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Abstract. Human body is an articulated object with high degrees of freedom.
Despite the high dimensionality of the configuration space, many human motion
activities lie intrinsically on low dimensional manifolds. Although the intrinsic
body configuration manifolds might be very low in dimensionality, the resulting
appearance manifolds are challenging to model given various aspects that affects
the appearance such as the shape and appearance of the person performing the
motion, or variation in the view point, or illumination. Our objective is to learn
representations for the shape and the appearance of moving (dynamic) objects
that support tasks such as synthesis, pose recovery, reconstruction, and tracking.
We studied various approaches for representing global deformation manifolds
that preserve their geometric structure. Given such representations, we can learn
generative models for dynamic shape and appearance. We also address the fun-
damental question of separating style and content on nonlinear manifolds rep-
resenting dynamic objects. We learn factorized generative models that explic-
itly decompose the intrinsic body configuration (content) as a function of time
from the appearance/shape (style factors) of the person performing the action as
time-invariant parameters. We show results on pose recovery, body tracking, gait
recognition, as well as facial expression tracking and recognition.

1 Introduction

Human body is an articulated object with high degrees of freedom. Human body moves
through the three-dimensional world and such motion is constrained by body dynam-
ics and projected by lenses to form the visual input we capture through our cameras.
Therefore, the changes (deformation) in appearance (texture, contours, edges, etc.) in
the visual input (image sequences) corresponding to performing certain actions, such
as facial expression or gesturing, are well constrained by the 3D body structure and
the dynamics of the action being performed. Such constraints are explicitly exploited
to recover the body configuration and motion in model-based approaches [32, 28, 13,
64,62, 23, 34, 72] through explicitly specifying articulated models of the body parts,
joint angles and their kinematics (or dynamics) as well as models for camera geome-
try and image formation. Recovering body configuration in these approaches involves
searching high dimensional spaces (body configuration and geometric transformation)
which is typically formulated deterministically as a nonlinear optimization problem,



e.g. [61,62], or probabilistically as a maximum likelihood problem, e.g. [72]. Such ap-
proaches achieve significant success when the search problem is constrained as in track-
ing context. However, initialization remains the most challenging problem, which can
be partially alleviated by sampling approaches. The dimensionality of the initialization
problem increases as we incorporate models for variations between individuals in phys-
ical body style, models for variations in action style, or models for clothing, etc. Partial
recovery of body configuration can also be achieved through intermediate view-based
representations (models) that may or may not be tied to specific body parts [18, 12, 86,
33,6,27,87,22,73,24]. In such case constancy of the local appearance of individual
body parts is exploited. Alternative paradigms are appearance-based and motion-based
approaches where the focus is to track and recognize human activities without full re-
covery of the 3D body pose [58,54,57,59,55,74,63,7,17].

Recently, there have been research for recovering body posture directly from the
visual input by posing the problem as a learning problem through searching a pre-
labelled database of body posture [51, 36, 70] or through learning regression models
from input to output [29, 9, 66, 67, 65, 14, 60]. All these approaches pose the problem
as a machine learning problem where the objective is to learn input-output mapping
from input-output pairs of training data. Such approaches have great potential for solv-
ing the initialization problem for model-based vision. However, these approaches are
challenged by the existence of wide range of variability in the input domain.

Role of Manifold:

Despite the high dimensionality of the configuration space, many human motion
activities lie intrinsically on low dimensional manifolds. This is true if we consider
the body kinematics as well as if we consider the observed motion through image se-
guences. Let us consider the observed motion. For example, the shape of the human
silhouette walking or performing a gesture is an example of a dynamic shape where
the shape deforms over time based on the action performed. These deformations are
constrained by the physical body constraints and the temporal constraints posed by the
action being performed. If we consider these silhouettes through the walking cycle as
points in a high dimensional visual input space, then, given the spatial and the temporal
constraints, it is expected that these points will lay on a low dimensional manifold. In-
tuitively, the gait is a 1-dimensional manifold which is embedded in a high dimensional
visual space. This was also shown in [8]. Such manifold can be twisted, self-intersect
in such high dimensional visual space.

Similarly, the appearance of a face performing facial expressions is an example of
dynamic appearance that lies on a low dimensional manifold in the visual input space.
In fact if we consider certain classes of motion such as gait, or a single gesture, or a
single facial expressions and if we factor out all other sources of variability, each of
such motions lies on a one-dimensional manifolds, i.e., a trajectory in the visual input
space. Such manifolds are nonlinear and non-Euclidean.

Therefore, researchers have tried to exploit the manifold structure as a constraint in
tasks such as tracking and activity recognition in an implicit way. Learning nonlinear
deformation manifolds is typically performed in the visual input space or through inter-
mediate representations. For example, Exemplar-based approaches such as [77] implic-
itly model nonlinear manifolds through points (exemplars) along the manifold. Such
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exemplars are represented in the visual input space. HMM models provide a probabilis-
tic piecewise linear approximation which can be used to learn nonlinear manifolds as
in[11] and in [9].

Although the intrinsic body configuration manifolds might be very low in dimen-
sionality, the resulting appearance manifolds are challenging to model given various
aspects that affect the appearance such as the shape and appearance of the person per-
forming the motion, or variation in the view point, or illumination. Such variability
makes the task of learning visual manifold very challenging because we are dealing
with data points that lies on multiple manifolds on the same time: body configuration
manifold, view manifold, shape manifold, illumination manifold, etc.

Linear, Bilinear and Multi-linear Models:

Can we decompose the configuration using linear models? Linear models, such as
PCA [31], have been widely used in appearance modeling to discover subspaces for
variations. For example, PCA has been used extensively for face recognition such as
in [52,1, 15, 47] and to model the appearance and view manifolds for 3D object recog-
nition as in [53]. Such subspace analysis can be further extended to decompose multiple
orthogonal factors using bilinear models and multi-linear tensor analysis [76, 80]. The
pioneering work of Tenenbaum and Freeman [76] formulated the separation of style
and content using a bilinear model framework [48]. In that work, a bilinear model was
used to decompose face appearance into two factors: head pose and different people
as style and content interchangeably. They presented a computational framework for
model fitting using SVD. Bilinear models have been used earlier in other contexts [48,
49]. In [80] multi-linear tensor analysis was used to decompose face images into or-
thogonal factors controlling the appearance of the face, including geometry (people),
expressions, head pose, and illumination. They employed high order singular value de-
composition (HOSVD) [37] to fit multi-linear models. Tensor representation of image
data was used in [71] for video compression and in [79, 84] for motion analysis and
synthesis. N-mode analysis of higher-order tensors was originally proposed and devel-
oped in [78, 35, 48] and others. Another extension is algebraic solution for subspace
clustering through generalized-PCA [83, 82]

Fig. 1. Twenty sample frames from a walking cycle from a side view. Each row represents half a
cycle. Notice the similarity between the two half cycles. The right part shows the similarity ma-
trix: each row and column corresponds to one sample. Darker means closer distance and brighter

means larger distances. The two dark lines parallel to the diagonal show the similarity between
the two half cycles




In our case, the object is dynamic. So, can we decompose the configuration from
the shape (appearance) using linear embedding? For our case, the shape temporally un-
dergoes deformations and self-occlusion which result in the points lying on a nonlinear,
twisted manifold. This can be illustrated if we consider the walking cycle in Figure 1.
The two shapes in the middle of the two rows correspond to the farthest points in the
walking cycle kinematically and are supposedly the farthest points on the manifold in
terms of the geodesic distance along the manifold. In the Euclidean visual input space
these two points are very close to each other as can be noticed from the distance plot on
the right of Figure 1. Because of such nonlinearity, PCA will not be able to discover the
underlying manifold. Simply, linear models will not be able to interpolate intermediate
poses. For the same reason, multidimensional scaling (MDS) [16] also fails to recover
such manifold.

Nonlinear Dimensionality Reduction and Decomposition of Orthogonal Factors:

Recently some promising frameworks for nonlinear dimensionality reduction have
been introduced, e.g. [75, 68, 2,10, 38, 85, 50]. Such approaches can achieve embed-
ding of nonlinear manifolds through changing the metric from the original space to
the embedding space based on local structure of the manifold. While there are various
such approaches, they mainly fall into two categories: Spectral-embedding approaches
and Statistical approaches. Spectral embedding includes approaches such as isometric
feature mapping (Isomap) [75], Local linear embedding (LLE) [68], Laplacian eigen-
maps [2], and Manifold Charting [10]. Spectral-embedding approaches, in general, con-
struct an affinity matrix between data points using data dependent kernels, which reflect
local manifold structure. Embedding is then achieved through solving an eigen-value
problem on such matrix. It was shown in [3, 26] that these approaches are all instances
of kernel-based learning, in particular kernel principle component analysis KPCA [69].

In [4] an approach for embedding out-of-sample points to complement such approaches.
Along the same line, our work [19, 21] introduced a general framework for mapping be-
tween input and embedding spaces.

All these nonlinear embedding frameworks were shown to be able to embed non-
linear manifolds into low-dimensional Euclidean spaces for toy examples as well as
for real images. Such approaches are able to embed image ensembles nonlinearly into
low dimensional spaces where various orthogonal perceptual aspects can be shown to
correspond to certain directions or clusters in the embedding spaces. In this sense, such
nonlinear dimensionality reduction frameworks present an alternative solution to the
decomposition problems. However, the application of such approaches is limited to
embedding of a single manifold.

Biological Motivation:

While the role of manifold representations is still unclear in perception, it is clear
that images of the same objects lie on a low dimensional manifold in the visual space
defined by the retinal array. On the other hand, neurophysiologist have found that neural
population activity firing is typically a function of small number of variables which
implies that population activity also lie on low dimensional manifolds [30].
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2 Learning Simple Motion Manifold

2.1 Case Study: The Gait Manifold

In order to achieve a low dimensional embedding of the gait manifold, nonlinear dimen-
sionality reduction techniques such as LLE [68], Isomap [75], and others can be used.
Most these techniques result in qualitatively similar manifold embedding. As a result
of nonlinear dimensionality reduction we can reach an embedding of the gait manifold
in a low dimension Euclidean space [19]. Figure 2 illustrates the resulting embedded
manifold for a side view of the walkék. Figure 3 illustrates the embedded manifolds

for five different view points of the walker. For a given view point, the walking cycle
evolves along a closed curve in the embedded space, i.e., only one degree of freedom
controls the walking cycle which corresponds to the constrained body pose as a func-
tion of the time. Such conclusion is conforming with the intuition that the gait manifold

is one dimensional.

One important question is what is the least dimensional embedding space we can use
to embed the walking cycle in a way that discriminate different poses through the whole
cycle. The answer depends on the view point. The manifold twists in the embedding
space given the different view points which impose different self occlusions. The least
twisted manifold is the manifold for the back view as this is the least self occluding
view (left most manifold in Figure 3. In this case the manifold can be embedded in a two
dimensional space. For other views the curve starts to twist to be a three dimensional
space curve. This is primarily because of the similarity imposed by the view point which
attracts far away points on the manifold closer. The ultimate twist happens in the side
view manifold where the curve twists to be a figure eight shape where each cycle of the
eight (half eight) lies in a different plane. Each half of the “eight” figure corresponds
to half a walking cycle. The cross point represents the body pose where it is totally
ambiguous from the side view to determine from the shape of the contour which leg
is in front as can be noticed in Figure 2. Therefore, in a side view, three-dimensional
embedding space is the least we can use to discriminate different poses. Embedding a
side view cycle in a two-dimensional embedding space results in an embedding similar
to that shown in top left of Figure 2 where the two half cycles lies over each other.
Different people are expected to have different manifolds. However, such manifolds are
all topologically equivalent. This can be noticed in Figure 8-c. Such property will be
exploited later in the chapter to learn unified representations from multiple manifolds.

2.2 Learning the Visual Manifold: Generative Model

Given that we can achieve a low dimensional embedding of the visual manifold of
dynamic shape data, such as the gait data shown above, the question is how to use this
embedding to learn representations of moving (dynamic) objects that supports tasks

! The data used are from the CMU Mobo gait data set which contains 25 people from six dif-
ferent view points. We used data sets of walking people from multiple views. Each data set
consists of 300 frames and each containing about 8 to 11 walking cycles of the same person
from a certain view points. The walkers were using treadmill which might results in different
dynamics from the natural walking.



Fig. 2. Embedded gait manifold for a side view of the walker. Left: sample frames from a walking
cycle along the manifold with the frame numbers shown to indicate the order. Ten walking cycles
are shown. Right: three different views of the manifold.

such as synthesis, pose recovery, reconstruction and tracking. In the simplest form,
assuming no other source of variability besides the intrinsic motion, we can think of a
view-based generative model of the form

yr = Tary(2s;a) 1)

where the shape (appearancg), at timet is an instance driven from a generative
model where the function is a mapping function that maps body configuratigrat
time ¢ into the image space. The body configuratiqris constrained to the explicitly
modeled motion manifold. i.e., the mapping functipmaps from a representation of
the body configuration space into the image space given mapping paramgtatsre
independent from the configuratiofi,, represents a global geometric transformation
on the appearance instance.

The manifold in the embedding space can be modeled explicitly in a function form
or implicitly by points along the embedded manifold (embedded exemplars). The em-
bedded manifold can be also modelled probabilistically using Hidden Markov Models
and EM. Clearly, learning manifold representations in a low-dimensional embedding
space is advantageous over learning them in the visual input space. However, our em-
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Fig. 3. Embedded manifolds for 5 different views of the walkers. Frontal view manifold is the
right most one and back view manifold is the leftmost one. We choose the view of the manifold
that best illustrates its shape in the 3D embedding space

phasize is on learning the mapping between the embedding space and the visual input
space.

Since the objective is to recover body configuration from the input, it might be
obvious that we need to learn mapping from the input space to the embedding space,
i.e., mapping fromk? to R°¢. However, learning such mapping is not feasible since
the visual input is very high-dimensional so learning such mapping will require large
number of samples in order to be able to interpolate. Instead, we learn the mapping
from the embedding space to the visual input space, i.e., in a generative manner, with
a mechanism to directly solve for the inverse mapping. Another fundamental reason
to learn the mapping in this direction is the inherent ambiguity in 2D data. Therefore,
mapping from visual data to the manifold representation is not necessary a function.
While learning a mapping from the manifold to the visual data is a function.

It is well know that learning a smooth mapping from examples is an ill-posed prob-
lem unless the mapping is constrained since the mapping will be undefined in other parts
of the space [56]. We Argue that, explicit modeling of the visual manifold represents
a way to constrain any mapping between the visual input and any other space. Non-
linear embedding of the manifold, as was discussed in the previous section, represents
a general framework to achieve this task. Constraining the mapping to the manifold is
essential if we consider the existence of outliers (spatial and/or temporal) in the input
space. This also facilitates learning mappings that can be used for interpolation between
poses as we shall show. In what follows we explain our framework to recover the pose.
In order to learn such nonlinear mapping, we use Radial basis function (RBF) interpo-
lation framework. The use of RBF for image synthesis and analysis has been pioneered
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by [56, 5] where RBF networks were used to learn nonlinear mappings between image
space and a supervised parameter space. In our work we use RBF interpolation frame-
work in a novel way to learn mapping from unsupervised learned parameter space to
the input space. Radial basis functions interpolation provides a framework for both im-
plicitly modeling the embedded manifold as well as learning a mapping between the
embedding space and the visual input space. In this case, the manifold is represented
in the embedding space implicitly by selecting a set of representative points along the
manifold as the centers for the basis functions.

Let the set of representative input instances (shape or appearanéexbgy; €
R? i=1,--- N} and let their corresponding points in the embedding spacé e
{z; € R¢, i =1,---, N} wheree is the dimensionality of the embedding space (e.g.
e = 3 in the case of gait). We can solve for multiple interpolafits R¢ — R wherek
is k-th dimension (pixel) in the input space afiflis a radial basis function interpolant,
i.e., we learn nonlinear mappings from the embedding space to each individual pixel in
the input space. Of particular interest are functions of the form

FE (@) =p’“<x>+2wf¢(|x—xi|>, )

where¢(-) is a real-valued basic function, are real coefficients; | is the norm onk®
(the embedding space). Typical choices for the basis function includes thin-plate spline
(¢(u) = u2log(u)), the multiquadric ¢(u) = /(u2 + ¢2)), Gaussiand(u) = e~*"),
biharmonic ¢(u) = u) and triharmonic§(u) = u*) splinesp* is a linear polynomial
with coefficientsct, i.e.,p¥(x) = [1 2] - ¢¥. This linear polynomial is essential to
achieve approximate solution for the inverse mapping as will be shown.

The whole mapping can be written in a matrix form as

f(x) = B-4(x), 3)

whereB is ad x (N+e+1) dimensional matrix with thé-th row [w? - - - wk, "] and
the vectory(z) is [¢(|x — x1]) - - - é(lz — xn|) 1 2T]". The matrixB represents the
coefficients ford different nonlinear mappings, each from a low-dimension embedding
space into real numbers.

To insure orthogonality and to make the problem well posed, the following addi-
tional constraints are imposed

N
i=1

wherep; are the linear basis gf. Therefore the solution foB can be obtained by
directly solving the linear systems

A P %
BT — 5
(PT 0 ) <0<e+1>xd> ’ ®)

whereA;; = ¢(|z; —x;]), 4,5 =1---N, Pisamatrix withi-throw[l z;], andY is
(N x d) matrix containing the representative inputimages,Yes [y1 - - - yn] . Solu-
tion for B is guaranteed under certain conditions on the basic functions used. Similarly,
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mapping can be learned using arbitrary centers in the embedding space (not necessarily
at data points) [56, 19].

Given such mapping, any input is represented by a linear combination of nonlinear
functions centered in the embedding space along the manifold. Equivalently, this can be
interpreted as a form of basis images (coefficients) that are combined nonlinearly using
kernel functions centered along the embedded manifold.

2.3 Solving For the Embedding Coordinates

Given a new inpuy € R?, it is required to find the corresponding embedding coor-
dinatesz € R° by solving for the inverse mapping. There are two questions that we
might need to answer

1. What is the coordinates of pointe R¢ in the embedding space corressponding to
such input.
2. What is the closest point on the embedded manifold corresponding to such input.

In both cases we need to obtain a solution for

x" = argminlly — B ()| (6)

where for the second question the answer is constrained to be on the embedded mani-
fold. In the cases where the manifold is only one dimensional, (for example in the gait
case, as will be shown) only one dimensional search is sufficient to recover the manifold
point closest to the input. However, we show here how to obtain a closed-form solution
for z*.

Each input yields a set af nonlinear equations im unknowns (ord nonlinear
equations in one-dimensional unknown). Therefore a solution fot can be ob-
tained by least square solution for the over-constrained nonlinear system in 6. However,
because of the linear polynomial part in the interpolation function, the vegtoy
has a special form that facilitates a closed-form least square linear approximation and
therefore, avoid solving the nonlinear system. This can be achieved by obtaining the
pseudo-inverse aB. Note thatB has rankV sinceN distinctive RBF centers are used.
Therefore, the pseudo-inverse can be obtained by decompBsiisghg SVD such that
B =USVT and, therefore, vectaf(z) can be recovered simply as

P(z) =VSUTy (7)

whereS is the diagonal matrix obtained by taking the inverse of the nonzero singular
values inS the diagonal matrix and setting the rest to zeros. Linear approximation for
the embedding coordinatecan be obtained by taking the lastows in the recovered
vectory(x). Reconstruction can be achieved by re-mapping the projected point.

2.4 Synthesis, Recovery and Reconstruction:

Given the learned model, we can synthesis new shapes along the manifold. Figure 4-
¢ shows an example of shape synthesis and interpolation. Given a learned generative
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model in the form of Equation 3, we can synthesize new shapes through the walking
cycle. In these examples only 10 samples were used to embed the manifold for half a
cycle on a unit circle in 2D and to learn the model. Silhouettes at intermediate body
configurations were synthesized (at the middle point between each two centers) using
the learned model. The learned model can successfully interpolate shapes at intermedi-
ate configurations (never seen in the learning) using only two-dimensional embedding.
The figure shows results for three different peoples.

. Learn Mapping from
rn Nonlinear Mapping Embedding to 3D

Learn Nonlinear .
Manifold Embedding Manifold
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(b) pose estimation.

Fig. 4.(a,b) Block diagram for the learning framework and 3D pose estimation. (c) Shape synthe-
sis for three different people. First, third and fifth rows: samples used in learning. Second, fourth,
sixth rows: interpolated shapes at intermediate configurations (never seen in the learning)

Given avisual input (silhouette), and the learned model, we can recover the intrinsic
body configuration, recover the view point, and reconstruct the input and detect any
spatial or temporal outliers. In other words, we can simultaneously solve for the pose,
view point, and reconstruct the input. A block diagram for recovering 3D pose and
view point given learned manifold models are shown in Figure 4. The framework [20]
is based on learning three components as shown in Figure 4-a:

1. Learning Manifold Representation: using nonlinear dimensionality reduction we
achieve an embedding of the global deformation manifold that preserves the geo-
metric structure of the manifold as described in section 2.1. Given such embedding,
the following two nonlinear mappings are learned.

2. Manifold-to-input mapping: a nonlinear mapping from the embedding space into
visual input space as described in section 2.2.

3. Manifold-to-pose: a nonlinear mapping from the embedding space into the 3D body
pose space.
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Given an input shape, the embedding coordinate, i.e., the body configuration can
be recovered in closed-form as was shown in section 2.3. Therefore, the model can be
used for pose recovery as well as reconstruction of noisy inputs. Figure 5 shows ex-
amples of the reconstruction given corrupted silhouettes as input. In this example, the
manifold representation and the mapping were learned from one person data and tested
on other people date. Given a corrupted input, after solving for the global geometric
transformation, the input is projected to the embedding space using the closed-form
inverse mapping approximation in section 2.3. The nearest embedded manifold point
represents the intrinsic body configuration. A reconstruction of the input can achieved
by projecting back to the input space using the direct mapping in Equation 3. As can
be noticed from the figure, the reconstructed silhouettes preserve the correct body pose
in each case which shows that solving for the inverse mapping yields correct points on
the manifold. Notice that no mapping is learned from the input space to the embedded
space. Figure 6 shows examples of 3D pose recovery obtained in closed-form for dif-
ferent people from different view. The training has be done using only one subject data
from five view points. All the results in Figure 6 are for subjects not used in the training.
This shows that the model generalized very well.

VARLRRAKARA

Fig. 5. Example pose-preserving reconstruction results. Six noisy and corrupted silhouettes and
their reconstructions next to them.

3 Adding more Variability: Factoring out the Style

The generative model introduced in Equation 1 generates the visual input as a function
of a latent variable representing body configuration constrained to a motion manifold.
Obviously body configuration is not the only factor controlling the visual appearance of
humans in images. Any input image is a function of many aspects such as person body
structure, appearance, view point, illumination, etc. Therefore, it is obvious that the
visual manifolds of different people doing the same activity will be different. So, how to
handle all these variabilities. Let’'s assume the simple case first, a single view point and
we deal with human silhouettes so we do not have any variability due to illumination or
appearance. Let the only source of variability be variation in people silhouette shapes.
The problem now is how to extend the generative model in Equation 1 to include a
variable describing people shape variability. For example, given several sequences of
walking silhouettes, as in Fig. 7, with different people walking, how to decompose the
intrinsic body configuration through the action from the appearance (or shape) of the
person performing the action. we aim to learn a decomposable generative model that
explicitly decomposes the following two factors:
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Fig. 6. 3D reconstruction for 4 people from different views: person 70 views 1,

view 4; person 79 view 4
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erson 86 views 1,2; person 76

— Content (body pose): A representation of the intrinsic body configuration through
the motion as a function of time that is invariant to the person, i.e., the content
characterizes the motion or the activity.

— Style (people) : Time-invariant person parameters that characterize the person ap-
pearance (shape).

On the other hand, given an observation of certain person at a certain body pose
and given the learned generative model we aim to be able to solve for both the body
configuration representation (content) and the person parameter (style). In our case the
content is a continuous domain while style is represented by the discrete style classes
which exist in the training data where we can interpolate intermediate styles and/or
intermediate contents.

This can be formulated as a view-based generative model in the form

yi = (g5 a,0°%) (8)

where the imagey;, at timet¢ and of styles is an instance driven from a generative
model where the function(-) is a mapping function that maps from a representation

of body configurationz{ (content) at time into the image space given mapping para-
meterse and style dependent parametigthat is time invariartt A framework was in-
troduced in [21] to learn a decomposable generative model that explicitly decomposes
the intrinsic body configuration (content) as a function of time from the appearance
(style) of the person performing the action as time-invariant parameter. The framework
is based on decomposing the style parameters in the space of nonlinear functions that
maps between a learned unified nonlinear embedding of multiple content manifolds and
the visual input space.

2 We use the superscrigt ¢ to indicate which variables depend on style or content respectively.
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Fig. 7. Style and content factors: Content: gait motion or facial expression. Style: different
silhouette shapes or face appearance.

Suppose that we can learn a unified, style-invariant, nonlinearly embedded repre-
sentation of the motion manifold1 in a low dimensional Euclidean embedding space,
R¢, then we can learn a set of style-dependent nonlinear mapping functions from the
embedding space into the input space, i.e., functigns?) : R — R9 that maps from
embedding space with dimensionalitynto the input space (observation) with dimen-
sionality d for style classs. Since we consider nonlinear manifolds and the embedding
is nonlinear, the use of nonlinear mapping is necessary. We consider mapping functions
in the form

yi = s(@e) = C° - (ay) 9)

whereC® is ad x N linear mapping and)(-) : R® — R¥ is a nonlinear mapping
whereN basis functions are used to model the manifold in the embedding space, i.e.,

D)= [Wa(), - on ()T

Given learned models of the form of Equation 9, the style can be decomposed in
the linear mapping coefficient space using bilinear model in a way similar to [76, 80].
Therefore, input instancg can be written as asymmetric bilinear model in the linear
mapping space as

ye = A X3 b° x21(xf) (10)
whereA is a third order tensor (3-way array) with dimensionality N x J, b° is a

style vector with dimensionality, and x,, denotes mode-n tensor product. Given the
role for style and content defined above, the previous equation can be written as

ye = A X3 bpeOpleXQ w(z?"se) (11)

Figure,8 shows examples for decomposing styles for gait. The learned generative
model is used to interpolate walking sequences at new styles as well as to solve for
the style parameters and body pose. In this experiment we used five sequences for five
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different peopl€ each containing about 300 frames which are noisy. The learned man-
ifolds are shown in Figure 8-b which shows a different manifold for each person. The
learned unified manifold is also shown in Figure 8-e. Figure 8 shows interpolate walk-
ing sequences for the five people generated by the learned model. The figure also shows
the learned style vectors. We evaluated style classifications using 40 frames for each
person and the result is shown in the figure with correct classification rate of 92%. We
also used the learned model to interpolate walks in new styles. The last row in the figure
shows interpolation between person 1 and person 4.
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(a) Interpolated walks for five people

LEARRLLE AR Y

(b) Interpolated walk at intermediate style

(d) Style parameters (e) Style classification

(c) Learned Manifolds

Fig. 8. (a) interpolated walks for five people. (b) Interpolated walk at intermediate style between

person 1 and 4. (c) Learned manifolds for the five people and the unified manifold (bottom right).
(d) Estimated style parameters given the unified manifold. (e) Style classification for test data of
40 frames for 5 people.

4 Style Adaptive Tracking: Bayesian Tracking on a Manifold

Given the explicit manifold model and the generative model learned in section 3, we
can formulate contour tracking within a Bayesian tracking framework. We can achieve

3 The data are from CMU Mobogait database
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Fig. 9. Graphic model for decomposed generative model

style adaptive contour tracking on cluttered environments where the generative model
can be used to as an observation model to generate contours of different people shape
styles and different poses. The tracking is performed on three conceptually indepen-
dent spaces: body configuration space, shape style space and geometric transformation
space. Therefore, object state combines heterogeneous representations. The manifold
provides a constraint on the motion, which reduces the system dynamics of the global
nonlinear deformation into a linear dynamic system. The challenge will be how to rep-
resent and handle multiple spaces without falling into exponential increase of the state
space dimensionality. Also, how to do tracking in a shape space which can be high
dimensional?

Figure 9 shows a graphical model illustrating the relation between different vari-
ables. The shape at each time step is an instance driven from a generative model. Let
z € R? be the shape of the object at time instanaepresented as a point in a d-
dimensional space. This instance of the shape is driven from a model in the form

2t = Tat’}’(bt;st)> (12)

where they(+) is a nonlinear mapping function that maps from a representation of the
body configuratiorh; into the observation space given a mapping paramsgténat
characterizes the person shape in a way independent from the configuration and specific
for the person being tracked,,, represents a geometric transformation on the shape
instance. Given this generative model, we can fully describe observation instamce

state parameters;, b;, ands;. The mappingy(b;; s;) is a nonlinear mapping from the

body configuration statl as

Yt = A x St X w(bt)7 (13)

where(b;) is a kernel induced spacel is a third order tensoi® is a shape style
vector andx is appropriate tensor product.

The tracking problem is then an inference problem where attiweneed to infer
the body configuration representatibnand the person specific parametgrand the
geometric transformatiof,,, given the observation,. The Bayesian tracking frame-
work enables a recursive update of the posteff0X;|Z*) over the object staté(;
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given all observatio! = Z;, Z,, .., Z; up to timet:

P(Xt|Zt) x P(Z X+) P(Xt\thl)P(Xt,ﬂZt_l) (14)
X1

In our generative model, the stal is [o4, b¢, s¢], which uniquely describes the state
of the tracking object. Observatidf is the captured image instance at titne

The stateX,; is decomposed into three sub-statesb,, s,. These three random
variables are conceptually independent since we can combine any body configuration
with any person shape style with any geometrical transformation to synthesize a new
contour. However, they are dependent given the observatioit is hard to estimate
joint posterior distributionP (a4, b:, s¢|Z;) for its high dimensionality. The objective
of the density estimation is to estimate statgesb,, s; for a given observation. The
decomposable feature of our generative model enables us to estimate each state by
a marginal density distributio®(«;|Z?), P(b|Zt), and P(s;|Z"). We approximate
marginal density estimation of one state variable along representative values of the other
state variables. For example, in order to estimate marginal densiB(lfZ!), we
estimateP(b;|a}, 57, Z'), wherea;, s} are representative values such as maximum
posteriori estimates.
Modeling body configuration space:Given a set of training data for multiple people,
a unified mean manifold embedding can be obtained as was explained in section 3.
The mean manifold can be parameterized by a one-dimensional parginetdt and
a spline fitting functionf : R — R3, which satisfied, = f(5;), to map from the
parameter space into the three dimensional embedding space.
Modeling style shape spaceShape style space is parameterized by a linear combina-
tion of basis of the style space. A generative model in the form of Equation 13 is fitted
to the training data. Ultimately the style parametshould be independent of the con-
figuration and therefore should be time invariant and can be estimated at initialization.
However, we don’t know the person style initially and , therefore, the style needs to fit
to the correct person style gradually during the tracking. So, we formulated style as time
variant factor that should stabilize after some frames from initialization. The dimension
of the style vector depends on the number of people used for training and can be high
dimensional.

We represent new style as a convex linear combination of style classes learned from
the training data. The tracking of the high dimensional style vegtitself will be hard
as it can fit local minima easily. A new style vectois represented by linear weighting

of each of the style classe§, k = 1, - - - , K using linear weighf”:
K K
s=Y Msh N A=, (15)
k=1 k=1

whereK is the number of style classes used to represent new styles. The overall gener-
ative model can be expressed as

K
z = Ta, (A X [Z /\fsk] x ¢(f(5t))> : (16)
k=1
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Tracking problem using this generative model is the estimation of parametér, and

¢ at each new frame given the observatignTracking can be done using a particle

filter as was shown in [42, 43]. Figures 10 and 11 show style adaptive tracking results for
two subjects. In the first case, the person style is in the training set while in the second
case the person was not seen before in the training. In both cases, the style parameter
started at the mean style and adapted correctly to the person shape. It is clear that the
estimated body configuration shows linear dynamics and the particles are showing a
gaussian distribution on the manifold.

(a) tracking of subject 2
4th frame:

16th frame’: 64th framel:

o (c) body conﬁg uratior;

oty unfquaion,

900000000
b0 b a0 ymo

Fig. 10. Tracking for known person

(a) tracking of unknown subject
4th frame:

16th frame): ) 64th framel:

w0l

Fig. 11. Tracking for unknown person
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5 Adding More Variability: Decomposable Generative Model

In section 3 it was shown how to separate a style factor when learning a generative
model for data lying on a manifold. Here we generalize this concept to decompose sev-
eral style factors. For example, consider the walking motion observed from multiple
view points (as silhouettes). The resulting data lie on multiple subspaces and/or multi-
ple manifolds. There is the underling motion manifold, which is one dimensional for the
gait motion. There is the view manifold and the space of different people’s shapes. An-
other example we consider is facial expressions. Consider face data of different people
performing different facial dynamic expressions such as sad, smile, surprise, etc. The
resulting face data posses several dimensionality of variability: the dynamic motion, the
expression type and the person face. So, how to model such data in a generative manner.
We follow the same framework of explicitly modeling the underlying motion manifold
and over that we decompose various style factors.

We can think of the image appearance (similar argument for shape) of a dynamic
object as instances driven from such generative modelyLet R¢ be the appearance
of the object at time instanderepresented as a point in a d-dimensional space. This
instance of the appearance is driven from a model in the form

Y = Toy(x; 01,02, ,an) 17)

where the appearancg, at timet is an instance driven from a generative model where
the functionv is a mapping function that maps body configuratignat time¢ into

the image space. i.e., the mapping functiomaps from a representation of the body
configuration space into the image space given mapping paramgters , a,, each
representing a set of conceptually orthogonal factors. Such factors are independent of
the body configuration and can be time variant or invariant. The general form for the
mapping functiony that we use is

V(@ a1, a0, ,an) =C X1 a1 X -+ Xy Gy - P(24) (18)

wherei)(x) is a nonlinear kernel map from a representation of the body configuration
to a kernel induced space and eaghis a vector representing a parameterization of
orthogonal factor, C is a core tensorx; is mode-itensor product as defined in [37,
81].

For example for the gait case, a generative model for walking silhouettes for differ-
ent people from different view points will be in the form

yr = y(xe50,8) =C X v X s X P(x) (19)

wherev is a parameterization of the view, which is independent of the body configu-
ration but can change over time, ands a parameterization of the shape style of the
person performing the walk which is independent of the body configuration and time
invariant. The body configuratiary evolves along a representation of the manifold that
is homeomorphic to the actual gait manifold.

Another example is modeling the manifolds of facial expression motions. Given
dynamic facial expression such as sad, surprise, happy, etc., where each expression



The Role of Manifold Learning in Human Motion Analysis 19

start from neutral and evolve to a peak expression; each of these motions evolves along
a one dimensional manifold. However, the manifold will be different for each person
and for each expression. Therefore, we can use a generative model to generate different
people faces and different expressions using a model in the form be in the form

ye =v(xe, f) = Axex fx(ay) (20)

wheree is an expression vector (happy, sad, etc.) that is invariant of time and invariant of
the person face, i.e., it only describes the expression type. Simifaidya face vector
describing the person face appearance which is invariant of time and invariant of the
expression type. The motion content is described yhich denotes the motion phase

of the expression, i.e., starts from neutral and evolves to a peak expression depending
on the expression vectat,

The model in Equation 18 is a generalization over the model in equations 1 and 8.
However, such generalization is not obvious. In section 3 LLE was used to obtain man-
ifold embeddings, and then a mean manifold is computed as a unified representation
through nonlinear warping of manifold points. However, since the manifolds twists
very differently given each factor (different people or different views, etc.) it is not pos-
sible to achieve a unified configuration manifold representation independent of other
factors. These limitations motivate the use of a conceptual unified representation of the
configuration manifold that is independent of all other factors. Such unified representa-
tion would allow the model in Equation 18 to generalize to decompose as many factors
as desired. In the model in Equation 18, the relation between body configuration and
the input is nonlinear where other factors are approximated linearly through multilinear
analysis. The use of nonlinear mapping is essential since the embedding of the config-
uration manifold is nonlinearly related to the input.

The question is what conceptual representation of the manifold we can use. For ex-
ample, for the gait case, since the gait is one dimensional closed manifold embedded
in the input space, it is homeomorphic to a unit circle embedded in 2D. In general, all
closed 1 D manifold is topologically homeomorphic to unit circles. We can think of it
as a circle twisted and stretched in the space based on the shape and the appearance of
the person under consideration or based on the view. So we can use such unit circle as
a unified representation of all gait cycles for all people for all views. Given that all the
manifolds under consideration are homeomorphic to unit circle, the actual data is used
to learn nonlinear warping between the conceptual representation and the actual data
manifold. Since each manifold will have its own mapping, we need to have a mecha-
nism to parameterize such mappings and decompose all these mappings to parameterize
variables for views, different people, etc.

Given an image sequencg8,t = 1,--- ,T wherea denotes a particular class
setting for all the factors, , - - - , a,, (€.9., a particular perserand vieww ) representing
a whole motion cycle and given a unit circle embedding of such datg as R? we
can learn a nonlinear mapping in the form

yi = B(xy) (21)

Given such mapping the decomposition in Equation 1 can be achieved using tensor
analysis of the coefficient space such that the coeffidi#nare obtained from a multi-
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linear [81] model
B“:CXlal X oo X A

Given a training data and a model fitted in the form of Equation 18 it is desired to
use such model to recover the body configuration and each of the orthogonal factors
involved, such as view point and person shape style given a single test image or given
a full or a part of a motion cycle. Therefore, we are interested in achieving an effi-
cient solution to a nonlinear optimization problem in which we searchfos;} which
minimize the error in reconstruction

E(z,a1, - ,a,) =||y—C X1 a1 X -+ Xp an X P(z) || (22)

or arobust version of the error. In [41] an efficient algorithms were introduced to recover
these parameters in the case of a single image input or a sequence of images using
deterministic annealing.

5.1 Dynamic Shape Example: Decomposing View and Style on Gait Manifold
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Fig. 12.a,b) Example of training data. Each sequence shows a half cycle only. a) four different
views used for person 1 b) side views of people 2,3,4,5. c) style subspace: each person cycles
have the same label. d) unit circle embedding for three cycles. e) Mean style vectors for each
person cluster. f) View vectors
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In this section we show an example of learning the nonlinear manifold of gait as an
example of a dynamic shape. We used CMU Mobo gait data set [25] which contains
walking people from multiple synchronized vietv§or training we selected five peo-
ple, five cycles each from four different views. i.e., total number of cycles for training
is 100=5 peoplex 5 cyclesx 4 views. Note that cycles of different people and cycles
of the same person are not of the same length. Figure 12-a,b show examples of the
sequences (only half cycles are shown because of limited space).

LERAARRL Y

Fig. 13.a,b) example pose recovery. from top to bottom: input shapes, implicit function, recov-
ered 3D pose. c) Style weights. d) View weights.

4 CMU Mobo gait data set [25] contains 25 people, about 8 to 11 walking cycles each captured
from six different view points. The walkers were using a treadmill.
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Fig. 14. Examples of pose recovery and view classification for four different people from four
views.

The data is used to fit the model as described in Equation 19. Images are normalized
to 60 x 100, i.e.,d = 6000. Each cycle is considered to be a style by itself, i.e., there
are 25 styles and 4 views. Figure 12-d shows example of model-based aligned unit
circle embedding of three cycles. Figure 12-c shows the obtained style subspace where
each of the 25 points corresponding to one of the 25 cycles used. Important thing to
notice is that the style vectors are clustered in the subspace such that each person style
vectors (corresponding to different cycles of the same person) are clustered together
which indicate that the model can find the similarity in the shape style between different
cycles of the same person. Figure 12-e shows the mean style vectors for each of the five
clusters. Figure 12-f shows the four view vectors.

Figure 13 shows example of using the model to recover the pose, view and style.
The figure shows samples of a one full cycle and the recovered body configuration
at each frame. Notice that despite the subtle differences between the first and second
halves of the cycle, the model can exploit such differences to recover the correct pose.
The recovery of 3D joint angles is achieved by learning a mapping from the manifold
embedding and 3D joint angle from motion captured data using GRBF in a way similar
to Equation 21. Figure 13-c,d shows the recovered style weights (class probabilities)
and view weights respectively for each frame of the cycle which shows correct person
and view classification. Figure 14 shows examples recovery of the 3D pose and view
class for four different people non of them was seen in training.

5.2 Dynamic Appearance Example: Facial Expression Analysis

We used the model to learn facial expressions manifolds for different people. We used
CMU-AMP facial expression database where each subject has 75 frames of varying fa-
cial expressions. We choose four people and three expressions each (smile, anger, sur-
prise) where corresponding frames are manually segmented from the whole sequence
for training. The resulting training set contained 12 sequences of different lengths. All
sequences are embedded to unit circles and aligned as described in section 5. A model
in the form of Equation 20 is fitted to the data where we decompose two factors: per-
son facial appearance style factor and expression factor besides the body configuration
which is nonlinearly embedded on a unit circle. Figure 15 shows the resulting person
style vectors and expression vectors.
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(a) Style plotting in 3D (b) Expression plotting in 3D

o> 025 ©a 035 04 045 05 055

Fig. 15. Facial expression analysis for Cohn-Kanade Dataset for 8 subjects with 6 expressions
and their 3D space plotting

We used the learned model to recognize facial expression, and person identity at
each frame of the whole sequence. Figure 16 shows an example of a whole sequence and
the different expression probabilities obtained on a frame per frame basis. The figure
also shows the final expression recognition after thresholding along manual expression
labelling. The learned model was used to recognize facial expressions for sequences of
people not used in the training. Figure 17 shows an example of a sequence of a person
not used in the training. The model can successfully generalizes and recognize the three
learned expression for this new subject.

S e T T L Y
Sequence: Frame Number

R e ]

Sequence: Frame Number

Fig. 16. From top to bottom: Samples of the input sequences; Expression probabilities; Expres-
sion classification; Style probabilities
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EcOQuaence: Frame NOMmber

Fig. 17. Generalization to new people: expression recognition for a new person. From top to
bottom: Samples of the input sequences; Expression probabilities; Expression classification; Style
probabilities

6 Conclusion

In this chapter we focused on exploiting the underlying motion manifold for human
motion analysis and synthesis. we introduced a framework for learning a landmark-
free correspondence-free global representations of dynamic shape and dynamic appear-
ance manifolds. The framework is based on using nonlinear dimensionality reduction to
achieve an embedding of the global deformation manifold which preserves the geomet-
ric structure of the manifold. Given such embedding, a nonlinear mapping is learned
from such embedded space into visual input space using RBF interpolation. Given this
framework, any visual input is represented by a linear combination of nonlinear bases
functions centered along the manifold in the embedded space. In a sense, the approach
utilizes the implicit correspondences imposed by the global vector representation which
are only valid locally on the manifold through explicit modeling of the manifold and
RBF interpolation where closer points on the manifold will have higher contributions
than far away points.

We also showed how approximate solution for the inverse mapping can be obtained
in a closed form which facilitates recovery of the intrinsic body configuration. The
framework was applied to learn a representation of the gait manifold as an example of
a dynamic shape manifold. We showed how the learned representation can be used
to interpolate intermediate body poses as well as in recovery and reconstruction of
the input. We extended the approach to learn mappings from the embedded motion
manifold to 3D joint angle representation which yields an approximate closed-form
solution for 3D pose recovery.
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We show how to learn a decomposable generative model that separates appear-
ance variations from the intrinsics underlying dynamics manifold though introducing a
framework for separation of style and content on a nonlinear manifold. The framework
is based on decomposing the style parameters in the space of nonlinear functions that
maps between a learned unified nonlinear embedding of multiple content manifolds and
the visual input space. The framework yields an unsupervised procedure that handles
dynamic, nonlinear manifolds. It also improves on past work on nonlinear dimensional-
ity reduction by being able to handle multiple manifolds. The proposed framework was
shown to be able to separate style and content on both the gait manifold and a simple
facial expression manifold. As mention in [68], an interesting and important question is
how to learn a parametric mapping between the observation and nonlinear embedding
spaces. We partially addressed this question.

The use of a generative model is necessary since the mapping from the manifold
representation to the input space will be well defined in contrast to a discriminative
model where the mapping from the visual input to manifold representation is not neces-
sarily a function. We introduced a framework to solve for various factors such as body
configuration, view, and shape style. Since the framework is generative, it fits well in a
Bayesian tracking framework and it provides separate low dimensional representations
for each of the modelled factors. Moreover, a dynamic model for configuration is well
defined since it is constrained to the 1D manifold representation. The framework also
provides a way to initialize a tracker by inferring about body configuration, view point,
body shape style from a single or a sequence of images.

The framework presented in this chapter was basically applied to one-dimensional
motion manifolds such as gait and facial expressions. One-dimensional manifolds can
be explicitly modeled in a straight forward way. However, there is no theoretical re-
striction that prevents the framework from dealing with more complicated manifolds.
In this chapter we mainly modeled the motion manifold while all appearance variabil-
ity are modeled using subspace analysis. Extension to modeling multiple manifolds
simultaneously is very challenging. We investigated modeling both the motion and the
view manifolds in [46]. The proposed framework has been applied to gait analysis and
recognition in [39,42,44,43]. It was also used in analysis and recognition of facial
expressions in [40, 45].
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