Skip to main content

Interacting Deformable Objects

  • Chapter
Book cover Human Motion

Part of the book series: Computational Imaging and Vision ((CIVI,volume 36))

  • 2851 Accesses

This chapter discusses approaches for the efficient simulation of interacting deformable objects. Due to their computing efficiency, these methods might be employed in the model-based analysis of human motion.

The realistic simulation of geometrically complex deformable objects at interactive rates comprises a number of challenging problems, including deformable modelling, collision detection, and collision response. This chapter proposes efficient models and algorithms for these three simulation components. Further, it discusses the interplay of the components in order to implement an interactive system for interacting deformable objects.

A versatile and robust model for geometrically complex solids is employed to compute the dynamic behavior of deformable objects. The model considers elastic and plastic deformation. It handles a large variety of material properties ranging from stiff to fluid-like behavior. Due to the computing efficiency of the approach, complex environments consisting of up to several thousand primitives can be simulated at interactive speed.

Collisions and self-collisions of dynamically deforming objects are detected with a spatial subdivision approach. The presented algorithm employs a hash table for representing a potentially infinite regular spatial grid. Although the hash table does not enable a unique mapping of grid cells, it can be processed very efficiently and complex data structures are avoided.

Collisions are resolved with a penalty approach, i.e., the penetration depth of a colliding primitive is processed to compute a force that resolves the collision. The presented method considers the fact that only sampled collision information is available. In particular, the presented solution avoids non-plausible collision responses in case of large penetrations due to discrete simulation steps. Further, the problem of discontinuous directions of the penalty forces due to coarse surface representations is addressed.

All presented models and algorithms process tetrahedral meshes with triangulated surfaces. Due to the computing efficiency of all simulation components, complex environments consisting of up to several thousand tetrahedrons can be simulated at interactive speed. For visualization purposes, tetrahedral meshes are coupled with high-resolution surface meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal J. K. and Cai Q., Human Motion Analysis: A Review, Computer Vision and Image Understanding: CVIU, vol. 73, no. 3, 428-440, 1999.

    Google Scholar 

  2. Amanatides J. and Woo A., A Fast Voxel Traversal Algorithm for Ray Tracing, Proc. Eurographics, 3-9, 1987.

    Google Scholar 

  3. Baciu G., Wong W., Sun H., RECODE: an Image-based Collision Detection Algorithm, The Journal of Visualization and Computer Animation, vol. 10, 181-192, 1999.

    Article  Google Scholar 

  4. Baraff D., Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies, ACM SIGGRAPH Computer Graphics, Proc. 16th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’89, pp. 223-232, 1989.

    Google Scholar 

  5. Baraff D., Coping with Friction for Non-Penetrating Rigid Body Simulation, Computer Graphics, vol. 25, no. 4, 31-40, 1991.

    Article  Google Scholar 

  6. Baraff D., Witkin A., Dynamic Simulation of Non-penetrating Flexible Bodies, Computer Graphics, vol. 26, no. 2, 303-308, 1992.

    Article  Google Scholar 

  7. Baraff D., Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies, Algorithmica, vol. 10, 292-352, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. Baraff D., Fast Contact Force Computation for Non-penetrating Rigid Bodies, ACM SIGGRAPH ’94: Proc. 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 23-34, 1994.

    Google Scholar 

  9. Baraff D., Witkin A., Large Steps in Cloth Simulation, ACM SIGGRAPH ’98: Proc. 25th Annual Conference on Computer Graphics and Interactive Tech-niques, pp. 43-54, 1998.

    Google Scholar 

  10. Baraff D., Collision and contact, ACM SIGGRAPH Course Notes, 2001.

    Google Scholar 

  11. Beeman D., Some Multistep Methods for use in Molecular Dynamics Calcula-tions, Journal of Computational Physics, vol. 20, 130-139, 1976.

    Article  Google Scholar 

  12. van den Bergen G., Efficient Collision Detection of Complex Deformable Models Using AABB Trees, Journal of Graphics Tools, vol. 2, no. 4, 1-13, 1997.

    MATH  Google Scholar 

  13. Bridson R., Fedkiw R., Anderson J., Robust Treatment of Collisions, Contact and Friction for Cloth Animation, ACM Transactions on Graphics (TOG), Proc. 29th Annual Conference on Computer Graphics and Interactive Techniques SIG-GRAPH ’02, vol. 21, no. 3, 594-603, 2002.

    Article  Google Scholar 

  14. van den Bergen G., Proximity Queries and Penetration Depth Computation on 3D Game Objects, Proc. Game Developers Conference, 2001.

    Google Scholar 

  15. Cameron S. A., Culley R. K., Determining the Minimum Translational Distance Between Two Convex Polyhedra, Proc. International Conference Robotics and Automation, pp. 591-596, 1986.

    Google Scholar 

  16. Cameron S., Enhancing GJK: Computing Minimum and Penetration Distance Between Convex Polyhedra, Proc. International Conference Robotics and Au-tomation, pp. 3112-3117, 1997.

    Google Scholar 

  17. Caramana E., Burton D., Shashkov M., Whalen P., The Construction of Com-patible Hydrodynamics algorithms Utilizing Conservation of Total Energy, Jour-nal of Computational Physics, vol. 146, 227-262, 1998.

    MATH  MathSciNet  Google Scholar 

  18. Chadwick J., Haumann D., Parent R., Layered Construction for Deformable Animated Characters, ACM SIGGRAPH Computer Graphics, Proc. 16th An-nual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’89, pp. 243-252, 1989.

    Google Scholar 

  19. Cormen T., Leiserson C., Rivest R., Introduction to Algorithms, ISBN 0-262-03141-8, The MIT Press, Cambridge, Massachusetts, 1990.

    Google Scholar 

  20. Debunne G., Desbrun M., Cani M.-P., Barr A. Adaptive Simulation of Soft Bodies in Real-Time, Proc. Symposium on Computer Animation, pp. 133-144, 2000.

    Google Scholar 

  21. Debunne G., Desbrun M., Cani M.-P., Barr A. Dynamic Real-time Deforma-tions Using Space & Time Adaptive Sampling, Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’01, pp. 31-36, 2001.

    Google Scholar 

  22. Desbrun M., Schröder P., Barr A., Interactive Animation of Structured Deformable Objects, Proc. Graphics Interface, pp. 1-8, 1999.

    Google Scholar 

  23. Dobkin D., Hershberger J., Kirkpatrick D., Suri S., Computing the Intersection Depth of Polyhedra, Algorithmica, vol. 9, 518-533, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  24. Eberhardt B., Weber A., Strasser W., A Fast, Flexible Particle-System Model for Cloth Draping, IEEE Computer Graphics and Applications, vol. 16, no. 5, 52-59, 1996.

    Article  Google Scholar 

  25. Ehmann S., Lin M., SWIFT: Accelerated proximity queries between convex poly-hedra by multi-level voronoi marching, Technical Report TR00-026, Univ. of North Carolina at Chapel Hill, 2000.

    Google Scholar 

  26. Faure F., An Energy-Based Method for Contact Force Computation, Proc. Eurographics, pp. 357-366, 1996.

    Google Scholar 

  27. Fisher S., Lin M. C., Deformed Distance Fields for Simulation of Non-Penetrating Flexible Bodies, Proc. Workshop Computer Animation and Sim-ulation, pp. 99-111, 2001.

    Google Scholar 

  28. Fuhrmann A., Gross C., Luckas V., Interactive Animation of Cloth Including Self Collision Detection, Proc. WSCG, University of West Bohemia, Czech Republic, pp. 141-148, 2003.

    Google Scholar 

  29. Ganovelli F., Dingliana J., O’Sullivan C., BucketTree: Improving Collision Detection Between Deformable Objects, Proc. Spring Conference on Computer Graphics, 2000.

    Google Scholar 

  30. Gascuel M.-P., An Implicit Formulation for Precise Contact Modelling Between Flexible Solids, Proc. 20th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’93, pp. 313-320, 1993.

    Google Scholar 

  31. Gear C., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1971.

    MATH  Google Scholar 

  32. Gibson S., Mitrich B., A Survey of Deformable Models in Computer Graphics, Technical Report TR-97-19, Mitsubishi Electric Research Laboratories MERL, Cambridge, Massachusetts, 1997.

    Google Scholar 

  33. Gilbert E. G., Johnson D. W., Keerthi S. S., A Fast Procedure for Computing the Distance Between Objects in Three-Dimensional Space, IEEE Journal Robotics and Automation, vol. 4, 193-203, 1988.

    Article  Google Scholar 

  34. Gissler M., Becker M., Teschner M., Local Constraint Methods for Deformable Objects, Proc. virtual reality interactions and physical simulations VriPhys, Madrid, Spain, pp. 25-32, Nov. 6-7, 2006.

    Google Scholar 

  35. Gottschalk S., Lin M., Manocha D., OBBTree: A hierarchrical structure for rapid interference detection, Proc. 23rd Annual Conference on Computer Graph-ics and Interactive Techniques SIGGRAPH ’96, pp. 171-180, 1996.

    Google Scholar 

  36. Greene N., Detecting Intersection of a Rectangular Solid and a Convex Polyhe-dron, Graphics Gems IV, pp. 74-82, 1994.

    Google Scholar 

  37. Grispun E., Krysl P., Schröder P., CHARMS: A Simple Framework for Adaptive Simulation, ACM Transactions on Graphics (TOG), Proc. 29th Annual Confer-ence on Computer Graphics and Interactive Techniques SIGGRAPH ’02, vol. 21, no. 3, 281-290, 2002.

    Article  Google Scholar 

  38. Grispun E., Hirani A., Desbrun M., Schröder P., Discrete Shells, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62-67, 2003.

    Google Scholar 

  39. Guibas L., Seidel R., Computing Convolutions by Reciprocal Search, Proc. Sym-posium on Computational Geometry, pp. 90-99, 1986.

    Google Scholar 

  40. Hahn J. K., Realistic Animation of Rigid Bodies, ACM SIGGRAPH Computer Graphics, Proc. 15th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’88, vol. 22, no. 4, 299-308, 1988.

    Article  Google Scholar 

  41. Hauth M., Etzmuss O., Eberhardt B., Klein R., Sarlette R., Sattler M., Daubert K., Kautz J., Cloth Animation and Rendering, Eurographics Tutorials, 2002.

    Google Scholar 

  42. He T., Kaufman A., Collision detection for volumetric objects, Proc. IEEE Visualization, pp. 27-34, 1997.

    Google Scholar 

  43. Heidelberger B., Teschner M., Keiser R., Mueller M., Gross M., Consistent Pen-etration Depth Estimation for Deformable Collision Response, Proc. Vision, Modelling, Visualization, pp. 339-346, 2004.

    Google Scholar 

  44. Hirota G., Fisher S., Lin M., Simulation of non-penetrating elastic bodies using distance fields, Technical Report TR00-018, University of North Carolina at Chapel Hill, 2000.

    Google Scholar 

  45. Hockney R., The Potential Calculation and Some Applications, Alder B., Fern-bach S., Rotenberg M. (eds.): Methods in Computational Physics, Plasma Physics, Academic Press, New York, vol. 9, pp. 136-211, 1970.

    Google Scholar 

  46. Hoff K., Zaferakis A., Lin M., Manocha D., Fast and Simple 2D Geometric Proximity Queries Using Graphics Hardware, Proc. Symposium on Interactive 3D Graphics, pp. 145-148, 2001.

    Google Scholar 

  47. Hoff K., Zaferakis A., Lin M., Manocha D., Fast3D Geometric Proxim- ity Queries Between Rigid and Deformable Models Using Graphics Hardware Acceleration, Technical Report University of North Carolina, Computer Science, 2002.

    Google Scholar 

  48. Hubbard P., Interactive Collision Detection, Proc. IEEE Symposium on Re-search Frontiers in Virtual Reality, pp. 24-31, 1993.

    Google Scholar 

  49. Hughes M., DiMattia C., Lin M., Manocha D., Efficient and Accurate Interfer-ence Detection for Polynomial Deformation and Soft Object Animation, Proc. Computer Animation, pp. 155-166, 1996.

    Google Scholar 

  50. James D., Pai D., Artdefo. Accurate Real-Time Deformable Objects, Proc. 26th Annual Conference on Computer Graphics and Interactive Techniques SIG-GRAPH ’99, pp. 65-72, 1999.

    Google Scholar 

  51. Kacic-Alesic Z., Nordenstam M., Bullock D., A Practical Dynamics System, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7-16, 2003.

    Google Scholar 

  52. Kakadiaris I.A. and Metaxas D., Vision-Based Animation of Digital Humans, Proc. Computer Animation ’98 Conf., pp. 144-152, June 1998.

    Google Scholar 

  53. Kakadiaris I., Metaxas D., Model-Based Estimation of 3D Human Motion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1453-1459, 2000.

    Article  Google Scholar 

  54. Kim Y., Otaduy M., Lin M., Manocha D., Fast Penetration Depth Compu-tation for Physically-based Animation, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 23-31, 2002.

    Google Scholar 

  55. Kim Y., Hoff K., Lin M., Manocha D., Closest Point Query Among the Union of Convex Polytopes Using Rasterization Hardware, Journal of Graphics Tools, vol. 7, no. 4, 43-51, 2002.

    Google Scholar 

  56. Kim Y. J., Lin M. C., Manocha D., Incremental Penetration Depth Estimation Between Convex Polytopes Using Dual-Space Expansion, IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 152-163, 2004.

    Article  Google Scholar 

  57. Klosowski J., Held M., Mitchell J., Sowizral H., Zikan K., Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs, IEEE Transactions on Visualization and Computer Graphics, vol. 4, no. 1, 21-36, 1998.

    Article  Google Scholar 

  58. Larsen E., Gottschalk S., Lin M., Manocha D., Fast proximity queries with swept sphere volumes, Technical Report TR99-018, University of North Carolina at Chapel Hill, 1999.

    Google Scholar 

  59. Larsson T., Akenine-Moeller T., Collision Detection for Continuously Deforming Bodies, Proc. Eurographics, pp. 325-333, 2001.

    Google Scholar 

  60. Lombardo J., Cani M.-P., Neyret F., Real-time Collision Detection for Virtual Surgery, Proc. Computer Animation, pp. 33-39, 1999.

    Google Scholar 

  61. Melax S., Dynamic Plane Shifting BSP Traversal, Proc. Graphics Interface, pp. 213-220, 2000.

    Google Scholar 

  62. McKenna M., Zeltzer D., Dynamic Simulation of Autonomous Legged Locomo-tion ACM SIGGRAPH Computer Graphics, Proc. 17th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’90, vol. 24, no. 4, 29-38, 1990.

    Article  Google Scholar 

  63. Milliron T., Jensen R., Barzel R., Finkelstein A., A Framework for Geometric Warps and Deformations, ACM Transactions on Graphics, vol. 21, no. 1, 20-51, 2002.

    Article  Google Scholar 

  64. Mirtich B., Efficient algorithms for two-phase collision detection, Technical Report TR-97-23, Mitsubishi Electric Research Laboratory, 1997.

    Google Scholar 

  65. Moore M., Wilhelms J., Collision Detection and Response for Computer Ani-mation, ACM SIGGRAPH Computer Graphics , Proc. 15th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’88, vol. 22, no. 4, 289-298, 1988.

    Article  Google Scholar 

  66. Müller M., Dorsey J., McMillan L., Jagnow R., Cutler B., Stable Real-Time Deformations, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 49-54, 2002.

    Google Scholar 

  67. Müller M., Gross M., Interactive Virtual Materials, Proc. Graphics Interface, pp. 239-246, May 17-19, 2004.

    Google Scholar 

  68. Müller M., Heidelberger B., Teschner M., Gross M., Meshless Deformations Based on Shape Matching, ACM Transactions on Graphics (TOG), ACM SIG-GRAPH 2005 Papers SIGGRAPH ’05, vol. 24, no. 3, 471-478, 2005.

    Google Scholar 

  69. O’Brien J., Bargteil A., Hodgins J., Graphical Modelling and Animation of Ductile Fracture, ACM Transactions on Graphics (TOG), Proc. 29th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’02, vol. 21, no. 3, pp. 291-294, 2002.

    Article  Google Scholar 

  70. O’Rourke J. and Badler N.I., Model-Based Image Analysis of Human Motion using Constraint Propagation, IEEE Trans. Pattern Analysis and Machine In-telligence, vol. 2, no. 6, 522-536, 1980.

    Google Scholar 

  71. Pauly M., Pai D. K., Guibas L. J., Quasi-Rigid Objects in Contact, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 109-119, 2004.

    Google Scholar 

  72. Platt J. C., Barr A. H., Constraint Methods for Flexible Models, ACM SIG-GRAPH Computer Graphics, Proc. 15th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’88, vol. 22, no. 4, 279-288, 1988.

    Article  Google Scholar 

  73. Provot X., Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior, Graphics Interface, pp. 147-154, 1995.

    Google Scholar 

  74. Provot X., Collision and Self-collision Handling in Cloth Model Dedicated to Design Garment, Proc. Graphics Interface, pp. 177-189, 1997.

    Google Scholar 

  75. Quinlan S., Efficient Distance Computation Between Non-convex Objects, Proc. IEEE International Conference on Robotics and Automation, pp. 3324-3329, 1994.

    Google Scholar 

  76. Redon S., Kim Y. J., Lin M. C., Manocha D., Fast Continuous Collision Detec-tion for Articulated Models, Proc. Symposium on Solid Modelling and Applica-tions, 2004.

    Google Scholar 

  77. Rehg J.M. and Kanade T., Model-Based Tracking of Self-Occluding Articulated Objects, Proc. International Conference Computer Vision, pp. 612-617, June 1995.

    Google Scholar 

  78. Spillmann J., Teschner M., Contact Surface Computation for Coarsely Sampled Deformable Objects, Proc. Vision, Modelling, Visualization VMV’05, Erlangen, Germany, pp. 289-296, Nov. 16-18, 2005.

    Google Scholar 

  79. Spillmann J., Becker M., Teschner M., Efficient Updates of Bounding Sphere Hierarchies for Geometrically Deformable Models, Proc. Virtual Reality Inter-actions and Physical Simulations VriPhys, Madrid, Spain, pp. 53-60, Nov. 6-7, 2006. Best Paper Award.

    Google Scholar 

  80. Spillmann J., Wagner M., Teschner M., Robust Tetrahedral Meshing of Trian-gle Soups, Proc. Vision, Modelling, Visualization VMV’06, Aachen, Germany, pp. 9-16, Nov. 22-24, 2006.

    Google Scholar 

  81. Spillmann J., Becker M., Teschner M., Non-iterative Computation of Contact Forces for Deformable Objects, Journal of WSCG 2007, vol. 15, no. 1-3, 33-40, Feb. 2007.

    Google Scholar 

  82. Sud A., Otaduy M.A., Manocha D., DiFi: Fast 3D Distance Field Computation Using Graphics Hardware, Computer Graphics Forum, vol. 23, no. 3, 557-566, 2004.

    Article  Google Scholar 

  83. Bradshaw G., O’Sullivan C., Sphere-tree construction using medial-axis approx-imation, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Ani-mation, pp. 33-40, 2002.

    Google Scholar 

  84. Swope W., Andersen H., Berenc P., Wilson K., A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters, Journal of Chemical Physics, vol. 76, no. 1, 1982.

    Google Scholar 

  85. Terzopoulos D., Platt J. C., Barr A. H., Elastically Deformable Models, ACM SIGGRAPH Computer Graphics, Proc. 14th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’87, vol. 21, no. 4, 205-214, 1987.

    Article  Google Scholar 

  86. Terzopoulos D., Fleischer K., Deformable Models, The Visual Computer, vol. 4, pp. 306-331, 1988.

    Article  Google Scholar 

  87. Terzopoulos D., Fleischer K., Modelling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture, ACM SIGGRAPH Computer Graphics, Proc. 15th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’88, vol. 22, no. 4, 269-278, 1988.

    Article  Google Scholar 

  88. Teschner M., Heidelberger B., Müller M., Pomeranets D., Gross M..Optimized Spatial Hashing for Collision Detection of Deformable Objects, Proc. Vision, Modelling, Visualization, pp. 47-54, 2003.

    Google Scholar 

  89. Teschner M., Heidelberger B., Müller M., Gross M., A Versatile and Robust Model for Geometrically Complex Deformable Solids, Proc. Computer Graphics International, pp. 312-319, 2004.

    Google Scholar 

  90. Teschner M., Kimmerle S., Heidelberger B., Zachmann G., Raghupathi L., Fuhrmann A., Cani M.-P., Faure F., Magnetat-Thalmann N., Strasser W., Col-lision Detection for Deformable Objects, Computer Graphics Forum, vol. 24, no. 1, 61-81, 2005.

    Article  Google Scholar 

  91. Turk G., Interactive collision detection for molecular graphics, Technical Report TR90-014, University of North Carolina at Chapel Hill, 1990.

    Google Scholar 

  92. Verlet L., Computer Experiments on Classical Fluids. Ii. Equilibrium Correla-tion Functions, Physical Review, vol. 165, 201-204, 1967.

    Google Scholar 

  93. Volino P., Courchesne M., Magnenat-Thalmann N., Versatile and Efficient Tech-niques for Simulating Cloth and Other Deformable objects, Proc. 22nd Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’95, pp. 137-144, 1995.

    Google Scholar 

  94. Volino P., Magnenat-Thalmann N., Comparing Efficiency of Integration Meth- ods for Cloth Animation, Proc. Computer Graphics International, pp. 265-274, 2001.

    Google Scholar 

  95. Wu X., Downes M., Goktekin T., Tendick F., Adaptive Nonlinear Finite Ele-ments for Deformable Body Simulation Using Dynamic Progressive Meshes, Proc. Eurographics, pp. 349-358, 2001.

    Google Scholar 

  96. Zachmann G., Minimal Hierarchical Collision Detection, Proc. Symposium on Virtual Reality Software and Technology, pp. 121-128, 2002.

    Google Scholar 

  97. Zhang D., Yuen M., Collision Detection for Clothed Human Animation, Proc. Pacific Graphics, pp. 328-337, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Teschner, M., Heidelberger, B., Müller-Fischer, M. (2008). Interacting Deformable Objects. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds) Human Motion. Computational Imaging and Vision, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6693-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6693-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6692-4

  • Online ISBN: 978-1-4020-6693-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics