Skip to main content

Accurate and Model-free Pose Estimation of Crash Test Dummies

  • Chapter
Human Motion

Part of the book series: Computational Imaging and Vision ((CIVI,volume 36))

  • 2873 Accesses

In this chapter, we present a model-free pose estimation algorithm to estimate the relative pose of a rigid object. In the context of human motion, a rigid object can be either a limb, the head, or the back. In most pose estimation algorithms, the object of interest covers a large image area. We focus on pose estimation of objects covering a field of view of less than 5° by 5° using stereo vision.

With this new algorithm suitable for small objects, we investigate the effect of the object size on the pose accuracy. In addition, we introduce an object tracking technique that is insensitive to partial occlusion. We are particularly interested in human motion in this context focusing on crash test dummies.

The main application for this method is the analysis of crash video sequences. For a human motion capture system, a connection of the various limbs can be done in an additional step. The ultimate goal is to fully obtain the motion of crash test dummies in a vehicle crash. This would give information on which body part is exposed to what kind of forces and rotational forces could be determined as well. Knowing all this, car manufacturers can optimize the passive safety components to reduce forces on the dummy and ultimately on the real vehicle passengers. Since camera images for crash videos contain the whole crash vehicle, the size of the crash test dummies is relatively small in our experiments.

For these experiments, mostly high-speed cameras with high resolution are used. However, the method described here easily extends to real-time robotics applications with smaller VGA-size images, where relative pose estimation is needed, e.g., for manipulator control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenhahn, B., Perwass, C., Sommer, G.: Pose estimation of 3d free-form con-tours. International Journal of Computer Vision 62 (2005) 267-289

    Article  Google Scholar 

  2. Aggarwal, J., Cai, Q.: Human motion analysis: a review. Computer Vision Image Understanding (1999) 428-440

    Google Scholar 

  3. Badino, H., U. Franke, C. Rabe, S. Gehrig: Stereo-vision based detection of moving objects under strong camera motion. In: International Conference on Computer Vision Theory and Applications, Setubal, Portugal (2006) 253-260

    Google Scholar 

  4. Gavrila, D.M.: The visula analysis of human movement: a survey. Computer Vision and Image Understanding 73 (1999) 82-98

    Article  MATH  Google Scholar 

  5. Grest, D., Woetzel, J., Koch, R.: Nonlinear body pose estimation from depth images. In: DAGM (2005)

    Google Scholar 

  6. Seemann, E., Nickel, K., Stiefelhagen, R.: Head pose estimation using stereo vision for human-robot interaction. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition (2004) 626-631

    Google Scholar 

  7. Plankers, R., Fua, P.: Tracking and modelling people in video sequences. Com- puter Vision and Image Understanding (CVIU) 81 (2001)

    Google Scholar 

  8. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proc. Conf. Computer Vision and Pattern Recognition. Volume 2 (2000) 1144-1149

    Google Scholar 

  9. Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and tracking using voxel data. International Journal of Computer Vision 53 (2003)199-223

    Article  Google Scholar 

  10. Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts. In Leonarids, A., Bishof, H., Prinz, A., eds.: Proc. 9th European Conference on Computer Vision, Part II, Volume 3952, Graz, Springer (2006) 642-655

    Google Scholar 

  11. T. Brox, B. Rosenhahn, D.C., Seidel, H.P.: High accuracy optical flow serves 3-d pose tracking: exploiting contour and flow based constraints. In: European Conference on Computer Vision (ECCV), Graz, Austria (2006) 98-111

    Google Scholar 

  12. Lu, C., Hager, G.D., Mjolsness, E.: Fast and globally convergent pose estima-tion from video images. IEEE Transactions On Pattern Analysis and Machine Intelligence 22 (2000) 610-622

    Article  Google Scholar 

  13. Grinstead, B., Koschan, A., Abidi, M.A.: A comparison of pose estimation tech-niques: Hardware vs. video. In: SPIE Unmanned Ground Vehicle Technology, Orlando, FL (2005) 166-173

    Google Scholar 

  14. Badino, H.: A robust approach for ego-motion estimation using a mobile stereo platform. In: 1st International Workshop on Complex Motion (IWCM’04), Günzburg, Germany, Springer (2004)

    Google Scholar 

  15. Gehrig, S.K., Badino, H., Paysan, P.: Accurate and model-free pose estimation of small objects for crash video analysis. In: British Machine Vision Conference BMVC, Edinburgh (2006)

    Google Scholar 

  16. Matthies, L., Shafer, S.A.: Error modelling in stereo navigation. In: IEEE Journal of Robotics and Automation. Volume RA-3(3) (1987) 239-248

    Article  Google Scholar 

  17. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation using stereo ego-motion. In: Robotics and Autonomous Systems. Volume 43(4) (2003)215-229

    Google Scholar 

  18. van der, M.W., Fontijne, D., Dorst, L., Groen, F.C.A.: Vehicle ego-motion esti-mation with geometric algebra. In: Proc. IEEE Intelligent Vehicle Symposium, Versailles, France, May 18-20 (2002)

    Google Scholar 

  19. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quater-nions. In: Journal of the Optical Society of America A. Volume 4(4) (1987) 629-642

    Article  MathSciNet  Google Scholar 

  20. Lorusso, A., Eggert, D., Fisher, R.B.: A comparison of four algorithms for esti-mating 3-d rigid transformations. In: Proc. British Machine Vision Conference, Birmingham (1995)

    Google Scholar 

  21. Franke, U.: Real-time stereo vision for urban traffic scene understanding. In: Proc. Intelligent Vehicles 2000 Symposium (2000)

    Google Scholar 

  22. Gehrig, S.K., Klappstein, J., Franke, U.: Active stereo for intersection assistance. In: Vision modelling and Visualization Conference, Stanford, USA (2004) 29-35

    Google Scholar 

  23. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94) (1994)

    Google Scholar 

  24. Gall, J., Rosenhahn, B., Seidel, H.P.: Robust pose estimation with 3d textured models. In: IEEE Pacific-Rim Symposium on Image and Video Technology (PSIVT06), Springer LNCS (2006) 84-95

    Google Scholar 

  25. Rosenhahn, B., Brox, T., Kersting, U., Smith, D., Gurney, J., Klette, R.: A system for marker-less human motion estimation. Kuenstliche Intelligenz (KI) (2006)45-51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Gehrig, S.K., Badino, H., Gall, J. (2008). Accurate and Model-free Pose Estimation of Crash Test Dummies. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human Motion. Computational Imaging and Vision, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6693-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6693-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6692-4

  • Online ISBN: 978-1-4020-6693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics