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1. Introduction

Everybody knows about failure problems in software: it is an admitted fact
that most large software do contain bugs. The cost of such bugs can be very
high for our society and many methods have been proposed to try to reduce
these failures. While merely reducing the number of bugs may be economi-
cally sound in many areas, in critical software (such as found in power plants
or aeronautics), no failure can be accepted.

In order to achieve an unfailing critical software, industrials follow very
strict production patterns and must also certify the absence of errors through
state-of-the-art verification. When old verification methodologies became in-
tractable in time and cost due to the growth of code size, the Abstract Interpre-
tation Team” of Ecole Normale Supérieure started developing Astreé [Blanchet
et al., 2002]. The object of Astrée is the automatic discovery of all potential
errors of a certain class for critical software. As most critical software don’t
(or won’t) have any error, the main challenge was to be exhaustive and very
selective, that is yielding few or no false alarms on the software, so as to reduce
the cost of verifying those alarms.

In this paper, we show how Astrée is based on sound approximations of the
semantics of C programs, tailored to be very accurate on a class of embedded
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synchronous critical software. In section 5, we describe how these abstractions
can also be applied or augmented to deal with a wider class of critical software.

2. Related Work

The first method which was used to try and give some confidence in the
absence of errors in programs was testing. It consists in running a program on
a set of inputs and checking that it behaves as intended. For critical software,
the coverage of the tested inputs should be very high in order to achieve a high
confidence. The number of possible inputs for real time embedded systems is
nearly infinite, so testing is at the same time very expensive (hundreds of man
years) and not fully satisfying as some unwanted behaviors may have escaped
detection by testing.

Because testing is so expensive, one can use bug finders which will detect
some common programming mistakes or report on suspicious codes. Such
programs are usually fully automatic, so their cost is very low. They do find
bugs in many codes, but they don’t give good results on critical softwares: they
report too many false alarms and they may overlook some unpredicted bugs.

Formal methods on the other hand can give exhaustive results. Some of
them can prove very complex properties of the software, but usually at the cost
of heavy human interaction and expertise. This is the case for proof assistants,
which may be useful on small parts of the code but cannot scale to full sys-
tems. Other formal methods can be more automated, such as software model
checkers.

The main problem of many formal methods based tools is that they perform
the proof on a model of the code. In order to be tractable, this model cannot
be too big, so either they are restricted to a small part of the code or they are
restricted to some aspects of the semantics of the code. In general, models
concentrate on the logical design and forget about abstruse machine imple-
mentation aspects of the software. In the case of critical software, where the
logical design is well-mastered, potential errors are more likely to lurk in the
machine implementation (such as the rounding errors introduced by floating-
point arithmetics).

The theory of abstract interpretation [Cousot, 1978] makes it possible to
analyze the actual semantics of real programs while performing sound abstrac-
tions to give correct results. Some industrial code analyzers are based on this
theory and they give exhaustive results. So far, they discovered bugs in some
applications, but they have not been precise enough on critical software: they
yield too many false alarms to be useful. The cost of formally proving that all
these alarms are indeed false is way too high even for a selection rate® of 1%.

3The selection rate is the ratio (number of lines with alarms)/(total number of lines).
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Figure 1.  An example visualization of the results of Astrée.

3. What Astrée Does

Astrée is a static analyzer that automatically computes supersets of the pos-
sible values in synchronous C programs at every program points. Thus, if
Astrée does not report any bad behavior, it proves that no such behavior can
happen whatever the inputs of the C program.

Errors detected by Astrée

Once having a superset of the possible values of all program variables at
each program point, Astrée can automatically report on a number of errors. The
kind of errors which are currently reported by Astrée stems from the first end-
user requirements. They wanted to see what could be proved without going
through the expensive process of producing formal specifications. The least
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one can expect from a critical software is that the code never produces fatal
errors, such as divisions by zero. Another common requirement is that the
language is never used in cases where the result is stated as “undefined” in the
norm of the language [JTC 1/SC 22, 1999]. For example, this is the case of
out-of-bound array accesses, or integer overflows.

The errors which are currently reported are:

s out-of-bound array accesses,
® integer division by zero,

m floating point operations overflows and invalid operations (resulting in
IEEE floating values Inf and NaN),

® integer arithmetics wrap around behavior (occurring mainly in over-
flows),

® casts that result in wrap around operations (when the target type is too
small to contain a value).

In addition, Astrée can use some user-defined known facts and report on
arbitrary user defined assertions (written in C) on the software.

Some Characteristics of Astrée

Astrée was developed to prove the absence of run-time errors for a specific
class of synchronous C programs. As expected, it will be quite efficient and
precise on the difficulties raised by this class of programs and may be weak on
other aspects of the language.

One restriction of the class of C programs for which Astrée was originally
designed is that it does not contain any dynamic memory allocation, string
manipulation and very restricted pointers. That allows for a fast and precise
memory analysis which would not be possible otherwise.

On the other hand, the class of analyzed C programs contains large programs
(hundreds of thousands of lines of code), with a huge number of global inter-
dependent variables (about 10 000 for a 100 000 lines program). This makes
it hard to be efficient and precise, and specific algorithms and heuristics have
been developed to keep the complexity of Astrée low (not far above linear in
the number of lines of codes and the number of global variables).

As is necessary for many critical software, Astrée deals well with com-
plex control using thousands of boolean variables. In addition, Astrée makes
a sound analysis of floating values computations (as described in [IEEE Com-
puter Society, 1985]), taking into account all possible rounding errors [Miné,
2004]. Astrée is even able to prove tight invariants for a variety of numerical
filters implemented with floating numbers [Feret, 2004].
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4, Inside Astrée

In order to understand what Astrée proves and how to use it, we describe
the basic techniques used in the analyzer.

How Sets of Values can be Approximated

Astrée is a static analyzer based on abstract interpretation [Cousot and Cou-
sot, 1979]. Following this theory, Astrée will proceed by approximating the
set of all possible inputs into a symbolic representation. Then the program
to analyze will be interpreted on this set of values, approximating each basic
instruction when necessary to keep the sets of values representable. Approxi-
mation mechanisms are also necessary to find the sets of all possible values at
a given point inside a loop, as the problem of finding the exact set is in gen-
eral undecidable. The main mechanism is the so-called widening which allows
extrapolating this set.

There is usually a balance between precision and efficiency in abstract in-
terpretation. This balance can be tuned in two main categories: the widen-
ing strategy and the symbolic representation of sets of values. Thanks to the
abstract interpretation theory, the symbolic representation can be split into a
number of so-called abstract domains, each abstract domain being specialized
on certain shapes of sets of values, and all abstract domains communicating
to obtain as precise information as possible. Knowing which abstract domains
are used in a static analyzer, one can have an idea of its potential precision.

Basic Abstract Domains.  The less expensive abstract domain for numerical
values is the domain of intervals, as described in [Cousot and Cousot, 1976].
In Astrée, an interval is associated with each variable, with a possibility of
distinguishing each cell in arrays, or only the union of all cell values if the
array is too big.

Octagon Abstract Domain. This domain, described in [Miné, 2001], will
capture relational sets of values. The shape of these relations is of the form
X £ Y € interval. The complexity of manipulating groups of variables linked
through an octagon is cubic in the number of variables. Although it is the re-
lational domain with the best complexity, we cannot afford the complexity of
one big octagon relating all pairs of variables in the program. Instead, vari-
ables are grouped into small octagons according to user directives or pattern
matching of predefined program schemata.

Digital Filters Abstract Domains. Linear filters are widely used in control
software. The problem is that although their ideal versions (on real numbers)
are well studied, the effect of computing on IEEE floating numbers may change
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the stability of the filters. Also, with many filters, it is not possible to bound
the output stream in the presence of retroactions by using classical linear ab-
stract domains (even the more powerful polyhedra of [Cousot and Halbwachs,
1978]). [Feret, 2004] developed for Astrée a way of designing very precise and
efficient abstract domains to deal with linear filters on floating point numbers.

Decision Trees Abstract Domain.  In order to represent precisely the effect
of complex control based on boolean variables, Astrée uses decision trees such
that the decisions are based on the boolean variables, and the leaves of the
trees are numerical abstract domains. This gives very precise informations
about booleans, but the complexity is exponential in the number of boolean
variables. So we group some boolean variables and some numerical ones in the
same way as for octagons: either through user directives or pattern matching.

Unions. Unions of sets of possible values must be performed each time we
merge the two branches of an if or each time we loop when computing the
invariants of while loops. In addition to being a costly operation, for all the
abstract domains used in Astrée unions imply a loss of precision. In order to
keep more precision, at least locally, it is possible to delay the unions. The
effect is to partition the traces of executions. Such partitioning, which can be
extremely costly if the unions are too much delayed, can be introduced by the
user or automatically through pattern matched program schemata.

Choosing Parameters for the Analysis

If Astrée always used all its most precise abstract domains and strategies
on all program points and variables, the time and memory consumption of the
analysis would be intractable. Luckily, no critical software required that much
precision to prove their absence of run-time error so far. Astrée provides a
lot of opportunities for the end-user to tune different parameters, so that the
analyzer will be precise where it matters. As tuning the analyzer might be
difficult for a non-expert, Astrée comes with a number of automatic decision
procedures to compute default parameters. Still, it can be useful to know where
these parameters can be taken into account.

The different phases of Astrée, after parsing, are:

Preprocessing.  Preprocessing is decomposed in three passes. In the first
one, the code is simplified, computing constant expressions (in a sound way
with respect to floating point computations) and removing unused variables.
Then the analyzer uses various pattern matched program schemata to deter-
mine where to put partitioning directives, in addition to those specified by the
user in the source code. In the third phase, some variables are put together to
be later incorporated into octagons or decision trees. The end-user can choose
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to put some packs or influence the parameterization, choosing for exemple the
maximum number of boolean variables in a decision tree.

Iterator. The actual abstract interpretation of the program starts from a user
supplied entry point in the program, such as the main function. This interpre-
tation follows the directives (relational packs and partitioning) introduced in
the preprocessing phases. For each instruction, the iterator asks the abstract
domains to compute a sound approximation of the result of the instruction (the
abstract transfer function). The difficult point is then the analysis of the loops,
where other parameters must be taken into account. For example, the end-user
can choose the number of loop unrollings performed by the iterator, or the
stages which will be used in the widening process [Blanchet et al., 2003].

5. Different Uses for Astrée

Although Astrée was designed to answer the specific needs of one end-user,
many more end-users might find the analyzer useful.

The primary use of Astrée is the proof of absence of run-time errors. Be-
cause Astrée can also use known facts and report on violated assertions inserted
in the source code to analyze, it is possible to prove complex user-defined prop-
erties. In the near future, we plan to add the possibility of specifying complex
temporal properties, such as often required by critical, real-time software spec-
ifications.

In addition to reporting potential errors, Astrée can also output the possible
sets of values of the variables which were computed to check for those potential
errors. On the class of programs for which Astrée was developed, the analysis
time is quite low: about one hour per 100 000 lines of program on a 2GHz
PC. That makes it possible for using Astrée at the earlier stages of software
development. Its high precision makes it likely to discover bugs, and to find
their origin by inspecting the sets of possible values leading to that bug. This
task will be eased in the future, when Astrée will incorporate some backward
analysis which will allow to discover an approximation of the values which led
to a failure.

6. Conclusion

Astrée is a static analyzer aiming at proving the absence of run-time errors of
synchronous C programs. It is already successful on a class of large embedded
programs, where the analysis time is as low as a few hours for hundreds of
thousands of lines of code. As Astrée was developed for that class of programs,
the Astrée team (B. Blanchet, P. Cousot, R.Cousot, J. Feret, L. Mauborgne, A.
Miné, D. Monniaux and X. Rival) expects that some adjustments could be
necessary to apply that tool to other families of programs. Our hope is that it
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will be possible in a near future to prove the safety of all critical softwares at a

reasonable cost.

In addition to analyzing more synchronous programs, we plan the evolution
of Astrée in three directions. First, Astrée will propose the automatic proof
that the compiled codes of the C programs are also correct by transferring
automatically the analysis from source code to compiled code. Second we
will add in the analyzer the possibility to perform a backward analysis. This
will help to determine if an alarm is due to the imprecision of the analysis
or if it is a true bug, and in both cases, it will help finding the source of the
imprecision or cause of the bug. Finally, Astrée will be extended to analyze
precisely asynchronous programs.
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