SOFTWARE DESIGN AND DEVELOPMENT OF
MUTIMODAL INTERACTION

Marie-Luce Bourguet
Queen Mary University of London

Abstract: The multimodal dimension of a user interface raises numerous problems that
are not present in more traditional interfaces. In this paper, we briefly review
the current approaches in software design and modality integration techniques
for multimodal interaction. We then propose a simple framework for
describing multimodal interaction designs and for combining sets of user
inputs of different modalities. We show that the proposed framework can help
designers in reasoning about synchronization patterns problems and testing
interaction robustness.

Key words: multimodal software architectures; integration techniques; finite state
machines; synchronization patterns; recognition errors.

1. INTRODUCTION

Recent developments in recognition-based interaction technologies (e.g.
speech and gesture recognition) have opened a myriad of new possibilities
for the design and implementation of multimodal interfaces. However,
designing and implementing systems that take advantage of these new
interaction techniques is difficult. On one hand, our lack of understanding of
how different modes of interaction can be best combined in the user
interface often leads to interface designs with poor usability. On the other
hand, developers still face major technical challenges for the implementation
of multimodality, as indeed, the multimodal dimension of a user interface
raises numerous challenges that are not present in more traditional interfaces.
These new challenges include: the need to process inputs from different and
heterogeneous streams; the co-ordination and integration of several

410 Marie-Luce Bourguet

communication channels that operate in parallel (modality fusion); the
partition of information sets for the generation of efficient multimodal
presentations (modality fission); dealing with uncertainty and recognition
errors; and implementing distributed interfaces over networks (e.g. when
speech and gesture recognition are performed on different processors).

One of the main multimodal challenges lays in the implementation of
adapted software architectures that enable modality fusion mechanisms. In
this paper, we briefly review the current approaches in software design and
modality integration techniques (section 2). Then in section 3, we propose a
simple framework for describing multimodal interaction designs and for
combining sets of user inputs of different modalities. In particular, we show
that the proposed framework can help designers in reasoning about
synchronization patterns problems and testing interaction robustness.

2. SOFTWARE ARCHITECTURES AND
MODALITY FUSION TECHNIQUES

When implementing a multimodal system, several design and
architectural decisions have to be made. The interdependency of input
modalities and therefore the need for their integration in the system
architecture can take several forms and fulfill different roles: redundancy
(e.g. speech and lip movements), complementarity (e.g. “delete this” with a
pointing gesture), disambiguation, support (e.g. speech and iconic hand
gestures), modulation (e.g. speech and facial expressions), etc. Depending on
the type of interdependency, a developer must try answering the following
questions:
® At which level of granularity should data be processed on each input

stream?

How should heterogeneous information be represented?
® According to what criteria should modality integration be attempted?

Modality integration is usually attempted at either the feature (low) or the
semantics (high) level, in two fundamentally different types of software
architectures. Feature level architectures are generally considered
appropriate for tightly related and synchronized modalities, such as speech
and lip movements (Duchnowski et al, 1994). In this type of architecture,
connectionist models can be used for processing single modalities because of
their good performance as pattern classifiers, and because they can easily
integrate heterogeneous features (Waibel et al, 1994). However, a truly
multimodal connectionist approach is dependent on the availability of
multimodal training data and such data is not currently available.

Software Design and Development of Mutimodal Interaction 411

When the interdependency between modalities implies complementarity
or disambiguation (e.g. speech and gesture inputs), information is typically
integrated at the syntactic or semantic levels (Nigay et al, 1995). In this type
of architecture, current approaches for modality integration include frame-
based methods, multimodal grammars and agent-based frameworks. In
frame-based methods, data structures called frames (Minsky, 1975) are used
to represent meaning and knowledge and to merge information that results
from different modality streams (Johnston, 1998). The use of grammars to
parse multimodal inputs takes its inspiration from previous work in speech
and natural language understanding (Shimazu et al, 1995). Grammars are
sets of rules that describe all possible inputs. The main advantage of the
grammatical approach is its generality, as grammars can be declared outside
the core of a mutimodal system. Its main drawback lies in the difficulty of
declaring the grammar without imposing constraints on users’ behavior since
a grammar must encompass all legal multimodal messages that a system will
find acceptable. Finally, The agent based framework approach employs
multiple agents to co-ordinate distributed information sources. In Martin et
al (1999) for example, the framework is based on the Open Agent
Architecture (OOA), a complex and general-purpose infrastructure for
constructing systems composed of multiple software components. Agent
based architectures are flexible and able to exploit parallelism.

3. PROTOTYPING MULTIMODAL INTERACTION

The models of architecture and integration techniques that can be found
in the literature today and that were briefly reviewed in the previous section
are often too generic or complex to provide ready-made solutions for
developers. To date, no toolkit is available that addresses both the design and
technical challenges of multimodality. In this section, we present a simple
framework to support the designers and developers of multimodal user
interfaces.

3.1 Designing Multimodality

Finite State Machines (FSMs) are a well-known technique for describing
and controlling dialogs in graphical user interfaces (Wasserman, 1985). We
show here that FSMs are also useful for modelling multimodal interaction
and constitute a good framework for combining sets of user inputs of
different modalities. Figure 1 illustrates how a speech and pen “move”
command can be represented by an FSM.

412 Marie-Luce Bourguet

mouse move

mouse release

mouse release

\ - speach "move”
moUSe move mouse release . o

Figure 1. FSM modelling a “move” speech and pen command where many synchronisation
patterns are represented.

When designing multimodal commands, one important task is the
specification of the synchronization requirements. The aim is to guarantee
that users will be able to activate the commands in a natural and spontaneous
manner (Oviatt et al, 1997). In practice, a user can produce inputs in a
sequential (e.g. with pen input completed before speech begins) or
simultaneous manner (when both inputs show some temporal overlap).
FSMs constitute a good framework for testing different synchronization
patterns (Bourguet, 2003a). For example, Figure 1 describes a speech and
pen “move” command where many different synchronisation patterns are
represented. According to this representation, users are free to deliver inputs
in their preferred order (sequentially or simultaneously, pen first or speech
first). However, if we kept only the top branch of the FSM, users would
become forced to use speech first and then the pen. Such an FSM would
have for effect to constrain users in their usage of the modalities.

3.2 Testing interaction designs

Recognition-based technologies are still error-prone. Speech recognition
systems, for example, are sensitive to vocabulary size, quality of audio
signal and variability of voice parameters. In Oviatt (2000) it is shown that,
during the process of semantic fusion, multimodal architectures can achieve
automatic recovery from recognition errors and false interpretations. The
phenomenon in which an input signal in one modality allows recovery from
recognition error or ambiguity in a second signal in a different modality is
called mutual disambiguation of input modes (Oviatt, 2000). However, the
degree to which mutual disambiguation can operate in a given application is
dependent on the design of the interaction, i.e. on the set of multimodal
constructions that the system is able to interpret. In this section, we show
that FSMs can help assessing the potential of different multimodal designs
for mutual disambiguation of input signals (Bourguet, 2003b).

Software Design and Development of Mutimodal Interaction 413

An FSM can naturally filter out erroneous recognition hypotheses
because mis-recognised inputs that do not match the transition events of the
current states can be ignored (“passive error handling””). The user may then
choose to either repeat the input or reformulate it in order to increase the
chances of good recognition. Once the input is correctly recognized, the
dialog can resume. Passive error handling is a very simple technique that
does not achieve error correction but is able to filter out erroneous
recognition results. It is appropriate for testing the robustness of simple
interaction models, where all FSMs are significantly different from each
other.

When the recognition engine delivers more than one recognition
hypothesis, an alternative strategy become possible. The event handler may
dispatch subsequent recognition hypotheses until one is accepted by an FSM.
In this case, the user does not need to repeat the input, as the recognition
error has been automatically corrected. In order to work, this technique relies
on the fact that the correct speech input is present in one of the recognition
hypotheses.

The use of probabilistic state machines for dialog management for inputs
with uncertainty has been discussed in Hudson et al (1992). This technique
is relevant and applicable to multimodal interaction. The main difference
between a probabilistic model and the traditional model of FSMs is that
instead of having a single current state, a probabilistic FSM can have a
distribution of alternative states. The probability that the machine is in any
of these states is calculated based on a probability associated with each of
the alternative user inputs. One potential advantage to this technique is that
the probability of a state that triggered an action can be communicated to the
application. The application can then combine this probability with its
internal models to evaluate if an action should be executed or not, or to
compare several concurrent actions.

4. CONCLUSION

The iterative design, implementation and testing of multimodal user
interfaces is difficult, due to a lack of supporting tools for designers and
developers. In response to this, we have developed a toolkit that aims to
facilitate this process (Bourguet, 2002). In particular, modality integration,
error handling and user input management are handled by the toolkit in a
transparent manner. We have also developed a graphical tool that facilitates
the process of declaring interaction models in the form of collections of
FSMs (Bourguet, 2002). In the near future we are planning to automatically
generate interaction models from experimental observations. Potential users

414 Marie-Luce Bourguet

will be asked to freely produce actions with the aim of activating specific
multimodal commands. These actions will then form the basis for the
automatic generation of FSMs. These automatically generated FSMs will
then be tested for error robustness using the techniques that were outlined in
this paper.

REFERENCES

Bourguet, M.L., 2002, A Toolkit for Creating and Testing Multimodal Interface Designs, in
companion proceedings of UIST 02, pp. 29-30.

Bourguet, M.L., 2003a, Designing and Prototyping Multimodal Commands, in proceedings of
INTERACT’03, pp. 717-720.

Bourguet, M.L., 2003b, How finite state machines can be used to build error free multimodal
interaction systems, in proceedings of HCI’03 volume 2, pp. 81-84.

Duchnowski, P., Meier, U. & Waibel, A., 1994, See Me, Hear Me: Integrating Automatic
Speech Recognition and Lipreading, in proceeding of ICSLP 94.

Hudson, S, & Newell, G., 1992, Probabilistic Sate Machines: Dialog Management for Inputs
with Uncertainty, in Proceedings of UIST’92, pp. 199-208.

Johnston, M., 1998, Unification-based Multimodal Parsing, in proceeding of COLING-ACL.

Martin, D., Cheyer, A. & Moran, D., 1999, The Open Agent Architecture: A framework for
building distributed software systems, Applied Artificial Intelligence, 13 (1-2), pp 91-128.

Minsky, M., 1975, A framework for presenting knowledge, The Psychology of Computer
Vision, P.H. Winston (ed.), McGraw-Hill.

Nigay, L & Coutaz, J., 1995, A Generic Platform for Addressing the Multimodal Challenge,
in Proceedings of CHI’95, ACM Press, pp. 98-105.

Opviatt, S., De Angeli, A. & Kuhn, K., 1997, Integration and synchronisation of input modes
during multimodal human-computer interaction, in Proceedings of CHI’97, ACM Press,
pp. 415-422.

Opviatt, S., 2000, Taming recognition errors with a multimodal interface, in Communications
of the ACM, 43 (9), ACM Press, pp. 45-51.

Shimazu, H. & Takashima, Y., 1995, Multimodal Definite Clause Grammar, Systems and
Computers in Japan, 26 (3).

Waibel, A. & Duchnowski, P., 1994, Connectionist models in multimodal human-computer
interaction, in proceedings of GOMAC 94.

Wasserman, A., 1985, Extending State Transition Diagrams for the Specification of Human-
Computer Interaction, IEEE Transactions on Software Engineering, 11 (8), pp. 699-713.

