and only if h(a) ∩ h(b) 6= ∅.

iv) 〈Clust(B), τB〉, is a weakly regular T1 topology (which is not
necessarily T2),

Together, these properties give us the following representation theo-
rem:

Proposition 4.7. Each BCA 〈B,C〉 is isomorphic to a dense substruc-
ture of some regular closed algebra 〈RegCl(X), Cτ 〉, where τ is a weakly
regular T1 topology, and C is the restriction of Cτ to B.

Moreover, from propositions 4.2 and 4.3, we immediately have the
following result which tells us that the correspondence is bijective:

Proposition 4.8. If 〈X, τ〉 is a weakly regular T1 space, and B is a
dense subalgebra of RegCl(X) with C being the restriction of the standard
contact on RegCl(X), then 〈B,C〉 is a BCA.

As a consequence of this result we obtain

Proposition 4.9. The axioms of BCAs are complete with respect to
the class of substructures of regular closed algebras of weakly regular T1

spaces with standard contact.

4.2.2 The Extensionality Axiom.
The theorems stated in the last section concern BCAs satisfying the
axioms BCA0–5 — i.e. the general BCA theory together with the ex-
tensionality axiom. For certain purposes, in particular the modelling
of discrete space, one may wish to remove the extensionality condition
[41]. The resulting very general BCAs will not be considered further
here; however, a representation theorem (in terms of atomic algebras
over proximity spaces) is given in [28].

4.2.3 The Connection Axiom.
The connection axiom, BCA7, states that every region, except 0 and 1,
is connected to its own complement:

a 6∈ {0,1} ⇒ aC − a

Suppose BCA7 is false for an RCA with domain B; then there are
regions a, b ∈ B such that a, b 6= 0, a + b = 1 and a − Cb. Because the
mapping h preserves Boolean identities and the contact relation, we must
have regular closed regions h(a) and h(b) in 〈Clust(B), τB〉 such that
h(a) + h(b) = Clust(B) and h(a) ∩ h(b) = ∅. Therefore, 〈Clust(B), τB〉
must be a disconnected space.
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Conversely, it can be shown that if 〈Clust(B), τB〉 is a connected topo-
logical space, then the BCA, B must satisfy the axiom BCA7. This is
a bit more difficult to demonstrate12 but is proved in [32, 32]. Thus
we have the following representation theorem for RCC algebras — i.e.
BCAs satisfying axioms BCA0–5 and BCA7:

Proposition 4.10. The axioms for RCC algebras are complete with re-
spect to the class of substructures of regular closed algebras of connected
weakly regular T1 spaces with standard contact.

4.2.4 Saturated Clusters and the Interpolation Axiom.
We now consider the effect of the Interpolation axiom BCA6. Recall
that this is the condition

x(−C)y ⇒ (∃z)[x(−C)z ∧ − z(−C)y] .

This is a separation condition ensuring that for any two disconnected
regions in the algebra, we can find a third region disconnected from the
first and including the second as a non-tangential part.

We shall later see that we can establish a correspondence between
BCAs satisfying BCA6 and proximity spaces. In order to do this we
show that in the presence of this condition, the clusters derived from
the algebra exhibit a property called saturation, which results leads to
a natural ‘well-behaved’ structure of the set of clusters.

Definition 4.4. A clan is called saturated iff it satisfies the following
condition:

(P) If xCy for every y ∈ Γ, then x ∈ Γ.

If a clan Γ over B is saturated then for any x ∈ B such that x 6∈ Γ
there is some y ∈ Γ such that ¬(xCy). Therefore, Γ ∪ {x} is not a clan.
So Γ must be a maximal clan. Thus we have the following lemma [32]:

Lemma 4.2. Every saturated clan is a cluster.

In formulating the proximity representation theorem for BCAs, clus-
ters corresponding to saturated clans will be will be taken as the points
of a proximity space. Thus we use the following terminology:

Definition 4.5. A cluster that is a saturated clan will be called a prox-
imity cluster, or more briefly a p-cluster.

12Since elements of the BCA form only a dense subalgebra of RegCl(〈Clust(B), τB〉), we
cannot necessarily associate an arbitrary regular closed subset of Clust(B) with an element
of the BCA from which the topology was constructed. This means that mapping topological
constraints to BCA axioms often requires detailed analysis of the cluster construction.
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Intuitively, each p-cluster can be interpreted as the set of all regions
in the BCA that contain a particular point in a corresponding proximity
space. However, for BCAs in general, not every cluster need be a p-
cluster. The following example of a BCA which includes clusters that
are not p-clusters is given in [32]:

Suppose that B is the interval algebra whose elements are finite unions
of left closed, right open intervals, [x, y) on the rational unit interval
[0, 1). Let C(i, j) hold between elements just in case their closures share
a point. Now, let a, b be points such that 0 < a < b < 1. If Fa is
the ultrafilter of B of all sets containing a, and Fb is the ultrafilter of
B of all sets containing b, then, by Proposition 4.4, the relation C ′ =
C ∪ (Fa × Fb) ∪ (Fb × Fa) is a contact relation over B, and it can be
shown that Γ = Fa ∪ Fb is a cluster. However, if s � a � t � b, and
x = [s, a)∪ [t, b), then {x}×Γ ⊆ C ′ (i.e. x is connected to every member
of Γ). But, neither [s, a) nor [t, b) is in Γ, so (because clans must satisfy
CL2) we must have x 6∈ Γ.

Let us see how this anomaly arose. By adding the ultra-contact be-
tween points a and b we stipulated that every region containing point a
is in the C ′ contact relation with every region containing point b. But,
in this algebra, contact also holds between regions that do not share
a point, but whose closures share a point. However, the relation C ′
does not necessarily hold between intervals i, j such that the closure of
i includes a and the closure of j includes b. This mismatch leads to a
kind of discontinuity in the contact relation C ′ relative to the underlying
topology of the interval algebra.

Lemma 4.3. [32] If 〈B,C〉 satisfies BCA6, then each cluster is a p-
cluster.

In order to see why BCA6 ensures that all clusters are saturated we
first give another useful lemma:

Lemma 4.4. For every region r and cluster Γ, r ∈ Γ if and only if
for any set of regions S = {r1, . . . , rn} such that r ≤ r1 + . . .+ rn, there
is a region ri ∈ S such that (∀x ∈ Γ)[riCx].

Proof Sketch: Since clusters are maximal clans then, for any cluster Γ,
if Γ ∪ {r, . . .} satisfies CL1–3 then r ∈ Γ. Moreover, to show that r ∈ Γ
it suffices to show that Γ∪{r} satisfies CL1-2, since then Γ∪{x : x ≥ r}
clearly satisfies CL1-3. It can be shown that Γ∪{r} satisfies CL1-2 just
in case for every sum (r1 + . . .+ (rn + rn+1)) = r there is some ri such
that (∀x ∈ Γ)[xCri], and this implies the lemma.

Using this, we can prove Lemma 4.3 as follows:
Proof: Let 〈B,C〉 be a BCA satisfying BCA6. Let Γ be a cluster
derived from this algebra and r a region such that ∀x ∈ Γ[xCr]. Suppose,
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in contradiction to Lemma 4.3 that r 6∈ Γ. Then, by Lemma 4.4, there
are r1, . . . , rn, with r ≤ r1 + . . .+ rn, such that for each ri there is some
xi ∈ Γ with ri −Cxi. Then by BCA6 there are regions s1, . . . , sn, such
that si − Cxi and ri − C − si (so each si contains ri and separates it
from xi). Let s = s1 + . . . + sn. Thus r − C − s. Now pick any region
y ∈ Γ. Clearly y = y1 + . . . + yn + z, where yi = y · si and z = y · −s.
Because of CL2 we must have either z ∈ Γ or some yi ∈ Γ. But since
yi = y · si and si − Cxi we have yi − Cxi; so yi 6∈ Γ (because of CL1 ).
Thus we must have z ∈ Γ. However, since z = y · −s, we have z ≤ −s
and because r−C − s we have r−Cz. But this contradicts the premiss
that ∀x ∈ Γ[xCr]. Hence the supposition that r 6∈ Γ is impossible, so we
have proved Lemma 4.3.

4.2.5 Representation in Proximity Spaces.
As noted above, in Section 2.5, proximity spaces form a useful inter-
mediary between topological spaces and axiomatic theories based on a
contact relation, which has analogous properties to the proximity rela-
tion. Indeed contact can be regarded as a limiting case of proximity.

The theory of proximity spaces and their relation to topological spaces
has been developed in detail in the seminal work of Naimpally and War-
rak [77]. This analysis makes heavy use of a notion of cluster, which
is very similar to (and was the inspiration for) the cluster construct for
BCAs given above. Because proximity spaces satisfy axiom (P5) , the
clusters employed in [77] are saturated. Hence, in the case of BCAs sat-
isfying BCA6, many of the results of [77] can be used to demonstrate
correspondences between BCAs, proximity spaces and topologies.

We first consider how we can derive a BCA from a proximity space:

Proposition 4.11. Let 〈X,∆〉 be a proximity space with associated
topology τ(∆), and RegCl(X) be the regular closed subsets of X ac-
cording to the topology τ(∆). Then the algebra 〈RegCl(X),∆〉 is a BCA
called the proximity connection algebra over 〈X,∆〉.

Definition 4.6. 〈RegCl(X),∆〉 is called a standard proximity connec-
tion algebra, if

x∆y iff x ∩ y 6= ∅, for all x, y ∈ RegCl(X).

For our purposes, it suffices to consider only standard connection al-
gebras. This is because of the following theorem:

Proposition 4.12. [106] Each proximity connection algebra is isomor-
phic to a standard proximity connection algebra.
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It follows immediately from the proximity axioms and the BCA ax-
ioms, that each standard proximity connection algebra is a BCA that
satisfies the interpolation axiom BCA6 (corresponding to the proxim-
ity axiom (P5) ). We will demonstrate in the remainder of this Section
that, conversely, each BCA which satisfies BCA6 can be embedded into
a standard proximity connection algebra.

Given a BCA, 〈B,C〉, satisfying BCA6, our aim is to define a prox-
imity on Clust(B). As with the representation in a topological space,
the proximity space construction will again make use of clusters to rep-
resent points in the proximity space. Hence, each subset of the space
will correspond to a set of clusters.

Since a cluster is interpreted as the set of regions containing a given
point, the intersection of two clusters is the set of regions containing two
points. More generally, given a set X of clusters representing a set of
points, the common intersection

⋂
X will be the set of all regions that

contain all those points. Using this idea, we can for any BCA define a
proximity relation between pairs of cluster sets, which corresponds to
the contact relation of the BCA:

Definition 4.7. For any BCA, 〈B,C〉 that satisfies BCA6, we define
a proximity relation over Clust(B) in the following way:
for each X,Y ⊆ Clust(B)

(∆rep) X∆BY iff (∀x, y ∈ B)[x ∈
⋂
X and y ∈

⋂
Y imply xCy].

Using this construction, the following lemma can be proved [105]:13

Lemma 4.5. [77] 〈Clust(B),∆B〉 is a separated proximity space.

Thus, the construction of clusters together with the definition of a
proximity relation on sets of clusters enables us to derive a proximity
space from any BCA satisfying BCA6. The structure 〈Clust(B),∆B〉
can be regarded as a canonical representation of the BCA B in terms of
a (separated) proximity space.

As with the topological representation, the correspondence between
the regions of the original BCA and subsets of the derived proximity
space can be specified by a function h : B → 2Clust(B), defined by h(a) =
{Γ ∈ Clust(B) : a ∈ Γ}. This mapping both preserves the Boolean
structure of the BCA and also associates the contact relation of the
BCA with the proximity relation of the proximity space.

13The proof of this is based on [77]
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We have now shown that each BCA 〈B,C〉 is isomorphic to a stan-
dard proximity algebra over the proximity space 〈Clust(B),∆B〉. In
Section 2.5.1 we saw that each proximity space is associated with a
corresponding topology and the properties of this topology were charac-
terised by Proposition 2.36. This means that we can use the proximity
space derived from a BCA to define a corresponding topological space.
This gives us the following topological representation theorem for BCAs
satisfying the interpolation axiom:

Proposition 4.13. [106] Each BCA which satisfies BCA6 is isomor-
phic to a substructure of the regular closed algebra of a completely regular
T1 space X with standard contact as defined by (3.1). Furthermore, X
is connected if and only if C satisfies BCA7.

It should be noted that not every completely regular T1 space is the
representation space of a BCA which satisfies BCA6, since these spaces
must be weakly normal (see Proposition 4.2–3), and there are spaces
that are completely regular T1, but not weakly normal [96]. We have,
however:

Corollary 4.14. The BCA axioms BCA0–6 are complete with respect
to the class of substructures of regular closed algebras of weakly normal
T1 spaces with standard contact.

Corollary 4.15. The BCA axioms BCA0–7 are complete with respect
to the class of substructures of regular closed algebras of weakly normal
connected T1 spaces with standard contact.

5. Other Theories of Topological Relations

5.1 The Region Connection Calculus
The Region Connection Calculus (RCC) of Randell et al. [88] is an

axiomatisation of certain spatial concepts and relations in classical 1st-
order predicate calculus. It has become widely known in the field of
Qualitative Spatial Reasoning, a research area within the Knowledge
Representation filed of Artificial Intelligence. There is some variation in
the full set of axioms used for the RCC theory. The formal apparatus
of the original theory is complicated by the use of the many-sorted logic
LLAMA [18] and the use of a non-standard definite description operator
(ιx[ϕ(x)]). This makes it difficult to make a direct comparison with the
algebraically based theories presented in the current paper.

The RCC theory is based on a primitive relation C, which is in this
context normally called the connection relation. This is axiomatised to
be reflexive (C1) and symmetric (C2). The extensionality axiom (C3)
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is not given in the original RCC theory [88] and does not strictly follow
from the other axioms (see [10, 97]). However, the theory does con-
tain definition 3.12 for the EQ relation; and, if (as seems to have been
assumed in some subsequent development of RCC) this is taken as coin-
ciding with logical equality, then C3 also holds. With this assumption,
we have a contact relation in the sense defined in Section 3.

The RCC theory introduces further relations by means of the defini-
tions (3.5)–(3.16) given above (Section 3), which include of course the
RCC-8 relation set. The following axiom is given stipulating that every
region has a non-tangential proper part:

RCC1) ∀x∃y[yNTPPx]

However, as shown in [30], this follows from the other axioms, if we
assume the extensionality axiom C3.

RCC also incorporates a constant denoting the universal region, a sum
function and partial functions giving the product of any two overlapping
regions and the complement of every region except the universe. With
slight modification to the original to replace the partial product and
complement functions with relations, these are defined as follows:

RCCD1) x = U ≡def ∀y[xCy]

RCCD2) x = y + z ≡def ∀w[wCx ↔ [wCy ∨ wCz]]
RCCD3) Prod(x, y, z) ≡def ∀u[uCz ↔ ∃v[vPx ∧ vPy ∧ uCv]]

RCCD4) Compl(x, y) ≡def ∀z[(zCy ↔ ¬zNTPPx)∧(zOy ↔ ¬zPx)]

It should be noted that within the original RCC theory there is no such
thing as a null (or empty) region. Thus there is no product of discrete
regions or complement of the universal region. This means we do not
have a full Boolean algebra of regions; but, in order that appropriate
regions exist to fulfil the requirements of the quasi-Boolean structure
suggested by the above definitions, the basic RCC theory should be
supplemented with the following existential axioms:

RCC2) ∀xy[xOy → ∃z[Prod(x, y, z)]

RCC3) ∀x[¬(x = U) ↔ ∃y[Compl(x, y)]

The many-sorted formalisation of RCC and the choice to exclude the
‘null region’ from the domain of regions was motivated partly by a de-
sire to accord with ‘commonsense’ notions of spatial reality (influenced
by e.g. [49]) and partly by wanting to improve the effectiveness of au-
tomated reasoning using the calculus. However, from the point of view
of establishing properties of the formal system, it has been found that
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the lack of a null region is problematic since it considerably complicates
the comparison with standard mathematical structures such as Boolean
algebras. Hence, subsequent investigations (e.g. [29, 97]) have often
modified the original theory by introducing a null region so that the
theory can be built upon a domain that has the basic Boolean algebra
structure.

Once the null region has been added, it is clear that the models of
the revised RCC theory will be BCAs (as defined by Definition 4.1).
Moreover, given the RCC axioms, it can be proved that every region is
connected to its complement:

∀xy[Compl(x, y) → xCy](5.1)

This corresponds to the BCA property BCA7. In fact any model of the
RCC axioms modified to include the null region correspond to a BCA
satisfying this property:

Lemma 5.1. An RCC model is an RCC algebra, i.e. a BCA 〈B,C〉
which satisfies BCA7.

This correspondence enables us to use connected BCAs as an algebraic
counterpart to the 1st-order RCC axioms. An another algebraic analysis
of the RCC theory, employing a somewhat weaker axiomatisation, is
given in [97].

5.2 The 4 and 9 Intersection Representations
The 4 and 9 Intersection representations were originally described by

Egenhofer and Franzosa [36, 37] as a means of representing relationships
between geographic regions. The approach is based on the idea of inter-
preting regions as point sets and characterising binary spatial relations
in terms of topological constraints on these sets. The originators suggest
that the representation should be applied to Jordan curve bounded re-
gions in the plane (i.e. regions that are homeomorphic to (closed) discs);
however, there is no reason why it could not be applied more generally
to regular closed subsets of a topological space.

In the 4-intersection representation the idea is to consider the inter-
section of the boundary and interior of one region with the boundary and
interior of another. Thus, for regions A and B, we consider ∂(A)∩∂(B),
∂(A)∩ int(B), int(A)∩∂(B), int(A)∩ int(B), and we determine whether
or not these intersections are empty (denoted ∅) or non-empty (denoted
¬∅). The determined values are naturally represented by a 2x2 matrix,
as shown in Table 5.1.
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∩ ∂(B) int(B)
∂(A) ¬∅ ∅
int(A) ∅ ¬∅

∩ ∂(B) int(B)
∂(A) ¬∅ ¬∅
int(A) ¬∅ ¬∅

1′ PO

∩ ∂(B) int(B)
∂(A) ∅ ¬∅
int(A) ∅ ¬∅

∩ ∂(B) int(B)
∂(A) ¬∅ ¬∅
int(A) ∅ ¬∅

NTPP TPP

∩ ∂(B) int(B)
∂(A) ∅ ∅
int(A) ∅ ∅

∩ ∂(B) int(B)
∂(A) ¬∅ ∅
int(A) ∅ ∅

DC EC

∩ ∂(B) int(B)
∂(A) ∅ ∅
int(A) ¬∅ ¬∅

∩ ∂(B) int(B)
∂(A) ¬∅ ∅
int(A) ¬∅ ¬∅

NTPP˘ TPP˘

Table 5.1. Topological relations definable using the 4-intersection representation.

By reference to Figure 3.1 (in Section 3 above), it is easy to see that
the base relations of the closed circle algebra can be described by this
4-intersection model [36].

An approach which extends the 4-intersection model also takes into
account the complement of the sets in question, and can be described
by the following matrix:




int(x) ∩ int(y) int(x) ∩ ∂(y) int(x) ∩ −y
∂(x) ∩ int(y) ∂(x) ∩ ∂(y) ∂(x) ∩ −y
−x ∩ − int(y) −x ∩ ∂(y) −x ∩ −y




While the 4–intersection model described the topological invariant rela-
tions among closed Jordan curves, the 9–intersection model is able to
describe such relations for sets, which have arbitrary shaped interiors,
including lines and points. Details can be found in [37].

Thus we see that the 9-intersection representation, based on a point-
set interpretation of regions characterises exactly the same set of basic
binary relations as the axiomatic RCC theory. This of course is not
surprising given the correspondences between axiomatic algebras and
topological spaces characterised by the representation theorems given in
Section 4.2.

6. Reasoning about Topological Relations
The foregoing sections have defined a rich array of formal frameworks

for representing topological relationships between regions. We now look
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as ways in which these representations can be employed to make infer-
ences about topological configurations of regions.

6.1 Compositional Reasoning
Compositional inference may be described in general terms as a de-

duction, from two relational facts of the forms aRb and bSc, of a re-
lational fact of the form aTc, involving only a and c. Such inferences
may be useful in their own right or may be employed as part of a larger
inference mechanism, such as a consistency checking procedure for sets
of relational facts. In either case, one will normally want to deduce
the strongest relation aTc that is entailed by aRb ∧ bSc and which is
expressible in whatever formalism is being employed.

In first-order logic we can directly express the strongest fact derivable
from aRb ∧ bSc by the formula a(R;S)b, where the ; operator is defined
by:

(6.1) x(R;S)y ≡def ∃z[xRz ∧ zSy]

Hence, the meaning of ‘;’ coincides with that of composition in Binary
Relation Algebras (as defined in Section 2.3). This may be called the
strong composition operator. It is also often called the extensional com-
position, because, if we know that x and y stand in a relation equivalent
to R;S, we can infer the existence of an entity z, such that xRz and
zSy.

As a means of practical reasoning, inferring strong compositions in
an expressive language such as 1st-order logic may not be very effective
as the formulae generated will in general be more complex than the
initial formulae and no more informative. However, if it is found that
for a certain set of relation, every formula derived by compositional
inference is equivalent to some relatively simple formula (preferably a
single relation of the language or perhaps a disjunction of relations)
then compositional inference may be a very powerful rule.

In the case of the Allen calculus based on 13 basic temporal interval
relations [2], it turns out that (under a very natural interpretation in
terms of intervals on the rational line) the extensional compositions of
any pair of base relations correspond to some disjunction of the basic 13
relations. Hence, composition can be applied without generating more
complex relations.

It has been found that in cases where the strong, extensional compo-
sition cannot be simply expressed, it is useful to generalise the notion
of composition to allow weaker inferences. In particular the following
notion is often used:
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Definition 6.1. Given a theory Θ whose vocabulary includes a set Rels
of relations, the weak composition, WComp(R,S), where R,S ∈ Rels is
defined to be: the disjunction of all relations Ti ∈ Rels, such that there
exist individual constants a, b, c, where the formula R(a, b) ∧ S(b, c) ∧
Ti(a, c) is consistent with Θ.

This means that if WComp(R,S) = T1 ∪ . . . ∪ Tn then

(6.2) Θ |= ∀x∀y∀z[xRy ∧ ySz → (xT1z ∨. . .∨ xTnz)]

and, furthermore, T1 ∪ . . . ∪ Tn is the smallest subset of Rels for which
such a formula is provable. Moreover, it is easy to show that R ◦ S is
always a sub-relation (or equivalent to) WComp(R,S).

Given this definition, inferences of the following form will always be
valid:

(6.3)

R(a, b) ∧ S(b, c) ∧ T (a, c)
[WComp]

(WComp(R,S) ∩ T )(a, c)

For a finite set of relations, WComp(R,S) can be pre-computed for
every pair of relations and stored in a matrix known as a composition
table. This provides a simple mechanism for computing compositional
inferences by looking up compositions in the table. The typical mode by
which this kind of compositional reasoning is executed is to repeatedly
infer compositional inferences using table look-up until either an incon-
sistency is detected or no new inferences can be made. Since their intro-
duction by [2], composition tables14 have received considerable attention
from researchers in AI and related disciplines [21, 35, 39, 87, 94, 109].

Table 6.2 is usually called The Composition Table for the RCC-8 re-
lations. (The identity relation is omitted from the table since it is clear
how composition with 1′ works.) In general, the table gives the weak
composition of the RCC-8 relations. This is because over many domains
(e.g. over regular closed sets of an arbitrary topological space) the al-
gebra is not atomic, so that compositional combinations of the RCC-8
relations generate an infinite set of different relations, many of which are
not expressible as disjunctions of the RCC-8 generating set.

Nevertheless, there are some more restricted interpretations under
which the RCC-8 relations are indeed the atoms of an RA (so that every
relation in the algebra is a disjunction of these relations). One simple

14In fact Allen called his table a ‘transitivity table’ but ‘composition table’ is arguably more
appropriate and it seems that this is becoming the standard term.
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example is the case where the domain of regions is the set Dc of closed
circles in the plain (with the usual interpretation of the relations) as
depicted in Figure 3.1. In the case where the domain is taken as the
Jordan curve bounded regions of the plane, the table also corresponds
to extensional composition [68, 69].

It needs to be mentioned, that the RCC-8 relations are never the
atoms of an RA generated by C over an RCC algebra [26], thus the
composition table is not extensional for such algebras. For instance the
composition table shows that WComp(EC,EC) = 1′∪DC∪EC∪PO∪
TPP ∪ TPP ˘ . If this were extensional, it would mean that for any
regions a, b, such that aECb we could find a third region c such that
aECc and cECb. However, suppose a = −b, then there can be no
region in the relation EC to both a and b.

Table 6.2. The composition table of Dc

C

O
; DR

PP PP˘

DC EC PO TPP NTPP TPP˘ NTPP˘

DC 1 DR, PO,

PP

DR, PO,

PP

DR, PO,

PP

DR, PO,

PP

DC DC

EC DR, PO,

PP˘
1’, DR,

PO, TPP

TPP˘

DR, PO,

PP

EC, PO,

PP

PO, PP DR DC

PO DR, PO,

PP˘
DR, PO,

PP˘
1 PO, PP PO, PP DR, PO,

PP˘
DR, PO,

PP˘

TPP DC DR DR, PO,

PP

PP NTPP 1’, DR,

PO, TPP,

TPP˘

DR, PO,

PP˘

NTPP DC DC DR, PO,

PP

NTPP NTPP DR, PO,

PP

1

TPP˘ DR, PO,

PP˘
EC, PO,

PP˘
PO, PP˘ 1’, PO,

TPP,

TPP˘

PO, PP PP˘ NTPP˘

NTPP˘ DR, PO,

PP˘
PO, PP˘ PO, PP˘ PO, PP˘ O NTPP˘ NTPP˘

6.2 Equational Reasoning
In Section 2.4.3 we looked at the algebraic characterisation of topo-

logical spaces in terms of Closure Algebras and their complementary
Interior Algebras. Since these algebras can be defined by purely equa-
tional axioms, this representation suggests that it should be possible
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to use some form of equational inference to reason about topological
relationships among regions.

In general (according to Proposition 2.7) the elements of a closure
can correspond to arbitrary subsets of a topological space. However,
in order that the domain of regions be compatible with the topological
interpretations of region-based axiomatic theories (such as the BCAs
discussed in Sections 4.1 and 4.2), we will often want to identify and
reason about either regular open or regular closed sets. In the first case
one should assert an equation x = int(cl(x)) for each region variable x;
and in the second case one should assert x = cl(int(x)). In either case
we can define a large vocabulary of relations in terms of equations of an
interior/closure algebra .

If we are dealing with regions corresponding to regular closed sets then
the following definitions of binary topological relations can be given:

xDCy ⇐⇒ −(x · y) = 1(6.4)
xDRy ⇐⇒ −(int(x) · int(y)) = 1(6.5)
xPy ⇐⇒ −x+ y = 1(6.6)

xP ˘y ⇐⇒ x+−y = 1(6.7)

xNTPy ⇐⇒ −x+ int(y) = 115(6.8)
xNTP ˘y ⇐⇒ int(x) +−y = 1(6.9)

xEQy ⇐⇒ x = y(6.10)

But C itself (as well as many other relations, including O) cannot be
defined by an interior algebraic equation. This follows from the general
observation that purely equational constraints are always consistent with
any purely equational theory (there must always be at least a trivial one-
element model, in which all constants denote the same individual). Thus
if the negation of some constraint can be expressed as an equation, then
the constraint itself cannot be equationally expressible (otherwise that
constraint would be consistent with its own negation).

So to define C (and O) we need to employ disequalities:

xCy ⇐⇒ −(x · y) 6= 1(6.11)
xOy ⇐⇒ −(int(x) · int(y)) 6= 1(6.12)

Moreover, all the RCC-8 relations can be defined by some combina-
tion of equations given in (6.5)–(6.10) and negations of these equations.
Those not already specified, can be defined as follows:

15The extension of NTP coincides with NTPP , except that 1NTP1 is true.



Axioms, algebras, and topology 45

xECy ⇐⇒ (−(x · y) = 1) ∧ (int(−x) + int(−y) 6= 1)(6.13)
xPOy ⇐⇒ (−(x · y) 6=1) ∧ (−x+ y 6=1) ∧ (x+−y 6=1)(6.14)

xTPPy ⇐⇒ (−x+ y = 1) ∧ (x 6=y) ∧ (int(−x) + y 6= 1)(6.15)
xTPP ˘y ⇐⇒ (x+−y = 1) ∧ (x 6=y) ∧ (x+ int(−y) 6=1)(6.16)

For many applications we will also want to specify that certain re-
gions are non-empty. This is easily done using the disequality −x 6= 1.
Various other useful binary RCC relations are expressible by means of in-
terior algebra equations. For example, EQ(x+y,1) can be expressed by
X ∪ Y = 1.

The problem of reasoning with topological relations can thus be re-
duced to one of reasoning with algebraic equations and disequalities; and
this in turn can be reduced to the problem of testing consistency of sets
of equations and disequalities. Moreover, the following Lemma tells us
that the consistency of such sets can be determined as long as we have
a means of computing whether a given equation follows from a set of
equations:

Lemma 6.1. A set of algebraic equalities and disequalities,
{x1 = y1, . . . xm = ym, z1 6= w1, . . . xn 6= yn}, is inconsistent just in case
x1 = y1, . . . xm = ym |= zi = wi, where 1 ≤ i ≤ n.

Clearly this kind of approach could be applied to any of the other
purely equationally defined algebras defined above (in Section 2).

Though equational reasoning has long been a major topic in mathe-
matics and computer science and many general techniques are known,
it seems that there has been little research direct specifically at equa-
tional reasoning in this kind of spatial algebra. However, an indirect way
of implementing such reasoning is by means of an encoding into modal
logic, described in the next section.

6.3 Encoding in Propositional Modal Logics
A propositional modal logic augments the classical propositional logic

with one or more unary connectives. We assume familiarity with the
basics of these formalisms. Full details can be found in many texts, such
as [14, 53].

We first consider normal modal logics with a single modality. As
usual, the modal necessity operator will be denoted by ¤, and its dual
possibility operator by ♦ (where ♦ p ↔ ¬¤¬p). Let F be the set of all
(well-formed) propositional modal formulae (defined in the usual way).
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Definition 6.2. A normal propositional modal logic ML is identified
with the set of its theorems. More specifically, ML is a subset of F,
satisfying the following conditions:16

ML1) All classical tautologies are in ML.

ML2) If p ∈ML and (p→ q) ∈ML, then q ∈ML.

ML3) ML is closed under substitution.

ML4) (¤ p ↔ ¬♦¬p) ∈ML. (Defn. of ♦)

ML5) If (p ↔ q) ∈ML then (♦ p ↔ ♦ q) ∈ML. (Extensionality)

ML6) ♦(p ∧ ¬p) ↔ (p ∧ ¬p)
ML7) (♦(p ∨ q) ↔ (♦ p ∨ ♦ q)) ∈ML

Normal modal logics can be interpreted in terms of the well-known
Kripke semantics. Specifically, a model M of a normal modal logic ML
is a structure 〈W,R, v〉, where W is a set, R a binary relation on W
(i.e. 〈W,R〉 is a frame), and v : V → 2W a valuation function which is
extended over ML as follows:

v(¬ϕ) = W \ v(ϕ) = {w ∈W : w 6∈ v(ϕ)},
v(ϕ ∧ ψ) = v(ϕ) ∩ v(ψ),

v(>) = W,

v(♦(ϕ)) = {w : (∃u)[u ∈ v(ϕ) and uRw}.

for all ϕ,ψ ∈ML.
The elements of W are often called possible worlds.

6.3.1 Modal Logics and Algebras.
There is an intimate connection between propositional logics and alge-
bras. The set F of all modal formulae can be regarded as a term algebra
— i.e. an absolutely free algebra generated from the propositional con-
stants by taking the connectives as (syntactic) operators on formulae.

16This definition of normal modal logics is chosen to make clear the connection with modal
algebras. An more common approach is to take define a modal logics as a set of formulae
satisfying conditions ML1–4, together with the ‘Rule of Necessitation: if p ∈ ML then

¤ p ∈ML. Normal modal logics are then defined as those additionally satisfying the Kripke
schema, K: ((¤ p ∧ ¤(p → q)) → ¤ q) ∈ ML. The two specifications are known to be
equivalent (see e.g. [14, chapter 4]).
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To obtain an algebraic perspective on the structure of a particular
modal logic ML we can construct a quotient algebra17 of F relative to
the logical equivalence relation of ML. Each element of this algebra,
will thus correspond to a semantically distinct proposition expressible in
the logic.

Definition 6.3. Given ML ⊆ F, the Lindenbaum–Tarski algebra FML
of ML is the quotient algebra of F by the equivalence relation

x ≈ML y if and only if x ↔ y ∈ML.(6.17)

The resulting algebras are modal algebras in the sense of Defini-
tion 2.6. The Lindenbaum-Tarski construction can also be used to
characterise the equational class of all modal algebras: each equivalence
x ≈ML y corresponds to a universally quantified equation
∀v1, . . . , vn[x = y], where v1, . . . , vn are all the propositional variables
occurring in either x or y.

There is a direct correspondence between modal algebras and modal
logics. The rule ML5 ensures that ♦ (and hence ¤ is functional); ML6
corresponds to the algebraic normality condition (2.3) and ML7 to ad-
ditivity (2.2). The generality of the correspondence is expressed by the
following proposition:

Proposition 6.1. [56] Let V(ML) be the equational class generated
by FML. The mapping ML 7→ V(ML) is a dual isomorphism from the
lattice of all normal modal logics to the lattice of equational classes of
modal algebras.

6.3.2 S4 and Interior Algebras.
One of the better known modal logics is S4. This can be defined as a
normal modal logic that also satisfies the following axiom schemas:18

(p ∨ ♦ p) ↔ ♦ p(6.18)
♦♦ p ↔ ♦ p(6.19)

Clearly, in the Lindenbaum-Tarski algebra generated from the set of
theorems of S4, these schema will generate equations of the form of 2.4
and 2.5 characterising a closure operator. From a semantic point of view,
the class of models of S4 consists of all Kripke frames whose accessibility

17Given an algebra A = 〈A, f1, . . . , fn〉, and an equivalence relation ≈, the quotient algebra
of A relative to ≈ is the structure 〈A≈, f≈1 , . . . , f≈m〉. Let x≈ = {y | y ≈ x}. Then A≈ =
{x≈| x ∈ A}, and f≈i (x≈1 , . . . , x≈n ) = y≈ if fi(x1, . . . , xn) = y.
18S4 is more often defined by the schemas ¤ ϕ → ϕ (T) and ¤ ϕ → ¤ ¤ ϕ (4), which are
equivalent to those given here.
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relation is reflexive and transitive; thus according to Proposition 2.3,
their complex algebras are exactly the closure algebras.

This correspondence is the basis of the encoding of topological rela-
tionships into S4 proposed in [9] and [10] and also investigated in [80].19

Let τ ­ ϕ denote the one-to-one mapping from terms of closure alge-
bra to syntactically isomorphic formulae of S4: specifically ϕ is obtained
from τ by replacing − by ¬, ∨ by +, · by ∧ , cl by ♦ and int by ¤.
The following Lemma enables us to use deduction in S4 to determine
entailment among equations in closure algebra:

Lemma 6.2. [10] Let τ1 = 1, . . . , τn = 1 be equations of closure algebra
and τi ­ ϕi. Then

(6.20) τ1 = 1, . . . , τn = 1 ` τ0 = 1 iff ¤ϕ1, . . . ,¤ϕn `S4 ϕ0

Because of Lemma 6.1, we can also use the modal encoding for testing
inconsistency of sets of equations and disequations of closure algebra,
and hence for reasoning about topological properties and relationships
among spatial regions.

6.3.3 A Bi-Modal Spatial Logic.
We now give a brief overview of a somewhat more expressive modal en-
coding of topological relationships proposed in [10]. This is obtained by
employing a bi-modal logic incorporating both S4 and the ‘universal’
modal operator [46], here denoted by ¥ (with its dual being denoted,
¨, where ¨ϕ ↔ ¬¥¬ϕ). As before, the S4 operators ¤ and ♦ corre-
spond respectively to the as interior and closure operators, int and cl.
The interpretation of ¥ϕ is that ϕ holds at all possible worlds.20 The
axiomatisation of ¥ is the same as that as ¤, with the addition of the
following two schemata [46, 116]:

¨p → ¥¨ p(6.21)
¥p → ¤ p(6.22)

As before, the S4 operators ¤ and ♦ correspond respectively to the
as interior and closure operators, int and cl. A formula of the form

19A similar method had previously been used in [8] to encode modal formulae into intu-
itionistic propositional logic. This is based on the relation of intuitionistic logic to Heyting
algebras, which in turn can be interpreted over topological spaces (2.4.4 above).
20The universal modal operator is closely related to the better known S5 modality, which
is the logic semantically determined by taking the accessibility relation to be reflexive, sym-
metric and transitive (i.e. an equivalence relation). However, this allows the possibility that
the set of worlds is partitioned into several sets of worlds which are not accessible to each
other. Thus, if ¥ were an S5 modality, ¥ϕ it would be true at world w as long as ϕ holds in
all worlds in the same equivalence class as w — not necessarily in all worlds.
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¥ϕ ensures that the topological condition encoded by ϕ holds at every
point in space. Similarly, ¨ϕ means that there is some point p satis-
fying the condition represented by ϕ. p can be thought of as a sample
point, which bears witness to some topological constraint. For instance,
where two regions x and y overlap, the corresponding modal formula
¨(¤(x) ∧ ¤(y)) ensures the existence of a point which is in the interior
of both x and y.

In terms of the bi-modal logic S5/S4, a set of key RCC relations are
represented as as follows:

C(x, y) ⇐⇒ ¨(x ∧ y)(6.23)
DC(x, y) ⇐⇒ ¥(¬x ∨ ¬y)(6.24)
O(x, y) ⇐⇒ ¨(¤(x) ∧ ¤(y))(6.25)

DR(x, y) ⇐⇒ ¥♦(¬x ∨ ¬y)(6.26)
P(x, y) ⇐⇒ ¥(x → y)(6.27)
¬P(x, y) ⇐⇒ ¨(x ∧ ¬y)(6.28)
TP(x, y) ⇐⇒ ¥(x → y) ∧ ¨(x ∧ c(¬y))(6.29)

NTP(x, y) ⇐⇒ ¥(x → ¤(y))(6.30)
Non-Empty(x) ⇐⇒ ¨x(6.31)

Regular(x) ⇐⇒ ¥(¤(¬x) ∨ ♦(¤(x)))(6.32)

All the RCC-8 relations can be expressed in terms of these formula
by using conjunction and negation. Further details of how this logic can
be used for topological reasoning are given in [10, 116].

6.4 A Proof System for Contact Relation
Algebras

In this Section we will describe a sound and complete logic for contact
relation algebras within which general facts about CRAs can be proved.
The semantics of this logic are relational, introduced by OrÃlowska [81,
82], and the proof system is in the style of Rasiowa and Sikorski [89].

Our language L consists of the disjoint union of the following sets:

1 A set {C, 1′} of constants, representing the generating contact re-
lation and the identity.

2 An infinite set V of individuum variables.

3 A set {+, ·,−, ; , ˘} of names for the relational operators.

4 A set {(, )} of delimiters.
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With some abuse of language, we use the same symbols for the actual
operations. The terms of the language are defined recursively:

1 C and 1′ are terms.

2 If R and S are terms, so are (R+S), (R ·S), (−R), (R ; S), (R˘).

3 No other string is a term.

The set of all terms will denoted by T . In the sequel, we will follow the
usual conventions of reducing brackets. The set F of L–formulae is

{xRy : R ∈ T , x, y ∈ V}.
A model of L is a pair M = 〈W,m〉, where W is a nonempty set, and
m : T →W ×W is a mapping such that

m(C) is a contact relation.(6.33)
m(1′) is the identity relation on W .(6.34)
m is a homomorphism from the algebra of terms to
〈Rel(W ),∪,∩,−, ; , ˘〉

(6.35)

A valuation v is a mapping from V to W . If xRy is a formula, then we say
that M satisfies xRy under v, written as M, v |= xRy, if 〈v(x), v(y)〉 ∈
m(R). xRy is called true in the model M , if M, v |= xRy for all valua-
tions v. xRy is called valid, if it is true in all models.

The proof system consists of two types of rules: With decomposition
rules we can decompose formulae into an equivalent sequence of simpler
formulae. The decomposition rules are the same for every system of
relation algebras. The specific rules are tailored towards the concrete
situation; they modify a sequence of formulae and have the status of
structural rules. The role of axioms is played by axiomatic sequences.

Proofs have the form of trees: Given a formula xRy, we successively
apply decomposition or specific rules; in this way we obtain a tree whose
root is xRy, and whose nodes consist of sequences of formulae. A branch
of a tree is closed if it contains a node which contains an axiomatic
sequence as a subsequence. A tree is called closed if all its branches are
closed.

Rasiowa–Sikorski systems are, in way, dual to tableaux: Whereas in
the latter one tries to refute the negation of a formula, the Rasiowa–
Sikorski systems attempt to verify a formula by closing the branches of
a decomposition tree with axiomatic sequences.

The decomposition rules of the system are given in Table 6.3, and the
specific rules for the system are given in Table 6.4. There, a variable z
is called restricted in a rule, if it does not occur in the upper part of that
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Table 6.3. Decomposition rules

(∪)
K, x(R ∪ S)y, H

K, xRy, xSy, H
(¬∪)

K, x− (R ∪ S)y, H

K, x(−R)y, H | K, x(−S)y, H

(∩)
K, x(R ∩ S), H

K, xRy, H | K, xSy, H
(¬∩)

K, x− (R ∩ S)y, H

K, x(−R)y, x(−S)y, H

(˘)
K, xR˘y, H

K, yRx, H
(¬˘)

K, x(−R˘)y, H

K, y(−R)x, H

(¬−)
K, x(−−R)y, H

K, xRy, H

( ; )
K, x(R ; S)y, H

K, xRz, H, x(R ; S)y | K, zSy, H, x(R ; S)y
where z is any variable

(¬ ; )
K, x− (R ; S)y, H

K, x(−R)z, z(−S)y, H
where z is a restricted vari-
able

rule. K and H are finite, possibly empty, sequences of L formulae. The
axiomatic sequences are

xRy, x(−R)y,(6.36)
x1′x,(6.37)

where R ∈ T .
The following result shows that the logic is sound and complete:

Proposition 6.2. [27]

1 All decomposition rules are admissible.

2 All specific rules are admissible.

3 The axiomatic sequences are valid.

4 If a formula is valid then it has a closed proof tree.

An example in [27] shows that there is a CRA with infinitely many
atoms below 1′, and thus, by a result of Andréka et al. [3], the equational
logic of CRAs is undecidable.
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Table 6.4. Specific rules

(sym1′)
K, x1′y, H

K, y1′x, H

(tran 1′)
K, x1′y, H

K, x1′z, H, x1′y | K, z1′y, H, x1′y
, where z is any variable

(1′1)
K, xRy, H

K, x1′z, H, xRy | K, zRy, H, xRy
, where z is any variable

(1′2)
K, xRy, H

K, xRz, H, xRy | K, z1′y, H, xRy
, where z is any variable

(refl C)
K, xCy, H

K, x1′y, xCy, H
(sym C)

K, xCy, H

K, yCx, H

(ext C)
K

K, x(−C)z, yCz | K, y(−C)t, xCt | K, x(−1′)y
where z and t are re-
stricted variables

(cut C)
K

K, xCy | K, x(−C)y

7. Conclusion
In this chapter we have examined the topic of region-based spatial

representation from a number of perspectives. We have looked at the re-
lationships between algebraic models, point-set topology and axiomatic
theories of spatial regions. The approach of modelling space in terms
of a Boolean algebra, supplemented with additional operations and/or
relations provides very general and adaptable analysis. Moreover, such
algebraic formalisms provide a powerful tool for establishing correspon-
dences between relational axiomatic theories and the models of point-set
topology. Specifically, we have seen that Boolean Contact Algebras, have
essentially the same expressive capabilities as theories such as the Re-
gion Connection Calculus [88] (developed as a knowledge representation
formalism for Artificial Intelligence) and have presented representation
theorems that characterise topological models of BCAs.

It is interesting to note that the properties of topological spaces that
characterise the topological representations of relational theories (ac-
cording to the representation theorems of Section 4.2) do not coincide
with those most familiar to point-set topologists. This is primarily be-
cause the elements of region-based theories are modelled as regular sub-
sets of a topological space. Thus, relevant properties for spaces models
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are typically weaker than better known separation properties, in that
they impose conditions on regular subsets of the space rather than on
points or on open or closed sets in general. Although we believe that
these representations are particularly natural, it is worth noting that
there may be alternative topological representations where the embed-
ding of the algebraic structure in the topology takes a different form (as
with the representations of [93] and [76]).

As well as considering algebras of regions, we have also seen how the
formalism of Relation Algebra provides an algebraic treatment of the
relational concepts of a theory. This proves to be well suited to repre-
senting spatial relations, in that a large vocabulary of significant spatial
relations can be equationally defined from just the contact relation, C.
The Relation Algebraic analysis also serves to provide a foundation for
the technique of compositional inference, which has been found to be ef-
fective in a number of AI applications, for reasoning with both temporal
[2] and spatial relations [87, 92].

A technique that has proved particularly useful for reasoning about
topology has been the encoding into modal logic. Again, algebra pro-
vides a bridging formalism, since propositional logics have a direct cor-
respondence to Boolean algebras with operators. Because the principal
function of logical languages is to describe mechanisms of valid infer-
ence, much is known about how such inferences can be automated, and
about the computational complexity of reasoning algorithms using these
systems. Thus the encodings have lead to the development of decision
procedures and establishment of complexity results for reasoning about
topological relations [10, 91, 92, 115, 116]. Modal encodings have also
be applied to encode relations in projective geometry [7, 108].

Another promising avenue for extending the use of modal encodings
is by the use of multi-dimensional modal logics [40, 73, 95], which are
multi-modal logics, with different modalities ranging over orthogonal
dimensions of their model structures. These have been used to capture
both multiple spatial dimensions and the combination of space with
time. Yet another approach is to employ modal logics in which spatial
relations are associated with the accessibility relation associated with
the modal operators [19, 71].

The current chapter has focused on purely topological aspects of spa-
tial information. However, other geometrical properties have also been
treated in terms of region-based relational and algebraic theories. An
early paper of Tarski [98] showed how the whole of Euclidean geometry
could be re-constructed by taking regions (rather than points) as the
basic spatial entities, and the relation of parthood and the property of
sphericity as the conceptual primitives. A simpler axiomatisation of a
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theory of this kind is given in [11]. Though from a theoretical point of
view such formalisms are highly interesting, it is less clear whether they
could provide useful mechanisms for computing inferences. It seems that
by adding only a little more than topology to a representation one easily
obtains a computationally intractable theory. For instance, in [22] it
is shown that reasoning with the RCC-8 relations together with a con-
vexity predicate is already massively intractable. The question of the
expressive power of region based theories has been the subject of much
research (e.g. [85]). [Davis] gives some rather general results demonstrat-
ing the very high expressive power of theories that allow quantification
over regions.

One potentially very useful development of spatial logics, which has
yielded positive results regarding tractability, is the combination of spa-
tial and temporal concepts into a combined spatio-temporal calculus.
Certain restricted syntax fragments of modal logics that can encode spa-
tial and temporal information can express a significant range of spatio-
temporal relationships whilst remaining tolerably amenable to auto-
mated reasoning [12, 114].

An important aspect of space that has not been explicitly considered
in this chapter is dimensionality. The formalisms presented in this chap-
ter do not explicitly constrain the dimensionality either of the regions
or the embedding space. However, the interpretation of regions as reg-
ular sets of a space means that in such models, regions will all have the
same dimension as the whole space. The dimensionality of the space
could be fixed by appropriate axioms constraining the connection rela-
tion, but the dimensionality of regions would still be uniform. For many
applications it would be useful to have a richer theory incorporating re-
gions of different dimensionality into its domain. Axiomatic topological
theories that can handle diverse dimensionalities have been proposed in
[42, 43, 47]. However, the relationship between axiomatic theories of
this kind and topological models has not been fully established and is
certainly a rich area for further work.

The more computationally amenable region-based calculi also suffer
from inexpressivity regarding self-connectedness of regions — i.e. the do-
main can include multi-piece regions, but single and multi-piece regions
cannot be distinguished within the theory.21 This is closely related to
their inexpressibility in regard to dimensionaliy. It was shown in [90] that
any consistent set of RCC-8 relations has a model in which the regions

21The distinction can easily be made in 1st-order theories such as the full RCC theory, where
we can define ∀xSelf-Connected(x) ↔ ∀yz[(x = y + z) → yCz, but the full RCC theory is
undecidable [25].
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are self-connected regular subsets of a three-dimensional space. However,
as explained in [48] an interpretation over self-connected regions of two-
dimensional space may not be possible, despite the existence of a higher
dimensional model. Hence, in this case, enforcing self-connectedness of
regions would have no affect on consistency unless we also had some
means of enforcing planarity (or linearity) of the space. Developing any
kind of computationally effective calculus for reasoning about topolog-
ical relations between self-connected regions in two-dimensional space
has proved elusive. Some results developed from a graph-theoretic view-
point suggest that this is at least NP-hard, and may well be undecidable
[62, 63].

Another constraint on the structure of space, which has received at-
tention is discreteness. There are many applications, such as describing
or reasoning about video images, where one is dealing with a discrete
spatial structure. Axiomatic theories which allow atomic regions have
been investigated in [74] and [41]; and [28] presents a generalisation of
BCAs, in which the extensionality axiom is dropped, and proves a rep-
resentation theorem in terms of discrete proximity spaces.

The diversity of spatial formalisms is testament to the richness and
depth of spatial concepts. Indeed Tarski [100] suggested that geometrical
primitives may provide a conceptual basis from which all precise concepts
can be defined. Although axiomatic, region-based theories of topology
are increasingly well understood and integrated with related areas of
mathematics and knowledge representation, many directions for further
research remain open.
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