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Abstract A precise fault-hypothesis is essential for the design and validation of a
safety-critical computer system. The fault-hypothesis must specify the fault-
containment regions (FCRs), the assumed failure modes of the FCRs with their
respective failure frequencies, the error detection latency and the time-interval
that is required in order that an FCR can repair the state corruption that has
occurred as a consequence of a transient fault. After a general discussion of
the detailed contents of the fault-hypothesis document, this paper presents the
fault-hypothesis that has formed the basis for the design of the time-triggered ar-
chitecture. The time-triggered architecture is a distributed architecture that has
been developed for the control of safety-critical embedded applications.
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1. Introduction

Ultra-dependable computer systems that are deployed in safety-critical ap-
plications are expected to exhibit a mean-time-to-failure (MTTF) of better than
10° hours [Walter et al., 1995], i.e. more than 100 000 years. Although this
number has its origin in the dependability requirements of a fly-by-wire sys-
tem, it is applicable to the automotive domain as well. It has been stipulated
that the dependability requirements for a drive-by-wire system are even more
stringent than the dependability requirements for fly-by-wire systems, since
the number of exposed hours of humans is higher in the automotive domain.

It is impossible to gain confidence about a system reliability of 100 000 years
by testing [Littlewood and Strigini, 1993]. A consequence of the untestability
of 10~2 systems is the need to analyze critical algorithms by formal methods in
order to convince certification authorities of the correctness of the algorithms
within the specified operational envelop. Since the observed mean-time tofail
of hardware components is two orders of magnitude below the aimed-for reli-
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ability at the system level, the safety argument must be based on experimental
data about the component reliability and analytical arguments taking into ac-
count the redundancy in the fault-tolerant system structure. Even a very low
correlation in the failure probabilities of replicated subsystems has a signifi-
cant effect on the system reliability of ultra-dependable systems. The system
design must thus assure that replicated subsystems of an architecture for ultra-
dependability systems fail independently of each other.

It is the objective of this paper to present the fault hypothesis of the time-
triggered architecture (TTA). In the following section we argue why a precise
fault-hypothesis is essential for the design of a safety critical system and out-
line the contents of such a precise fault hypothesis. Section three gives a short
overview of the time-triggered architecture. Section four presents the fault
hypothesis of the TTA with respect to hardware faults, while Section five is de-
voted to the discussion of the fault-hypothesis with respect to software faults.
The paper finishes with a conclusion in Section six.

2. The Fault Hypothesis

The fault hypothesis is a statement about the assumptions made concerning
the types and number of faults that a fault-tolerant system is expected to toler-
ate [Laprie, 1992]. The fault hypothesis divides the fault space into two disjoint
partitions: the partition of covered faults and the partition of uncovered faults.
The covered faults are those faults that are contained in the fault-hypothesis
and are addressed during the system design. The occurrence of a covered fault
during system operation should not have an adverse effect on the availability
of the safety-critical system functions. The occurrence of an uncovered fault
can lead to critical system failure, since no mechanisms are provided to pro-
tect against uncovered faults. During system validation it must be shown that
uncovered faults are rare events.

2.1 Why do we need a precise Fault Hypothesis?

Before the design of a safety-critical system can commence, a precise fault
hypothesis is needed for the following reasons:

1 Design of the Fault-Tolerance Algorithms: Without a precise fault-
hypothesis it is not known which fault-classes must be addressed during
the system design [Avizienis, 1997].

2 Assumption Coverage: There is a probability that the assumptions that
are contained in the fault hypothesis are not met by reality. This proba-
bility is called the assumption coverage [Powell, 1992]. The assumption
coverage predicts the probability of failure of a perfectly designed fault-
tolerant system. Without a precise fault-hypothesis, the probability for
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the occurrence of uncovered faults cannot be predicted. The assump-
tions that form the fault-hypothesis must be carefully scrutinized and
in a safety-critical system it must be demonstrated that the assumption
coverage is significantly better than 10~ /hour.

3 Validation: The implementation of the fault-tolerance mechanisms can
only be validated, if it is precisely known which faults must be tolerated
by the given system and which faults are not expected to be tolerated,
since they are outside the scope of the given implementation.

4 Certification: Without a precise fault hypothesis it is impossible to cer-
tify the correct operation of a fault-tolerant system.

5 Design of the Never-Give-Up (NGU) Strategy: In a safety-critical ap-
plication, the control system should never give up, even if the fault-
hypothesis is violated by reality. In a properly designed fault-tolerant
system chances are high that a violation of the fault hypothesis is caused
by a correlated shower of external transient faults or by a Heisenbug
and that a fast restart of the system will be successful. The activation
of the restart mechanism must be activated by an NGU algorithm. Such
an NGU algorithm can only be designed if a precise fault hypothesis is
available.

2.2 Contents of the Fault Hypothesis

In the following Section we elaborate on the required contents of a fault
hypothesis w.r.t. hardware faults of a distributed real-time control system that
is intended for safety-critical applications. A safety critical distributed real-
time system consists of a set of node computers that are interconnected by
replicated communication channels (see Figure 1).

Specification of the Fault Containment Regions (FCR). The notion of a

fault-containment region (FCR) is introduced in order to delimit the immediate
impact of a single fault to a defined subsystem of the overall system. A fault-
containment region is defined as a part of the system that may be affected by
a single fault. The probability of failure of two different FCRs failing at the
same time should be independent, i.e. there should not be any correlation of the
failure probabilities of different FCRs, Since the immediate consequences of a
fault in any one of the shared resources in an FCR may impact all subsystems
of the FCR, the subsystems of an FCR cannot be considered to be independent
of each other and cannot be considered to form their own FCRs [Kaufmann
and Johnson, 2000]. In the context of this paper the following shared hardware
resources that can be impacted by a fault are considered:

®  Computing Hardware
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m  Power Supply
® Timing Source
®m  Cock Synchronization Service

®  Physical Space

For example, if two subsystems depend on a single timing source, e.g., a sin-
gle oscillator, then these two subsystems are not considered to be independent
and therefore belong to the same FCR. Since this definition of independence
allows that two FCRs can share the same design, e.g., the same software, de-
sign faults in the software or the hardware are not part of this fault-model.

In a distributed real-time system consisting of a set of SoCs (System on a
Chip) node computers, a complete node computer must be considered to form a
single FCR, since all correlated failures of two subsystems residing on the same
silicon die cannot be eliminated: the subsystems residing on a single die share
the same physical space, the same silicon substrate, the same manufacturing
mask and manufacturing process, the same ground and power supply, probably
the same timing source etc. There is a non-negligible probability that a fault in
any one of these resources will affect both subsystems simultaneously.

A communication channel connecting the nodes of the distributed system
can be formed by a bus, a ring, a star or any other interconnection structure.
From the point of view of fault-containment, such a channel forms also a single
FCR in a safety-critical environment.

Failure Modes. A failure mode specifies the type of failure that may oc-
cur if an FCR is impacted by a fault. In the literature different failure modes
of an FCR are introduced from restricted to unrestricted [Laprie, 1992]. The
most restricted failure mode is a fail-silent failure, i.e. where the assumption is
made that an FCR either operates correctly or is silent. The most unrestricted
failure mode is a Byzantine failure, where no assumptions is made about the
behavior of a faulty component. Every restriction in the failure mode, i.e. ev-
ery assumption about the behavior of a faulty component must be scrutinized
w.r.t. the assumption coverage. It follows that a system that can tolerate an
unrestricted failure mode of an FCR will lead to a better assumption coverage
than a system with restricted failure modes.

Temporal Properties of Faults.  Another classification considers the tem-
poral properties of faults. We distinguish between the following five types of
faults in the temporal domain:

1 Transient fault: A transient fault is caused by some random event. An
example for a transient is a SEU (single event upset caused by a radioac-
tive particle) [Constantinescu, 2002].
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2 Intermittent fault: An intermittent fault is considered to be a correlated
sequence of transient faults that is caused by some single physical degra-
dation of a component. An example of an intermittent fault is the partial
degradation of the junction of a transistor on a chip (e.g., caused by ox-
idation) that causes sporadic load dependent or data dependent errors.
Experimental data show that an intermittent fault is likely to eventually
produce a permanent fault [Normand, 1996].

3 Soft permanent fault: A soft permanent fault is a corruption of the h-
state or of the i-state within a component [Kopetz, 1997] without causing
any permanent damage to the component. For example, a corruption can
be caused by a single-even-upset (SRU) [Kaufmann and Johnson, 2000].
The repair of the erroneous data structure eliminates the soft-permanent
fault without any further effect on the hardware.

4 Permanent fault: A permanent fault occurs, if the hardware of an FCR
brakes down permanently. An example for a permanent fault is a broken
wire.

5 Massive transient disturbance: A massive transient disturbance is a
transient an external occurrence (e.g., a powerful imission of electro-
magnetic radiation) that results in the correlated failure of two or more
communication channels and possibly some of the nodes. Whereas fail-
ure mode 1 to 4 relate to internal faults, failure mode 5 is concerned
with an external fault. The probability for the occurrence of an external
fault depends on the characteristics of the system environment, not on
the design of the system per se.

Failure Frequency. The third part of the fault-hypothesis is concerned with
the frequency of failures of the identified failure modes. Whereas failure rate
data of electronic components w.r.t. permanent failures are available in the
literature [Pauli et al., 1998], it is much more difficult to get consistent failures
for intermittent and transient faults. One reason for this difficulty lies in the
fact that transient failures often depend an physical location or on a particular
geometry which is difficult to reproduce. For example, the SEU soft error
rate caused by high-energy particles originating from the space depends on the
altitude and the geographical location [Kaufmann and Johnson, 2000].

Error Detection Latency. The consequence of a fault is an error in the
system state [Laprie, 1992]. The time it takes to detect the error is called
the error detection latency. The error detection latency should be very short in
order to be able to process the error before it propagates to a failure that impacts
parts of the system that have not been disturbed by the original fault. Knowing
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that a failure has occurred is more important than the actual failure [Rechtin
and Maier, 2002, p. 276].

Recovery Intervals.  From the point of view of reliability modeling is im-
portant to know the time it takes the system to recover from a transient fault.
For a permanent fault that has not caused spare exhaustion it is important to
know the time it takes until all correct FCRs have a consistent view of the
faulty FCR. For a transient fault there are thee intervals of importance:

» Transient fault duration: The time interval between the start of the
transient fault and the instant when all communicating partners recog-
nize that the transient fault has disappeared.

®= Protocol recovery interval: The time it takes until the protocol has
recovered and established a consistent view among all communicating
partners (e.g., w.r.t. clock synchronization).

= State repair interval: The time it takes until an application has recov-
ered from the transient fault and repaired the damage to its h-state (his-
tory state).

3. The Time-Triggered Architecture

The Time-Triggered Architecture (TTA) is a distributed architecture for the
implementation of safety-critical applications [Kopetz and Bauer, 2003]. A
large TTA system can be decomposed into a set of clusters. The structure of a
typical single-cluster TTA system is depicted in Figure 1. Such a cluster con-
sists of a backbone core architecture of node computers that are interconnected
by two replicated communication channels. The media access to the com-
munication channels is controlled by a time-division-multiple-access (TDMA)
protocol. All correct nodes of a TTA system have synchronized clocks that
are used to construct a fault-tolerant global sparse time lattice [Kopetz, 1992].
The guardians in the communication channels of Fig. 1 are needed in order to
transform an arbitrary timing failure of a node into a fail-silent failure.

It is a goal of the TTA to reach—in a properly configured system—a service
reliability at the system level of better than 1072 failures/hour. This is achieved
by

®  structuring the system into a set of independent fault-containment re-
gions (FCRs)

& Provide replica-deterministic operation of the node computers that can
operate concurrently in a TMR (triple-modular-redundancy) mode.

®  Tolerate an unrestricted (arbitrary) failure each FCR.
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m Establish error-detection regions (EDR) such that the consequences of a
fault, the ensuing errors, are detected before they corrupt the state of any
other independent FCR [Kopetz, 2003]
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Figure 1. Structure of the Time-Triggered Architecture

A TTA node is supposed to be a system-on-a-chip (SOC). From the hardware
point of view, an SOC forms a single fault-containment region that can fail
in an arbitrary failure mode. Each node computer contains a Time-Triggered
Communication Controller (CC) and a host computer. The interface between
the Communication Controller and the host computer is called the Communi-
cation Network Interface (CNI). A host computer can support local field-busses
(e.g., CAN, LIN, or TTP/A) for the interconnection of the intelligent transduc-
ers (sensors and actuators) in the controlled object. The internal structure of a
node is depicted in Fig. 2.
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Figure 2.  Structure of a TTA Node

The node of Figure 2 comprises five partitions: the upper leftmost partition
provides a safety-critical service, while the other four partitions (B,C,D,E) pro-
vide non-safety critical services. Each partition has access to its local sensors
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and actuators via a local field bus. Given that the node hardware functions
correctly and the shaded area is free of design faults, the core encapsulation
service ensures that there cannot be any error propagation from the non-critical
partitions to the critical partition. The certification for the safety-critical ser-
vices is thus reduced to the shaded area of Figure 2.

The middleware partition in of Figure 2 establishes and monitors the encap-
sulated execution environments of the non-safety-critical jobs. In addition to a
state message interface it provides event messages interfaces to the non-safety
critical jobs and emulates legacy interfaces (e.g., a CAN controller interface)
such that existing legacy software can be ported with minimal modifications.

The application software which resides within a partition is called ajob.
A set of cooperating jobs, each one possibly at a different node, forms a dis-
tributed application subsystem (DAS). The jobs of a DAS communicate via an
encapsulated communication service with guaranteed temporal properties. If
required, jobs of a DAS may be replicated at different nodes in order that the
system provides a required level of fault tolerance in case a node fails. A TTA
system may support many different encapsulated DASes that can interact via
virtual gateways [Kopetz et al., 2004].

4. Fault Hypothesis w.r.t. Hardware Faults

With respect to hardware faults, the fault hypothesis of the the TTA consists
of the following assumptions:

1 A node computer forms a single fault-containment region (FCR). From
the point of view of hardware faults, a node is thus considered to be an
atomic unit.

2 A physical communication channel including the central guardian forms
a single FCR. All virtual channels that are implemented on a physical
channel form a single unit of failure

3 A node computer can fail in an arbitrary failure mode. As long as only a
single node computer fails, it is not relevant whether the failure is caused
by a hardware fault or a software fault.

4 A central guardian distributes the messages received from the node com-
puters. It can fail to distribute the messages, but cannot generate mes-
sages on its own (this is called the distribution assumption).

5 The permanent failure rate of a node computer or a central guardian is
in the order of 100 FIT [Pauli et al., 1998] i.e. about 1000 years.

6 The transient failure rate of a node computer is in the order of 100 000
FIT, i.e, about 1 year. One important mechanism that causes transient
failure is an SEU [Kaufmann and Johnson, 2000].
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7 One out of about fifty failures of a node computer is non-fail silent. The
relation of silent to non-silent failures of a node has been derived from
fault injection experiments [Karlsson et al., 1995].

8 The central guardian transforms the non-fail-silent and the slightly-out-
of-specification (SOS) failures of the node computers in the temporal do-
main to fail-silent failures in the temporal domain [Ademaj et al., 2003]
(this is called the SOS assumption).

9 The detection of a single error is performed by a membership algorithm.
The error detection latency is less then two TDMA rounds.

10 The detection of multiple errors is performed by a clique avoidance al-
gorithm. The detection latency is less than two TDMA rounds.

11 The system can recover from a single transient fault within two TDMA
rounds.

12 The system can recover from a massive transient that destroys the clock
synchronization within 8 TDMA rounds [Steiner et al., 2003] after the
transient has disappeared.

13 The state repair time of an application takes an application specific
amount of time which must be derived from knowledge about the ap-
plication software.

There are two important assumptions in this fault hypothesis that must be
further investigated the distribution assumption and the SOS assumption.

The distribution assumption states that the central guardian cannot distribute
valid messages without having received a valid message. If the central guardian
has no knowledge about how to generate a CRC of a message, the probability
that a random fault will produce a random message that is syntactically correct,
is generated at the proper time, is of the proper length and contains a proper
CRC is far below the 10~ limit.

The validity of the SOS assumption has been established by extensive fault-
injection experiments [Ademaj et al., 2003]. In more than twenty thousand
experiments that resulted in a node failure because of the radiation of the TTA
node with e particles, no error propagation has been observed when the system
was equipped with a central guardian. In contrast to this, a number of error
propagations have been observed when the nodes where protected by a local
guardian. Considering the low failure rate for permanent node errors and the
results of these experiments it can be concluded that the SOS assumption is
valid within the 10™9 limit if the system contains a central guardian.

A correctly configured TTA system will recover from a massive external
transient that causes correlated transient faults in the worst case within 8§ TDMA
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rounds after the transient has disappeared. This scenario has been investigated
by model checking [Steiner et al., 2004].

Considering the failure rates that have been presented above, the probability
that a second independent failure will happen before the recovery from the first
failure has been completed is below the 107 limit.

To summarize, a properly configured TTA system tolerates a single arbitrary
hardware failure of any one of its nodes within the 109 limit. At the moment
the TTA implementation of TTTech [TTTech, 1998] is in the process of being
certified by the FAA (Federal Aviation Authority) for aerospace applications
that are in the highest criticality class.

5. Fault Hypothesis w.r.t. Design Faults

5.1 Bohrbugs versus Heisenbugs

In his classical paper [Gray, 1986], Jim Gray proposed to distinguish
between two types of software design errors, Bohrbugs and Heisenbugs.
Bohrbugs are design errors in the software that cause reproducible failures. An
example for a Bohrbug is a logic error in a program that causes the program to
always take an unintended branch if the same computation is repeated. Heisen-
bugs are design errors in the software that seem to generate quasi-random fail-
ures. An example for a Heisenbug is a synchronization error that will cause
the violation of an integrity condition (e.g., only one process is active in its
critical section) if the temporal relationship of two concurrent processes hap-
pens to cause a race condition. A minor change in the temporal interleaving
of the two concurrent processes will eliminate this race condition and thus the
manifestation of the software error. From a phenomenological point of view, a
transient failure that is caused by a Heisenbug cannot be distinguished from a
failure caused by transient hardware malfunction.

In a system with state, a Heisenbug can cause a permanent state er-
ror [Kopetz, 1997]. The correct operation of the node will resume, as soon
as this state error has been eliminated (e.g., by voting over the state in a TMR
triade).

Experience has shown that it is much more difficult to find and eliminate
Heisenbugs than it is to eliminate the Bohrbugs from a large software sys-
tem [Eisenstadt, 1997].

5.2 Safety-Critical Design

We assume that the hardware design, the core encapsulation service and the
safety-critical software (the safety-critical design—see Fig. 2) is free of design
errors. In order to justify this strong assumption, this safety critical design
must be made as small and simple as possible in order that it can be analyzed
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formally. In order to reduce the probability of Heisenbugs, the safety critical
design should be time-triggered. The control signals are derived from the pro-
gression of the sparse global time base which guarantees that all replicated
components will visit the same state at about the same physical time.

Concerning Heisenbugs, the above assumption is more stringent than
needed. If there would be a Heisenbug in the safety-critical design that man-
ifests itself as an uncorrelated failure with a failure rate that is in the same
magnitude as the failure rate for failures caused by transient hardware faults
then a properly configured TTA architecture would mask such a failure.

53 Non-Safety-Critical Software

The non-safety-critical software of a node is encapsulated by the encapsula-
tion service such that even a malicious fault in the non-safety critical software
will have no effect on the correct function of the safety-critical software.

6. Conclusions

The fault hypothesis states the assumptions about the types and number of
faults that a fault-tolerant system must tolerate. The fault-hypothesis must be
established at the beginning ofthe design process, since it has a profound influ-
ence on the architecture of the emerging fault-tolerant system. It is thus one of
the most important documents for the design process. Without a precise fault
hypothesis it is impossible to decide which faults are covered and which faults
are uncovered by a given design. In order to achieve a high assumption cover-
age the fault hypothesis should make minimal assumptions about the behavior
of faulty nodes. These minimal assumptions must be carefully documented and
scrutinized in order to establish that the assumption coverage is in agreement
with the overall dependability objective of the intended system.

The fault-hypothesis for the TTA states that a faulty node may fail in any
failure mode, irrespective of whether the faulty behavior is caused by a phys-
ical fault in the hardware or a design fault in the hardware/software system.
However, in the fault hypothesis of the TTA it is assumed that the failures of
any two nodes are not correlated.
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