
BASIC CONCEPTS OF
ABSTRACT INTERPRETATION

Patrick Cousot
École Normale Supérieure
45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

Radhia Cousot
CNRS & École Polytechnique
91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr

Abstract

Keywords:

A brief introduction to the theory of Abstract Interpretation, examplified by
constructing a hierarchy of partial traces, reflexive transitive closure, reachable
states and intervals abstract semantics of transition systems.

Abstract Interpretation, Safety, Specification, Static Analysis, Verification.

1. Introduction

Abstract Interpretation [Cousot, 1978] is a theory of approximation of math-
ematical structures, in particular those involved in the semantic models of
computer systems. Abstract interpretation can be applied to the systematic
construction of methods and effective algorithms to approximate undecidable
or very complex problems in computer science such that the semantics, the
proof, the static analysis, the verification, the safety and the security of soft-
ware or hardware computer systems. In particular, static analysis by abstract
interpretation, which automatically infers dynamic properties of computer sys-
tems, has been very successful these last years to automatically verify complex
properties of real-time, safety-critical embedded systems.

All applications presented in the WCC 2004 topical day on Abstract In-
terpretation compute an overapproximation of the program reachable states.
Hence, we consisely develop the elementary example of reachability static
analysis [Cousot and Cousot, 1977]. We limit the necessary mathematical
concepts to naïve set theory. A more complete presentation is [Cousot, 2000a]
while [Cousot, 1981; Cousot and Cousot, 1992b] can be recommended as first
readings and [Cousot and Cousot, 1992a] for a basic exposition to the theory.



360 Basic Concepts of Abstract Interpretation

2. Transition systems

Programs are often formalized as graphs or transition systems
where is a set of states, is the set of initial states and

is a transition relation between a state and its possible successors [Cousot,
1978; Cousot, 1981]. For example the program x := 0; while x < 100
do x := x + 1 can be formalized as

where is the set of integers.

3. Partial trace semantics

A finite partial execution trace starts from any state and
then moves on through transitions from one state to a possible suc-
cessor such that The set of all such finite partial execution
traces will be called the collecting semantics of the transition system in that
it is the strongest program property of interest (in this paper).

There is no partial trace of length 0 so the set of partial traces of length
0 is simply the empty set A partial trace of length 1 is where is
any state. So the set of partial traces of length 1 is simply
By recurrence, a trace of length is the concatenation of a trace
of length with a partial trace of length 1 such that the pair is
a possible state transition. So if is the set of partial traces of length then

Then the collecting semantics of is
the set of all partial traces of all finite lengths.

4. Partial trace semantics in fixpoint form

Observe that where:

so that is a fixpoint of in that [Cousot and Cousot, 1979].

The proof is as follows:



Patrick Cousot & Radhia Cousot 361

Now assume that is another fixpoint of We prove by
recurrence that Obviously

Assume by recurrence hypothesis that
Then implies so

whence
recurrence whence

By
is the least fixpoint of written:

where and are the iterates of

5. The reflexive transitive closure as an abstraction of the
partial trace semantics

Partial execution traces are too precise to express program properties that
do not relate to intermediate computation steps. Considering initial and final
states only is an abstraction:

Observe that is the reflexive transitive closure of the transition rela-
tion viz. the set of pair such that there is a finite path in the graph

from vertex to vertex through arcs of if and only
if

Now if Y is a set of pairs of initial and final states, it describes a set of partial
traces where the intermediate states are unkown :

So if X is a set of partial traces, it is approximated from above by in
the sense that

6. Answering concrete questions in the abstract

To answer concrete questions about X one may sometimes answer it using
a simpler abstract question on For example the concrete question “Is
there a partial trace in X which has and as initial, intermediate and
final states?” can be replaced by the abstract question “Is there a pair in

If there is no such a pair in then there is no such a partial trace
in whence none in X since However if there is
such a pair in then we cannot conclude that there is such a trace in X
since this trace might be in but not in X. The abstract answer must
always be sound but may sometimes be incomplete. However if the concrete
question is “Is there a partial trace in X which has respectively and as
initial and final states?” then the abstract answer is sound and complete.



362 Basic Concepts of Abstract Interpretation

7. Galois connections

Given any set X of partial traces and Y of pair of states, we have :

So if and only if which is a characteristic property
of Galois connections. Galois connections preserve joins in that

Equiv-
alent formalizations involve Moore families, closure operators, etc [Cousot,
1978; Cousot and Cousot, 1979].

8. The reflexive transitive closure semantics in fixpoint
form

Since the concrete (partial trace) semantics can be expressed in fixpoint form
and the abstract (reflexive transitive closure) semantics is an abstraction of the
concrete semantics by a Galois connection, we can also express the abstract
semantics in fixpoint form. This is a general principle in Abstract Interpretation
[Cousot and Cousot, 1979].

We have whence proving by antisymmetry.

For all sets X of partial traces, we have the commutation property:

If follows, by recurrence, that the iterates and those
of are related by For the basis, For the in-

duction step, if then
It follows that

of



Patrick Cousot & Radhia Cousot 363

This can be easily generalized to order theory [Cousot, 1978; Cousot
and Cousot, 1979] and is known as the fixpoint transfer theorem.

Observe that if is finite then the fixpoint definition provides an iterative
algorithm for computing the reflexive transitive closure of a relation as

until

9. The reachability semantics as an abstraction of the
reflexive transitive closure semantics

The reachability semantics of the transition system is the set
of states which are reachable from the initial states

This is an abstraction of the reflexive transtive closure semantics
by defining the right-image of the set
Z by the relation and

Let We have the Galois connection:

10. The reachability semantics in fixpoint form

To establish the commutation property, we prove that

By the fixpoint transfer theorem, it follows that

Observe that if is finite, we have a forward reachability iterative algo-
rithm (since which can be used to check e.g. that
all reachable states satisfy a given safety specification



364 Basic Concepts of Abstract Interpretation

11. The interval semantics as an abstraction of the
reachability semantics

In case the set of states of a transition system is totally ordered
with extrema and the interval semantics                 of

provides bounds on its reachable states

where min Z (max Z) is the infimum (resp. supremum) of the set Z and

(resp. All empty intervals with are identified

to By defining the concretization

we can define the abstract implication

or equivalently We have a Galois connection:

By defining the characteristic prop-
erty that Galois connections preserves least upper bounds is now

12. The interval semantics in fixpoint form

Obviously, Moreover:

We only have semi-commutation hence a fix-
point approximation [Cousot and Cousot, 1979]:

So questions have sound answers
in the abstract.

1or, more generally, form a complete lattice.



Patrick Cousot & Radhia Cousot 365

13. Convergence acceleration

In general, the iterates diverge.

For example for the transition system
of program x := 0; while true do x := x + 1, we get

with diverging iterates
which least upper bound is

14. Widening

Therefore, to accelerate convergence, we introduce a widening [Cousot
and Cousot, 1977] such that and the iterates with
widening defined as if while

otherwise do converge. Then their limit is finite
and is a fixpoint overapproximation

An example of interval widening consists in choosing a finite ramp
and while,

otherwise, then else if
then else
For the transition system of pro-

gram x : = 0; while x < 100 do x : = x + 1 and ramp
we have and

the iterates with widening
This is the

limit of these iterates with widening since

15. Narrowing

The limit of an iteration with widening can be improved by a narrowing
[Cousot and Cousot, 1977] such that implies All terms
in the iterates with narrowing improve
the result obtained by widening since

An example of interval narrowing is then
else if then else

For the program x := 0; while x < 100 do x := x + 1, we have
and

so for since

16. Composition of abstractions

We have defined three abstractions of the partial trace semantics of a
transition system The design was compositional in that the composition

[if



366 Basic Concepts of Abstract Interpretation

of Galois connections is a Galois connection so
the successive arguments on sound approximations do compose nicely.

17. Hierarchy of semantics

The four semantics of a transition system that we have con-
sidered form a hierarchy from the partial traces to the reflexive transitive
closure reachability and interval semantics

in abstraction order. The complete range of other possible abstract se-
mantics include all classical ones for programming languages [Cousot, 2002].
By undecidability, none is computable, but effective widening/narrowing iter-
ations can be used to compute approximations (which are more precise than
resorting to finite abstractions, as in abstract model checking [Cousot and
Cousot, 1992b]). More abstract semantics can answer less questions precisely
than more concrete semantics but are cheaper to compute or approximate.
This covers all static analysis, including dataflow analysis [Cousot and Cousot,
1979], abstract model checking [Cousot, 2000b], typing [Cousot, 1997], etc.
In practice the right balance between precision and cost can lead to precise and
efficient abstractions, as for example in Astrée [Blanchet et al., 2003].

References
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and

Rival, X. (2003). A static analyzer for large safety-critical software. PLDI’2003, 196–207,
ACM.

Cousot, P. (1978). Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès scie-
nces mathématiques, Grenoble University, 21 March 1978.

Cousot, P. (1981). Semantic foundations of program analysis. In Muchnick, S.S. and Jones,
N.D., editors, Program Flow Analysis: Theory and Applications, ch. 10, 303–342. Prentice-
Hall.

Cousot, P. (1997). Types as abstract interpretations. 24th POPL, 316–331, ACM.
Cousot, P. (2000a). Abstract interpretation based formal methods and future challenges. « In-

formatics – 10 Years Back, 10 Years Ahead », LNCS 2000, 138–156, Springer.
Cousot, P. (2000b). Partial completeness of abstract fixpoint checking. SARA’2000, LNAI 1864,

1–25, Springer.
Cousot, P. (2002). Constructive design of a hierarchy of semantics of a transition system by

abstract interpretation. Theoret. Comput. Sci., 277(1—2):47–103.
Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints. 4th POPL, 238–252, ACM.
Cousot, P. and Cousot, R. (1979). Systematic design of program analysis frameworks. 6th

POPL, 269–282, ACM.
Cousot, P. and Cousot, R. (1992a). Abstract interpretation frameworks. J. Logic and Comp.,

2(4):511–547.
Cousot, P. and Cousot, R. (1992b). Comparing the Galois connection and widening/narrowing

approaches to abstract interpretation. PLILP’92, LNCS 631, 269–295, Springer.




