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of Normative Systems

Abstract. We study Normative Temporal Logic (ntl), a formalism intended for rea-

soning about the temporal properties of normative systems. ntl is a generalisation of the

well-known branching-time temporal logic ctl, in which the path quantifiers A (“on all

paths. . . ”) and E (“on some path. . . ”) are replaced by the indexed deontic operators Oη

(“it is obligatory in the context of the normative system η that . . . ”) and Pη (“it is per-

missible in the context of the normative system η that. . . ”). After introducing the logic,

we give a sound and complete axiomatisation. We then present a symbolic representation

language for normative systems, and we identify four different model checking problems,

corresponding to whether or not a model is represented symbolically or explicitly, and

whether or not we are given a concrete interpretation for the normative systems named

in formulae to be model checked. We show that the complexity of model checking varies

from p-complete in the simplest case (explicit state model checking where we are given a

specific interpretation for all normative systems in the formula) up to exptime-hard in

the worst case (symbolic model checking, no interpretation given). We present examples

to illustrate the use of ntl, and conclude with discussions of related work (in particular,

the relationship of ntl to other deontic logics), and some issues for future work.
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1. Introduction

Normative systems, or social laws, have been widely promoted as an ap-
proach to coordinating multi-agent systems [26, 25, 20, 27, 28, 18]. Crudely,
a normative system defines a set of constraints on the behaviour of agents,
corresponding to obligations, which may or may not be observed by agents.
The designer of a normative system typically has some objective in mind,
such that if the constraints of the normative system are observed, then the
objective is achieved [18].

A number of formalisms have been proposed for reasoning about norma-
tive behaviour in multi-agent systems, typically based on deontic logic [30,
12, 19]. However the computational properties of such formalisms — in par-
ticular, their use in the practical design and synthesis of normative systems
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and the complexity of reasoning with them — has received relatively little
attention. In this paper, we rectify this omission. We present a logic for rea-
soning about normative systems, which is closely related to the successful
and widely-used temporal logic ctl [14]. The idea underpinning Norma-
tive Temporal Logic (ntl) is to replace the universal and existential path
quantifiers of ctl with indexed deontic operators Oη and Pη, where Oηϕ

means that “ϕ is obligatory in the context of the normative system η”, and
Pηϕ means “ϕ is permissible in the context of the normative system η”.
Here, ϕ is a temporal logic expression over the usual ctl temporal opera-
tors g,♦, , and U , and a syntactic construction rule similar to that in
ctl applies: every temporal operator must be preceded by a deontic oper-
ator. A normative system η is understood to be a set of constraints on the
behaviour of agents within the system. In ntl, obligations and permissions
are thus, first, contextualised to a normative system η and, second, have a
temporal dimension. ntl generalises ctl because by letting η∅ denote the
empty normative system, which places no constraints on the behaviour of
agents, the universal path quantifier A can be interpreted as Oη∅ . Because
of its close relationship to ctl, much of the technical machinery developed
for reasoning with ctl can be adapted for use in ntl [14, 11].

The remainder of the paper is structured as follows. After introducing
the logic, we give a sound and complete axiomatisation. We then present a
symbolic representation language for normative systems. We investigate the
complexity of ntl model checking, and identify four different variations of
the model checking problem, depending on whether a model is represented
symbolically or explicitly, and whether we are given a concrete interpretation
for the normative systems named in formulae to be model checked. We
show that the complexity of model checking varies from p-complete in the
simplest case (explicit state model checking where we are given a specific
interpretation for all normative systems in the formula) up to exptime-
hard in the worst case (symbolic model checking, no interpretation given).
We present two examples to illustrate the use of the logic. We conclude
with a discussion of related work, (in particular, a discussion of the relation
to other deontic and deontic temporal logics), and some issues for future
research.

2. Normative Temporal Logic

2.1. Kripke Structures

Let Φ = {p, q , . . .} be a finite set of atomic propositional variables. A Kripke
structure (over Φ) is a quadruple
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K = 〈S ,S 0,R,V 〉,

where:

• S is a finite, non-empty set of states, with S 0 being the initial states
(∅ ⊂ S 0 ⊆ S );

• R ⊆ S × S is a total binary relation on S , which we refer to as the
transition relation1; and

• V : S → 2Φ labels each state with the set of propositional variables true
in that state.

A path over R is an infinite sequence of states π = s0, s1, . . . which must
satisfy the property that ∀u ∈ N: (su , su+1) ∈ R. If u ∈ N, then we denote
by π[u] the component indexed by u in π (thus π[0] denotes the first element,
π[1] the second, and so on). A path π such that π[0] = s is an s-path.

2.2. Normative Systems

Normative systems have come to play a major role in multi-agent systems
research; for example, under the name of social laws, they have been shown
to be a useful mechanism for coordination [27]. In this paper, a norma-
tive system should be understood simply as a set of constraints on the be-
haviour of agents in a system. More precisely, a normative system defines,
for every possible system transition, whether or not that transition is con-
sidered to be legal or not, in the context of the normative system. Different
normative systems may differ on whether or not a particular transition is
considered legal. Formally, a normative system η (w.r.t. a Kripke structure
K = 〈S ,S 0,R,V 〉) is simply a subset of R, such that R \η is a total relation.
We refer to the requirement that R \ η is total as a reasonableness require-
ment: it prevents social laws which lead to states with no allowed successor.
Let N (R) = {η | η ⊆ R & R \ η is total} be the set of normative systems
over R. The intended interpretation of a normative system η is that the
presence of an arc (s, s ′) in η means that the transition (s, s ′) is forbidden
in the context of η, hence, R \ η denotes the allowed transitions. Since it
is assumed that η is reasonable, we are guaranteed that such a transition
always exists for every state. If π is a path over R and η is a normative
system over R, then we say that π is η-conformant if it does not contain any

1In the temporal logic literature, it is common to refer to a relation R ⊆ S ×S as being
total if ∀s ∈ S , ∃s ′ ∈ S : (s, s ′) ∈ R.
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transition that is forbidden by η, i.e., if ∀u ∈ N, (π[u], π[u + 1]) 6∈ η. We
denote the set of η-conformant s-paths (w.r.t. some assumed R) by Cη(s).

Since normative systems in our view are just sets (of disallowed tran-
sitions), we can compare them, to determine, for example, whether one is
more liberal (less restrictive) than another: if η ⊂ η′, then η places fewer
constraints on a system than η′, and hence η is more liberal. Notice that,
assuming an explicit representation of normative systems, (i.e., representing
a normative system η directly as a subset of R), checking such properties can
be done in polynomial time. We can also operate on them with the standard
set theoretic operations of union, intersection, etc. Taking the union of two
normative systems η1 and η2 may yield (depending on whether R \ (η1 ∪ η2)
is total) a normative system that is more restrictive (less liberal) than either
of its parent systems, while taking the intersection of two normative systems
will yield a normative system which is less restrictive (more liberal). The ∪
operation is intuitively the act of superposition, or composition of normative
systems: imposing one law on top of another. Notice that, when operating
on normative systems using such set theoretic operations, care must be taken
to ensure the resulting normative system is reasonable.

Example 2.1. Consider two parallel circular train tracks. At one point both
tracks go through the same tunnel. At the east and the west end of the tunnel
there are traffic lights, which can be either green or red. A train controller
controls the lights. The eastern light should be set to green if and only if
there is a train waiting to enter the east end of the tunnel and there is no
train waiting at the west end of the tunnel, and similarly for the western
light. One train travels on each of the tracks, in opposite directions. We
call the train that enters the tunnel at the eastern end the east train and the
other train the west train. Obviously, the trains should not enter the tunnel
if the light is red.

We can model this situation by considering the physical properties and the
normative properties separately, as Kripke structures and normative systems
respectively. We assume that each train can be in one of three states: tunnel
(the train is in the tunnel); waiting (the train is waiting to enter the tunnel);
away (the train is neither in the tunnel nor waiting). When away, the train
can either be away or waiting in the next state; when waiting the train can
either be waiting or in the tunnel in the next state; when the train is in
the tunnel it leaves the tunnel and is away in the next state. Thus, we use
propositional atoms eTunnel , eWaiting , eAway ,wTunnel ,wWaiting ,wAway
to encode the position of the east and west train. We also use atoms eGreen
and wGreen to represent the fact that the eastern/western lights are green.
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Figure 1. Kripke model of the trains example, including all physically possible transitions.
Only a part of the model is shown. The transitions prohibited by the normative systems
η1 and η2 are shown with dashed and dotted lines, respectively. The labelling of the states
is abbreviated for readability: “twgr” stands for tunnel-waiting-green-red and means that
wTunnel , eWaiting , wGreen are true and that all other atoms (including eGreen) are false.

Thus, ¬eGreen means that the eastern light is red, and so on. Let K be the
Kripke structure where the states correspond to all possible configurations of
the atomic propositions, the (single) initial state is the state where both lights
are red and both trains away, and the transitions are all physically possible
transitions — illustrated in Figure 1. The transitions include entering on a
red light, but exclude physically impossible transitions such as a train going
directly from the tunnel state to the waiting state.

Let η1 be the normative system corresponding to the normative require-
ment on the switching of the lights described above: η1 contains all transi-
tions between states s1 and s2 in which one of the lights are set to green (in
s2) without the appropriate condition (as explained above) being true in s1.
The normative system η1 is illustrated by labels on the transitions in Figure
1. The description above contains another normative requirement as well:
trains should only enter the tunnel on a green light. Let η2 be the norma-
tive system corresponding to that requirement: η2 contains all transitions
between states s1 and s2 such that a train is in the tunnel in s2 only if the
corresponding light is green in s1. It is easy to see that η1, η2 ∈ N (R), where
R is the transition relation of K.

Finally, while the norms in this particular example are designed to avoid
a crash, there are other problems, such as “deadlock” (both trains can wait
forever for a green light), which they do not avoid. For simplicity, we will
only consider the norms mentioned above.
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2.3. Syntax of NTL

The language of ntl is a generalisation of ctl: the only issue that may cause
confusion is that, within this language, we refer explicitly to normative sys-
tems, which are of course semantic objects. We will therefore assume a stock
of syntactic elements Ση which will denote normative systems. An interpre-
tation for symbols Ση with respect to a transition relation R is a function
I : Ση → N (R). When R is a transition relation of Kripke structure K we
say that I is an interpretation over K. We will assume that the symbol η∅
always denotes the “emptyset” normative system, i.e., the normative system
which forbids no transitions. Note that this normative system will be well-
defined for any Kripke structure. Thus, we require that all interpretations I
satisfy the property that I (η∅) = ∅. If the interpretation function I is clear
from context or not relevant, we will sometimes identify the symbol η with
the normative system it denotes.

The syntax of ntl is defined by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | Pη
gϕ | Pη(ϕU ϕ) | Oη

gϕ | Oη(ϕU ϕ)

where p ∈ Φ is a propositional variable and η ∈ Ση denotes a normative
system. Sometimes we call α occurring in an expression Oηα or Pηα a
temporal formula (although such an α is not a well-formed formula of ntl).

2.4. Semantic Rules

The semantics of ntl are given with respect to the satisfaction relation
“|=”. K, s |=I ϕ holds when K is a Kripke structure, s is a state in K, I an
interpretation over K, and ϕ a formula of the language, as follows:

K, s |=I ⊤;

K, s |=I p iff p ∈ V (s) (where p ∈ Φ);

K, s |=I ¬ϕ iff not K, s |=I ϕ;

K, s |=I ϕ ∨ ψ iff K, s |=I ϕ or K, s |=I ψ;

K, s |=I Oη
gϕ iff ∀π ∈ CI (η)(s) : K, π[1] |=I ϕ;

K, s |=I Pη
gϕ iff ∃π ∈ CI (η)(s) : K, π[1] |=I ϕ;

K, s |=I Oη(ϕU ψ) iff ∀π ∈ CI (η)(s),∃u ∈ N, s.t. K, π[u] |=I ψ and
∀v , (0 ≤ v < u) : K, π[v ] |=I ϕ

K, s |=I Pη(ϕU ψ) iff ∃π ∈ CI (η)(s),∃u ∈ N, s.t. K, π[u] |=I ψ and
∀v , (0 ≤ v < u) : K, π[v ] |=I ϕ
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The remaining classical logic connectives (“∧”, “→”, “↔”) are assumed to
be defined as abbreviations in terms of ¬ and ∨, in the conventional manner.
We define the remaining ctl-style operators for ♦ and as abbreviations:

Oη♦ϕ ≡ Oη(⊤U ϕ)
Pη♦ϕ ≡ Pη(⊤U ϕ)

Oη ϕ ≡ ¬Pη♦¬ϕ
Pη ϕ ≡ ¬Oη♦¬ϕ

Recalling that η∅ denotes the empty normative system, we obtain the con-
ventional path quantifiers of ctl [14] as follows:

Aα ≡ Oη∅α

Eα ≡ Pη∅α

Thus the ctl universal path quantifier can be understood as obligation in
the context of the empty normative system, which places no restictions on
which transitions the system takes, while the existential path quantifier can
be understood as permission in the context of this normative system.

We write K |=I ϕ if K, s0 |=I ϕ for all s0 ∈ S 0, K |= ϕ if K |=I ϕ for all
I , and |= ϕ if K |= ϕ for all K.

Example 2.2 (Example 2.1 continued). Let K, η1, η2 be as in example 2.1.
Let I be such that I (η1) = η1, I (η2) = η2, I (η3) = η1 ∪ η2 (it is easy to see
that also η1 ∪ η2 ∈ N (R)). Let the formula

crash = eTunnel ∧ wTunnel

denote a crash situation. We have that (recall that K |=I ϕ means that ϕ is
satisfied in all the initial states of K under I ):

• K |=I Oη1
g¬wGreen. In the initial state, according to normative system

η1 it is obligatory that the western light stays red in the next state.

• K |=I Pη1
(¬eGreen U eTunnel). η1 permits the eastern light to stay red

until the east train is in the tunnel.

• K |=I ¬Pη2
(¬eGreen U eTunnel). η2 does not permit the eastern light to

stay red until the east train is in the tunnel.

• K |=I Oη1
(wGreen → ¬eGreen). It is obligatory in the context of η1

that at least one of the lights are red.

• K |=I Pη∅♦crash. Without any constraining norms, the system permits
a crash in the future.
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• K |=I Pη1
♦crash. The normative system η1 permits a crash.

• K |=I Oη3
¬crash. It is obligatory, in the context of normative system

η3, that a crash never occurs; η3 does not permit a crash at any point in
the future.

The following are examples of expressions involving nested operators. It
is worth reflecting on the compositional meaning of nested operators. For
example, Pη3

♦Pη1
gcrash means that η3 permits a computation along which

in some future state Pη1
gcrash is true. However, in the evalutation of

Pη1
gcrash in states along that computation, the system is not restricted by

η3 (but only by η1).

• K |=I Oη∅ ((wWaiting ∧ ¬wGreen) → ¬Pη2
gwTunnel). It is obliga-

tory in the system that it is always the case that if the west train is waiting
and the western light is red then the western train is not permitted by η2

in the tunnel in the next state.

• K |=I Pη2
♦Pη3

gcrash. η2 permits a future state where a crash in the
next state is permitted even by η3.

• K |=I Pη3
♦Pη1

gcrash. η3 permits a future state where a crash in the
next state is permitted by η1.

• K |=I Oη3
Oη2

g¬crash. η3 does not permit a future state where a
crash is permitted in the next state by η2.

2.5. Properties and Axiomatisation

The following Proposition makes precise the expected property that a less
liberal system has more obligations and less permissions than a more liberal
system.

Proposition 2.3. Let K be a Kripke structure, I an interpretation over K
and η1, η2 ∈ Ση.

If I (η1) ⊆ I (η2) then K |=I Oη1
ϕ→ Oη2

ϕ and K |=I Pη2
ϕ→ Pη1

ϕ

We now go on to exhaustively describe the universally valid properties,
of ntl as well as some derived systems, by presenting sound and complete
axiomatisations.

First, let ntl− be ntl without the empty normative system. Formally,
ntl− is defined exactly as ntl, except for the requirement that Ση contains
the η∅ symbol and the corresponding restriction on interpretations. An
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(Ax1) All validities of propositional logic

(Ax2) Pη♦ϕ↔ Pη(⊤U ϕ)

(Ax2b) Oη ϕ↔ ¬Pη♦¬ϕ

(Ax3) Oη♦ϕ↔ Oη(⊤U ϕ)

(Ax3b) Pη ϕ↔ ¬Oη♦¬ϕ

(Ax4) Pη
g(ϕ ∨ ψ) ↔ (Pη

gϕ ∨ Pη
gψ)

(Ax5) Oη
gϕ↔ ¬Pη

g¬ϕ

(Ax6) Pη(ϕU ψ) ↔ (ψ ∨ (ϕ ∧ Pη
gPη(ϕU ψ)))

(Ax7) Oη(ϕU ψ) ↔ (ψ ∨ (ϕ ∧ Oη
gOη(ϕU ψ)))

(Ax8) Pη
g⊤ ∧ Oη

g⊤

(Ax9) Oη (ϕ→ (¬ψ ∧ Pη
gϕ)) → (ϕ→ ¬Oη(γ U ψ))

(Ax9b) Oη (ϕ→ (¬ψ ∧ Pη
gϕ)) → (ϕ→ ¬Oη♦ψ)

(Ax10) Oη (ϕ→ (¬ψ ∧ (γ → Oη
gϕ))) → (ϕ→ ¬Pη(γ U ψ))

(Ax10b) Oη (ϕ→ (¬ψ ∧ Oη
gϕ)) → (ϕ→ ¬Pη♦ψ

(Ax11) Oη (ϕ→ ψ) → (Pη
gϕ→ Pη

gψ)

(R1) If ⊢ ϕ then ⊢ Oη ϕ (generalization)

(R2) If ⊢ ϕ and ⊢ ϕ→ ψ then ⊢ ψ (modus ponens)

(Obl) Oη∅α→ Oηα

(Perm) Pηα→ Pη∅α

Figure 2. The two systems ntl− ((Ax1)–(R2), derived from an axiomatisation of ctl
[14]) and ntl ((Ax1)–(R2),(Obl),(Perm)). α stands for a temporal formula.

axiom system for ntl−, denoted ⊢−, is defined by axioms and rules (Ax1)–
(R2) in Figure 2. ntl− can be seen as a multi-dimensional variant of ctl,
where there are several indexed versions of each path quantifier2. Indeed,
the axiomatisation has been obtained from an axiomatisation of ctl [14].

Going on to ntl, we add axioms (Obl) and (Perm) (Figure 2); the corre-
sponding inference system is denoted ⊢. We then (by soundness, see below),
have the following chain of implications in ntl (the second element in the

2Semantically, we can view the ntl structures as multi-dimensional ctl structures
with one (total) transition relation R \ I (η) for each normative system. This definition of
multi-dimensional structures is different from multiprocess temporal structures as defined
in [5, 14]. In the latter, only the union of the transition relations is required to be total.
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chain is a variant of a deontic axiom discussed later). If something is natu-
rally, or physically inevitable, then it is obligatory in any normative system;
if something is an obligation within a given normative system η, then it is
permissible in η; and if something is permissible in a given normative system,
then it is naturally (physically) possible:

|= (Aϕ→ Oηϕ) |= (Oηϕ→ Pηϕ) |= (Pηϕ→ Eϕ)

Theorem 2.4 (Soundness and Completeness).
For every ϕ in the language of ntl−, we have |= ϕ iff ⊢− ϕ. The same holds
for ⊢ with respect to formulas from ntl.

Proof. (Sketch.) Soundness is straightforward.

For completeness, consider first ntl−. Let ϕ0 be a consistent formula.
As noted earlier, we can view ntl− as a multi-dimensional extension of
ctl. Rather than extending the tableau-based method for proving the com-
pleteness of ctl in [14], we describe3 a construction which employs the ctl
completeness result directly, viewing a formula as a ctl formula for one
dimension δ at a time by reading Oδ and Pδ as ctl path quantifiers A and
E , respectively, and treating formulae starting with a δ′-operator (δ′ 6= δ)
as atomic formulae. By completeness of ctl, we get a ctl model for the
formula (if it is consistent), where the states are labelled with atoms such
as Oδ′Γ or Pδ′Γ (for δ′ 6= δ). Then, for each δ′ and each state, we expand
the state by taking the conjunction of η′-formulae the state is labelled with,
construct a (single-dimension) ctl model of that formula, and “glue” the
root of the model together with the state. Repeat for all dimensions and all
states.

In order to keep the formulae each state is labelled with finite, we con-
sider only subformulae of ϕ0. A δ-atom is a subformula of ϕ0 starting with
either Pδ or Oδ. Let At−δ denote the union all of δ′-atoms for all δ′ 6= δ.
Furthermore, we assume that ϕ0 is such that every occurrence of Pη(α1 U α2)
(Oη(α1 U α2)) is immediately preceeded by Pη

g (Oη
g) — we call this XU

form. Any formula can be rewritten to XU form by recursive use of the
axioms (Ax6) and (Ax7). We start with a model with a single state labelled
with the literals in a consistent disjunct of ϕ0 written on disjunctive normal
form. We continue by expanding states labelled with formulae, one dimen-
sion δ at a time. In general, let at(δ, s) be the union of the set of δ-atoms s
is labelled with and the set of negated δ-atoms of XU form s is not labelled

3Due to lack of space we cannot give all the technical details here. For the interested
reader, more details are available at http://home.hib.no/ansatte/tag/misc/mctl.pdf.
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with. We can now view
∧

at(δ, s) as a ctl formula over a language with
primitive propositions Φ∪At−δ.

∧

at(δ, s) is ntl− consistent. The following
holds: any ntl− consistent formula is satisfied by a state s ′ in a ctl model
M ′ viewing Φ ∪ At−δ as primitive propositions, such that for any δ′ 6= δ

and any state t of M ′,
∧

(δ′, t) is ntl− consistent, and s ′ does not have
any ingoing transitions (the proof is left for the reader). This ensures that
we can “glue” the pointed model M ′, s ′ to the state s while labelling the
transitions in the model with the dimension δ we expanded – M ′, s ′ satisfies
the formulae needed to be true there. The fact that s ′ does not have any
ingoing transitions ensures that we can append M ′, s ′ to s without changing
the truth of δ-atoms at s ′. The fact that ϕ0 is of XU form ensures that all
labelled formulae are of XU form, which again ensures that we don’t add
new labels to a state when we expand it (because all the formulae we expand
start with a next-modality). The fact that

∧

(δ′, t) is consistent for states t
in the expanded model, ensures that we can repeat the process. Only a finite
number of repetitions are needed, depending on the number of nested oper-
ators of different dimensions in the formula, after which we can remove the
non-Φ labels without affecting the truth of ϕ0 and obtain a proper model.

The same construction is used for ntl, treating η∅ as any other dimen-
sion, with the following difference. When expanding a node along dimension
δ, when gluing the ctl model to the expanded node label the transitions
with η∅ in addition to δ. Axioms (Obl) and (Perm) ensure that this is
consistent with the η∅-atoms present at the node.

Going beyond ntl, we can impose further structure on Ση and its in-
terpretations. For example, we can extend the logical language with basic
statements like η ≡ η′ and η ⊏ η′ (⊑ can then be defined), with the obvious
interpretation. Furthermore, we can add unions and intersections of nor-
mative systems by requiring Ση to include symbols η ⊔ η′, η ⊓ η′ whenever
it includes η and η′, and require interpretations to interpret ⊔ as set union
and ⊓ as set intersection. As discussed earlier, we must then further restrict
interpretations such that R \ (I (η1)∪ I (η2)) is always total. This would give
us a kind of calculus of normative systems. Let K be a Kripke structure and
I be an interpretation with the mentioned properties:

K |=I Pη⊔η′ϕ→ Pηϕ K |=I Pηϕ→ Pη⊓η′ϕ

K |=I Oηϕ→ Oη⊔η′ϕ K |=I Oη⊓ηϕ→ Oηϕ

(these follow from Proposition 2.3). Having such a calculus allows one to
reason about the composition of normative systems, similar to the way one
constructs complex programs from simpler ones in Dynamic Logic [16].
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Of course we could drop the reasonableness constraint. This would make
it possible that “too many” norms (i.e., too many constraints on agent be-
haviour) may prevent any transition from a given state.

3. Symbolic Representations

Our aim is for ntl to be used in the formal specification and analysis of
normative systems. To this end, we envisage a computer program that will
take as input a Kripke structure K, representing some system of interest,
together with an ntl formula ϕ representing a query about this system, and
some normative systems I ; the program will then determine whether or not
the property expressed by ϕ holds of K, I , i.e., whether or not K |=I ϕ.
Such a program is called a model checker [11]. However, this raises the
issue of exactly how the Kripke structure K and normative systems I are
presented to the model checker. One possibility is to simply list all the states,
the propositions true in these states, and the transitions in the transition
relation. Such a representation is called an explicit state representation. In
practice, explicit state representations of Kripke structures are almost never
used. This is because of the state explosion problem: given a system with n
Boolean variables, the system will typically have 2n states, and so an explicit
representation in the input is not practicable. Instead, practical reasoning
tools provide succinct, symbolic representation languages for defining Kripke
structures. In this section, we present such a language for defining models,
and also introduce an associated symbolic language for defining normative
systems4.

3.1. A Symbolic Language for Models

The reactive modules language (rml) was introduced by Alur and
Henzinger as a simple but expressive formalism for specifying game-like dis-
tributed system models [2], and this language is used as the model specifi-
cation language for several model checkers [4]. In this section, we consider
a “stripped down” version of rml called simple reactive modules lan-
guage (srml), introduced in [17]; this language represents the core of rml,

4Notice that when we refer to a “symbolic representation”, we are referring to the
use of a symbolic definition of the Kripke structure in the input to the model checker ;
however, the term “symbolic model checking” is also commonly used to refer to the internal
representation used by a model checker, and in this paper, we are not concerned with this
issue [11].
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with some “syntactic sugar” removed to keep the presentation (and seman-
tics) simple.

Here is an example of an agent in srml (note that agents are referred to
as “modules” in srml):

module toggle controls x
init

ℓ1 : ⊤ ; x ′ := ⊤
ℓ2 : ⊤ ; x ′ := ⊥
update

ℓ3 : x ; x ′ := ⊥
ℓ4 : (¬x ) ; x ′ := ⊤

This module, named toggle, controls a single Boolean variable, x . Occur-
rences of the primed version x ′ refer to the fresh initial value of x (in init)
or its value in the next state (update). The choices available to the agent at
any given time are defined by those init and update rules5. The init rules
define the choices available to the agent with respect to the initialisation of
its variables, while the update rules define the agent’s choices subsequently.
In this example, there are two init rules and two update rules. The init

rules define two choices for the initialisation of this variable: assign it the
value ⊤ (i.e., “true”) or the value ⊥ (i.e., “false”). Both of these rules can
fire initially, as their conditions (⊤) are always satisfied; in fact, only one of
the available rules will ever actually fire, corresponding to the “choice made”
by the agent on that decision round. On the left hand side of the rules are
labels (ℓi) which are used to identify the rules. Note that labels do not form
part of the original rml language, and in fact play no part in the semantics
of rml — their role will become clear below. We assume a distinguished
label “[]”; the role of this label will also become clear below. With respect
to update rules, the first rule says that if x has the value ⊤, then the cor-
responding choice is to assign it the value ⊥, while the second rules says
that if x has the value ⊥, then it can subsequently be assigned the value
⊤. In other words, the module non-deterministically chooses a value for x
initially, and then on subsequent rounds toggles this value. Notice that in
this example, the init rules of this module are non-deterministic, while the
update rules are deterministic: srml (and rml) allow for non-determinism
in both initialisation and update rules. An srml system is a set of such
modules.

5To be more precise, the rules are in fact guarded commands.
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Formally, a rule γ over a set of propositional variables Φ and a set of
labels L is an expression

ℓ : ϕ ; v ′
1 := ψ1; . . . ; v

′
k := ψk

where ℓ ∈ L is a label, ϕ (the guard) is a propositional logic formula over Φ,
each vi is a member of Φ and ψi is a propositional logic formula over Φ. We
require that no variable vi appears on the l.h.s. of two assignment statements
in the same rule (hence no issue on the ordering of the updates arises). The
intended interpretation is that if the formula ϕ evaluates to true against
the interpretation corresponding to the current state of the system, then the
rule is enabled for execution; executing the statement means evaluating each
ψi against the current state of the system, and setting the corresponding
variable vi to the truth value obtained from evaluating ψi . We say that
v1, . . . , vk are the controlled variables of γ, and denote this set by ctr(γ). A
set of rules is said to be disjoint if their controlled variables are mutually
disjoint.

When dealing with the srml representation of models, a state is simply
equated with a propositional valuation (i.e., the set of states of an srml
system is exactly the set of possible valuations to variables within it: S =
2Φ)6. Given a state s ⊆ Φ and a rule γ : ϕ ; v ′

1 := ψ1; . . . ; v
′
k := ψk such

that s enables γ (i.e., s |= ϕ) we denote the result of executing γ on s by
s ⊕ γ. For example, if s = {p, r}, and γ = p ; q ′ := ⊤; r ′ := p ∧ ¬r ,
then s ⊕ γ = {p, q}. Note that if a variable does not have its value defined
explicitly by a rule that is enabled in some state, then this variable is assumed
to remain unchanged.

Given a state s ⊆ Φ, and set Γ of disjoint rules over Φ such that every
member of Γ is enabled by s, then the interpretation s ′ resulting from Γ on
s is denoted by s ′ = s ⊕ Γ (since the members of Γ are disjoint, we can pick
them in any order to execute on s).

As described above, there are two classes of rules that may be declared
in a module: init and update. An init rule is only used to initialise the

6Thus the state space of an srml system will be exponential in the number of variables
in the system. One may then wonder how this squares with our requirement earlier that
we want to avoid an representation for models that is overly large. The point is that while
we cannot ultimately escape the fact that the number of possible states in a system will be
exponential in the number of variables, if we want to reason about a system, then we still
need some compact way of representing the system. This is the exactly the role played
by s(rml). It provides a compact language for defining Kripke structures, and is suitable
for use as the input to a model checker. A language which was not compact in this way
would be useless in practice as the input language to a model checker, since the size of the
input would be unfeasibly large.
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values of variables, when the system begins execution. We will assume that
the guards to init rule are “⊤”, i.e., every init rule is enabled for execution
in the initialisation round of the system.

An srml module, m, is a triple:

m = 〈ctr , init , update〉 where:

• ctr ⊆ Φ is the (finite) set of variables controlled by m;

• init is a (finite) set of initialisation rules, such that for all γ ∈ init , we
have ctr(γ) ⊆ ctr ; and

• update is a (finite) set of update rules, such that for all γ ∈ update, we
have ctr(γ) ⊆ ctr .

Note that this definition permits variables to be unitialised by the init rules
of the module. Such variables are by default assumed to be initialised to ⊥.

Given a module m, we denote the controlled variables of m by ctr(m), the
initialisation rules of m by init(m), and the update rules of m by update(m).
An srml system ρ is then an (n + 2)-tuple

ρ = 〈Ag ,Φ,m1, . . . ,mn〉

where Ag = {1, . . . ,n} is a set of agents, Φ is a vocabulary of propositional
variables, and for each i ∈ Ag , mi is the corresponding module defining i ’s
choices; we require that {ctr(m1), . . . , ctr(mn)} forms a partition of Φ (i.e.,
every variable in Φ is controlled by some agent, and no variable is controlled
by more than one agent).

A joint rule (j.r.) is an indexed tuple 〈γ1, . . . , γn〉 of rules, with a rule
γi ∈ mi for each i ∈ Ag . A j.r. 〈γ1, . . . , γn〉 is enabled by a propositional
valuation s iff all its members are enabled by s.

It is straightforward to extract the Kripke structure Kρ = 〈Sρ,S
0
ρ ,Rρ,Vρ〉

corresponding to an srml system ρ:

• the initial states S 0
ρ correspond to the valuations that could be generated

by the init rules of ρ against the empty valuation;

• the remaining states in Sρ are those that could be generated by some
sequence of enabled update joint rules from some initial state;

• the transition relation Rρ is defined by (s, s ′) ∈ Rρ iff there exists some
update j.r. 〈γ1, . . . , γn〉 such that this j.r. is enabled in s and s ′ = s ⊕
{γ1, . . . , γn}.

Notice that there is nothing in this definition which requires a Kripke struc-
ture Kρ corresponding to a normative system ρ to be reasonable: it is the
responsibility of the modeller, defining a normative system using srml, to
ensure this.
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3.2. A Symbolic Language for Normative Systems

We now introduce the srml Norm Language (snl) for representing nor-
mative systems, which corresponds to the srml language for models. The
general form of a normative system definition in snl is as follows:

normative-system id
χ1 disables ℓ11

, . . . , ℓ1k

· · ·
χm disables ℓm1

, . . . , ℓmk

Here, id ∈ Ση is the name of the normative system; these names will be
used to refer to normative systems in formulae of ntl. The body of the
normative system is defined by a set of constraint rules. A constraint rule

χ disables ℓ1, . . . , ℓk

consists of a condition part χ, which is a propositional logic formula over the
propositional variables Φ of the system, and a set of rule labels {ℓ1, . . . , ℓk} ⊆
L. The intuition is that if χ is satisfied in a particular state, then any srml
rule with a label that appears on the r.h.s. of the constraint rule will be
disabled in that state, according to this normative system. Consider the
following simple example.

normative-system forceTrue
⊤ disables ℓ3

We here define a normative system forceTrue, which consists of a single rule.
The condition part of the rule is ⊤, and hence always fires; in this case, the
effect is to disable the rule with label ℓ3. Since the condition part of this
rule is always enabled, in the forceTrue normative system, rule ℓ3 can never
fire.

Example 3.1 (Example 2.1 continued). The following srml modules de-
scribe the Kripke model K from Example 2.1.

module wtrain controls wAway ,wWaiting ,wTunnel
init

[] : ⊤ ; wAway ′ := ⊤;wWaiting ′ := ⊥;wTunnel := ⊥
update

Wwait : wAway ∨ wWaiting ; wWaiting ′ := ⊤;wAway ′ := ⊥
Wstayaway : wAway ; wAway ′ := ⊤
Wenter : wWaiting ; wWaiting ′ := ⊥;wTunnel ′ := ⊤
Wleave : wTunnel ; wTunnel ′ := ⊥;wAway := ⊤
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The module for the western train controls the variables describing its posi-
tion. The four update rules correspond to the physical actions available. The
module etrain for the eastern train is defined in the same way, with rules
named Eenter and so on.

module controller controls wGreen, eGreen
init

[] : ⊤ ; wGreen ′ := ⊥; eGreen := ⊥
update

RR : ⊤ ; wGreen ′ := ⊥; eGreen ′ := ⊥
RG : ⊤ ; wGreen ′ := ⊥; eGreen ′ := ⊤
GR : ⊤ ; wGreen ′ := ⊤; eGreen ′ := ⊥
GG : ⊤ ; wGreen ′ := ⊤; eGreen ′ := ⊤

The controller module controls the variables describing the lights. For every
update the module chooses one of the rules corresponding to the four possible
light settings.

The following snl specifications describe the normative systems η1 and η2.

normative-system η1

(¬wWaiting ∨ eWaiting) disables GR,GG
(¬eWaiting ∨ wWaiting) disables RG ,GG

normative-system η2

¬wGreen disables Wenter
¬eGreen disables Eenter

Formal Definition of SNL

Formally, an snl constraint rule is a pair

c = 〈ϕ,L〉

where ϕ is a propositional formula over Φ, and L ⊆ L is a set of rule labels.
An snl normative system is then a pair

η = 〈id ,C 〉

where id ∈ Ση is a unique identifier for the normative system and C is a set
of srml constraint rules. In any given state s, the set of srml rules that are
disabled by a normative system 〈id ,C 〉 will be the set of rules whose labels
appear on the right hand side of constraint rules in C whose condition part
is satisfied in s.
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Given snl normative systems η1 and η2, for some srml system ρ, we
say: η1 is at least as liberal as η2 in system ρ if for every state s ∈ Sρ, every
rule that is enabled according to η2 is enabled according to η1; and they are
equivalent if for every state s ∈ Sρ, the set of rules enabled according to η1

and η2 are the same.

Theorem 3.2. The problem of testing whether snl normative system η1 is
at least as liberal as snl normative system η2 is pspace-complete, as is the
problem of testing equivalence of such systems.

Proof. We do the proof for checking equivalence; the liberality case is sim-
ilar. For membership of pspace, consider the complement problem: guess a
state s, check that s ∈ Sρ, (reachability of states in rml is in pspace [2]) and
check that there is some rule enabled in s according to η2 is not enabled in s
according to η1, or vice versa. Hence the complement problem is in npspace,
and so the problem is in pspace. For pspace-hardness, we reduce the prob-
lem of propositional invariant checking over (s)rml modules [2]. Given an
srml system ρ and propositional formula ϕ, define normative systems η1

and η2 as follows (where ℓ does not occur in ρ):

normative-system η1 normative-system η2

¬ϕ disables ℓ ⊥ disables ℓ

According to η2, ℓ is always enabled; thus η1 will be equivalent to η2 iff ϕ

holds across all reachable states of the system.

4. Model Checking

The model checking problem is an important computational problem for any
logic, since model checking is perhaps the most successul approach to the
automated verification of logical properties of systems [11]. We consider two
versions of the model checking problem for ntl, depending on whether the
model is presented explicitly or symbolically. For each of these cases, there
are two further possibilities, depending on whether we are given an interpre-
tation I for normative systems named in formulae or not. If we are given
an interpretation for the normative systems named in the formula, then
ntl model checking essentially amounts to a conventional model checking
problem: showing that, under the given interpretation, the model and associ-
ated normative systems have certain properties. However, the uninterpreted
model checking problem corresponds to the synthesis of normative systems:
we ask whether there exist normative systems that would have the desired
properties. Thus the uninterpreted model checking problems combine model
checking with a satisfiability checking aspect.
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4.1. Explicit State Model Checking

The interpreted explicit state model checking problem for ntl is as follows.

Given a Kripke structure K = 〈S ,S 0,R,V 〉, interpretation I : Ση →
N (R) and formula ϕ of ntl, is it the case that K |=I ϕ?

It is known that the model checking problem for ctl may be solved in
time O(|K| · |ϕ|) [14], and is in fact p-complete [22]. The standard dynamic
programming algorithm for ctl model checking may be trivially adapted for
interpreted explicit state ntl model checking, and may be seen to have the
same time complexity. More interesting perhaps is the case where we are
not given an interpretation. The uninterpreted explicit state model checking
problem for ntl is as follows.

Given a Kripke structure K = 〈S ,S 0,R,V 〉 and formula ϕ of ntl,
does there exist an interpretation I : Ση → N (R) such that K |=I ϕ?

Notice that uninterpreted model checking has a very natural application, as
follows. We have a Kripke structure K and want a normative system η that
will ensure some property, so we write an ntl formula ϕ, which refers to η,
describing this property (the property might, for example, be Oη ¬fail);
the uninterpreted model checking problem then corresponds to the feasibility
problem described in [18]: it asks whether there in fact exist a normative
system that has the desired properties. We can show:

Theorem 4.1. The uninterpreted explicit state model checking problem for
ntl is np-complete.

Proof. For membership in np, simply guess an interpretation I and ver-
ify that K |=I ϕ. Since interpretations are polynomial in the size of the
Kripke structure and formula, guessing can be done in (nondeterministic)
polynomial time, and checking is the interpreted explicit state model check-
ing problem. Hence the problem is in np. For np-hardness, we reduce sat.
Given a sat instance ϕ(x1, . . . , xk ), we create an instance of the uninter-
preted explicit state model checking problem as follows. For each propo-
sitional variable xi in the sat instance, we create two variables t(xi) and
f (xi ), and we define a Kripke structure with 3k + 1 states, as illustrated in
Figure 3; state s0 is the initial state, and state s3k+1 is a final state, with
the only transition possible from this state being back to itself. Now, given
the input sat instance ϕ(x1, . . . , xk ), we denote by ϕ∗(x1, . . . , xk ) the ntl
formula obtained by systematically replacing every propositional variable xi

with Pη♦t(xi ). Finally, we define the formula to be model checked as the
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s6 ...

s0
t(x1)

f(x1)

t(x2)

f(x2)

t(xk)

f(xk)

s(3k+1)

s1

s2

s3

s4

s5

Figure 3. Reduction for Theorem 4.1.

conjunction of the following formulae.

ϕ∗(x1, . . . , xk ) (I)
∧

1≤i≤k

(Pη♦t(xi) → ¬Pη♦f (xi )) (II)

∧

1≤i≤k

(Pη♦f (xi ) → ¬Pη♦t(xi)) (III)

∧

1≤i≤k

(Pη♦(t(xi) ∨ f (xi ))) (IV)

If this formula is satisfied in the structure by some interpretation, then the
interpretation for η must give a satisfying valuation for ϕ(x1, . . . , xk ); con-
versely, if ϕ(x1, . . . , xk ) is satisfiable, then any satisfying assignment defines
an interpretation for η that makes the formula true in the structure.

4.2. Symbolic Model Checking

As we noted above, explicit state model checking problems are perhaps of
limited interest, since such representations are exponentially large in the
number of propositional variables. Thus we now consider the srml model
checking problem for ntl. Again, we have two versions, depending on
whether we are given an interpretation or not. The interpreted version is as
follows:

Given an srml system ρ, a set of snl normative systems I = {η1, . . . ,

ηk} acting as an interpretation, and an ntl formula ϕ in which the
only normative systems named are defined in I , is it the case that
Kρ |=I ϕ?

Theorem 4.2. The interpreted srml model checking problem for ntl is
pspace-complete.

Proof. pspace-hardness is by a reduction from the problem of propo-
sitional invariant verification for srml, which is proved pspace-complete
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in [1]7. Given a propositional formula ϕ and an (s)rml system ρ, let
I = {η∅}, and simply check whether ρ |=I Oη∅ ϕ. Membership of pspace
is by adapting the ctl symbolic model checking algorithm of Cheng [10].

The uninterpreted srml model checking problem for ntl is defined ex-
actly as expected:

Given an srml system ρ and an ntl formula ϕ, does there exist a set
of snl normative systems I = {η1, . . . , . . . , ηk}, one for each η named
in ϕ, such that Kρ |=I ϕ?

This problem is provably worse (under standard complexity theoretic
assumptions) than the interpreted version.

Theorem 4.3. The uninterpreted srml model checking problem for ntl is
exptime-hard.

Proof. We prove exptime-hardness by reduction from the problem of de-
termining whether a given player has a winning strategy in the two-player
game peek-G4 [29, p.158]. An instance of peek-G4 is a quad:

〈X1,X2,X3, ϕ〉

where:

• X1 and X2 are disjoint, finite sets of Boolean variables, with the intended
interpretation that the variables in X1 are under the control of agent 1,
and X2 are under the control of agent 2;

• X3 ⊆ (X1 ∪ X2) are the variables deemed to be true in the initial state
of the game; and

• ϕ is a propositional logic formula over the variables X1∪X2, representing
the winning condition.

The game is played in a series of rounds, with the agents i ∈ {1, 2} alter-
nating (with agent 1 moving first) to select a value (true or false) for one
of their variables in Xi , with the game starting from the initial assignment
of truth values defined by X3. Variables that were not changed retain the
same truth value in the subsequent round. An agent wins in a given round
if it makes a move such that the resulting truth assignment defined by that
round makes the winning formula ϕ true. The decision problem associated
with peek-G4 involves determining whether agent 2 has a winning strategy
in a given game instance 〈X1,X2,X3, ϕ〉. Notice that peek-G4 only requires
“memoryless” (Markovian) strategies: whether or not an agent i can win

7In fact, the result of [2] is for rml in general, but the proof does not rely on any
features of rml that are not present in srml.
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(i) A game tree encodes all possible moves
for both players.
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(ii) A witness tree encodes a winning strategy

Figure 4. Game trees and witness trees.

depends only on the current truth assignment, the distribution of variables,
the winning formula, and whose turn it is currently. As a corollary, if agent
i can force a win, then it can force a win in O(2|X1∪X2|) moves.

The idea of the proof is as follows. We can understand the possible plays
of a finite two player game of perfect information as a tree (see Figure 4(i)),
where nodes correspond to configurations of the game, and are choice points
for the two players A (universal) and E (existential). Thus in an A node the
universal player makes a choice, while in an E node the existential player
makes a choice. We are interested in whether the E player has a winning
strategy in such a game. If this is the case, then there will be a witness to
this in the form of a sub-tree of the game tree, which characterises all plays
of a winning strategy for E . This witness tree will be a sub-tree of the game
tree with the following characteristics (see Figure 4):

• The starting position of the game is present in the witness tree.

• At every A node, all outgoing arcs of the game tree from this node must
be present in the witness tree. (The E player strategy must win against
all possible A moves.)

• At every E node, there can be only one outgoing node. (The E player’s
strategy can select only one move in any given state.)

• Every play in the witness tree must correspond to a win for the E player
— that is, every possible infinite path through the witness tree from the
starting position must contain a node in which the E player wins.

The idea of the reduction is to define an srml system such that the com-
putations of this system correspond to the plays of the peek-G4 instance,
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and then define a ntl formula referring to a single normative system η, such
that η will encode a witness tree for player 2.

Formally, given an instance 〈X1,X2,X3, ϕ〉 of peek-G4, we produce an
instance of srml model checking as follows. For each Boolean variable
x ∈ (X1 ∪X2), we create a variable with the same name in our srml model,
and we create an additional Boolean variable turn, with the intended in-
terpretation that if turn = ⊤, then it is agent 1’s turn to move, while if
turn = ⊥, then it is agent 2’s turn to move. We have a module move, the
purpose of which is to control turn, toggling its value in each successive
round, starting from the initial case of it being agent 1’s move.

module move controls turn
init

[]⊤ ; turn ′ := ⊤
update

[]turn ; turn ′ := ⊥
[](¬turn) ; turn ′ := ⊤

For each of the two peek-G4 players i ∈ {1, 2}, we create an srml module
agi that controls the variables Xi . The module agi is as follows. It begins
by deterministically initialising the values of all its variables to the values
defined by X3 (that is, if variable x ∈ Xi appears in X3 then this variable
is initialised to ⊤, otherwise it is initialised to ⊥). Subsequently, when it
is this player’s turn, it can non-deterministically choose at most one of the
variables under its control and toggle the value of this variable; when it is
not this player’s turn, it has no choice but to do nothing, leaving the value
of all its variables unchanged. The general structure of ag1 is thus as follows,
where X1 = {x1, . . . , xk}.

module ag1 controls x1, . . . , xk

init

// initialise to values from X3

[]⊤ ; x ′
1 := . . . ; xk := . . .

update

ℓ11
: turn ; x ′

1 := ⊥
ℓ12

: turn ; x ′
1 := ⊤

. . .

ℓ12k
: turn ; x ′

k := ⊥
ℓ12k+1

: turn ; x ′
k := ⊤

ℓ12k+2
: ⊤ ; skip
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Notice that an agent can always skip, electing to leave its variables un-
changed; and, if it is not this agent’s turn to move, this is the only choice it
has. Agent ag2 has a similar structure.

We now define the formula to model check. First, we define chng(xi) to
mean that variable i changes value in some transition according to η:

chng(xi) ≡ ((xi ∧ Pη
g¬xi) ∨ (¬xi ∧ Pη

gxi ))

Agent 2 is an existential player: if it is agent 2’s turn, then at most one of
its possible moves is allowed in the witness tree8.

Oη (
∑

xi∈X2

chng(xi ) ≤ 1)

If the E player changes the value of one of its variables, then this change is
implemented in all its next states.

∧

xi∈X2

Oη (¬turn) →
(chng(xi) → ((Pη

gxi ↔ Oη
gxi) ∧ (Pη

g¬xi ↔ Oη
g¬xi)))]

If the E player leaves the value of one of its variables unchanged in one next
state, then it is unchanged in all its next states.

∧

xi∈X2

Oη (¬turn) →
(¬chng(xi) → ((xi ↔ Oη

gxi) ∧ (¬xi ↔ Oη
g¬xi )))]

Agent 1 is a universal player: all of its possible moves must be in the witness
tree.

Oη turn →





∧

xi∈X1

chng(xi)





Finally, the runs that remain must represent wins for agent 2:

Oη(¬ϕ)U (ϕ ∧ turn)

Conjoining these formulae gives the formula to model check. We claim that
this formula passes iff agent 2 has a winning strategy. For suppose that
the formula passes. Then η defines a witness tree for agent 2. That it
corresponds to a well-defined strategy follows from the other properties: for
example, agent 2 is only alllowed to make one choice in any given state when
it is it’s turn, which must win against all choices of agent 1. Similarly, if
agent 2 has a winning strategy, then this strategy corresponds to a normative
system η such that the formula passes under this interpretation.

8We use the
∑

notation here as an abbreviation for the obvious propositional equiva-
lent.
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5. Case Study: Traffic Control

We use a simple case study to illustrate some of the concepts we have intro-
duced. The basis of the case study is as follows:

Consider a circular road with two parallel lanes. Vehicles circulate
on the two lanes clockwise. We consider three types of vehicles: cars,
taxis, and ambulances. Each of the lanes is discretised into m posi-
tions, each position possibly occupied by a vehicle. In what follows,
lane 1 stands for the outer lane, while lane 0 stands for the inner
lane. We will refer to lane 0 as the right lane and to lane 1 as the left
lane considering the direction of the vehicles. At each time step, cars
and taxis can either stand still or change their position by one unit
ahead, possibly changing lane at the same time. For instance a car
could go from position 5 on the left lane to either position 6 on the
right lane or position 6 on the left lane — or it could choose to stand
still. Ambulances can stand still or change their position by one or
two units, either straight or changing lanes at will.

To avoid crashes and make it possible for ambulances to get to hospitals
faster, and to give taxis priority over private cars, we can imagine a number
of norms that regulate the behaviour of the vehicles:

η1 : Ambulances have priority over all other vehicles. By this we mean, in
more detail, that other vehicles should stop whenever there is an ambu-
lance behind them.

η2 : Cars cannot use the rightmost (priority) lane.

η3 : Vehicles have “right” priority. By this we mean that a vehicle should
stop if there is another vehicle to its right. This is, of course, a very strict
rule for prioritarisation which we adopt for simplicity. Otherwise, in
order for a car to give way to another car with right priority, a signalling
system should be used.

η4 : Ambulances give “priority” to ambulances ahead. By an ambulance
giving priority to ambulances ahead, we mean that the ambulance slows
down (and therefore can only change its position by at most one unit)
when there is another ambulance one unit right in front of it. Thus,
norm η4 is intended to avoid ambulances crashing when they are close
and take 2-unit moves.

These norms act on the decisions that agents can make by constraining
them. For instance, η1 will force cars to stop in order to allow ambulances
to overtake them.
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Now, our goal in the remainder of this section is to show how the technical
tools developed in this article can be used to analyse this scenario. A full
scale “implementation” (involving real taxis and ambulances, etc) is beyond
our current resources. However, what we can do instead is to take the key
features of the scenario, as described above, and model them in srml and
snl, abstracting away from lower level implementation details. We can then
use model checking tools to investigate the properties of the scenario. Note
that we cannot be certain that the results we obtain truly reflect reality;
however, the models of systems and normative systems that we develop can,
we believe, usefully inform subsequent development, and can help to identify
potential issues with normative systems at an early stage of design.

Vehicle Modules

We model each vehicle as a module containing the rules that determine their
physically legal movements. We define two types of modules, one for each
of the two types of vehicles: those with 2-unit speed and those with 1-unit
speed. Cars and taxis are vehicles of 1-unit speed, while ambulances are
vehicles of 2-unit speed.

Assume that there are v vehicles named 1, . . . , v , each of which is either a
car, a taxi or an ambulance. It is assumed that there are more positions than
vehicles (m > v). It might be the case that none of the vehicles are cars,
and the same for taxis and ambulances. Let cars = {c0, . . . , cq} ⊆ {1, . . . , v}
(q ≥ 0) be the (names of) the cars. Similarly, taxis = {t0, . . . , tr} and
ambu = {a0, . . . , as}. We first describe the Boolean variables. For each
vehicle 1 ≤ i ≤ v , position 1 ≤ pos ≤ m and lane ∈ {0, 1}, we have
a Boolean variable vposi(lane, pos). For example, vpos2(1, 7) means that
vehicle number 2 is in position 7 on the left lane.

For each car i ∈ cars we define a module car -i as in Figure 5 (for
simplicity, the set {v ′

1 := ψ1, . . . , v
′
k := ψk} is used as an abbreviation for

the sequence of assignment operations v ′
1 := ψ1; . . . ; v

′
k := ψk .)

Each car module controls the variables describing its own position. The
initial position of car i is at position i along one of the tracks; the track is
chosen non-deterministically (in what follows the inital positions of the cars
are completely arbitrary, this particular choice was made as a simple way to
ensure that two cars don’t occupy the same position). In the update phase,
a car module can perform one of four actions. First, the car can stand still,
in which case there are no changes to the controlled variables (in this case
the right hand side of the stilli rule is just a dummy expression indicating no
change). Second, the car can move straight ahead. In all of the three rules
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module car -i controls vposi (0, 1), . . . , vposi (0,m), vposi (1, 1), . . . , vposi (1,m)
init

[] : ⊤ ; vposi (0, i)′ := ⊤; vposi (1, i)′ := ⊥; {vposi (x , y)′ := ⊥ | x ∈ {0, 1}, y 6= i}
[] : ⊤ ; vposi (1, i)′ := ⊤; vposi (0, i)′ := ⊥; {vposi (x , y)′ := ⊥ | x ∈ {0, 1}, y 6= i}
update

stilli : ⊤ ; vposi (0, 1)′ := vposi (0, 1)

straighti :
∨

x∈{0,1},1≤j≤m

(

vposi (x , j ) ∧
∧

k 6=i (¬vposk (x , (j + 1)mod m))
)

;

vposi (0, 1)′ := vposi (0,m); vposi (1, 1)′ := vposi (1,m);
vposi (0, 2)′ := vposi (0, 1); vposi (1, 2)′ := vposi (1, 1);

.

.

.
vposi (0,m)′ := vposi (0,m − 1); vposi (1,m)′ := vposi (1,m − 1)

righti :
∨

1≤j≤m

(

vposi (1, j ) ∧
∧

k 6=i (¬vposk (0, (j + 1)mod m))
)

;

vposi (0, 1)′ := vposi (1,m); vposi (1, 1)′ := ⊥;
vposi (0, 2)′ := vposi (1, 1); vposi (1, 2)′ := ⊥;

..

.
vposi (0,m)′ := vposi (1,m − 1); vposi (1,m)′ := ⊥

lefti :
∨

1≤j≤m

(

vposi (0, j ) ∧
∧

k 6=i (¬vposk (1, (j + 1)mod m))
)

;

vposi (1, 1)′ := vposi (0,m); vposi (0, 1)′ := ⊥;
vposi (1, 2)′ := vposi (0, 1); vposi (0, 2)′ := ⊥;

.

.

.
vposi (1,m)′ := vposi (0,m − 1); vposi (0,m)′ := ⊥

Figure 5. Cars in the ambulance scenario.

which move the car it is assumed that a car will only move to a position
which is currently not occupied. This is a reasonable safety assumption
about behaviour of cars, however it is neither sufficient (two cars might
move simultaneously to the same position) nor necessary (the car currently
occupying the position might move to another position at the same time) to
avoid crashes. Alternatively, this assumption could have been implemented
as a separate normative system. Thus, the guard of the straighti rule ensures
that the position immediately in front of car i is currently available. The
right hand side of this rule updates the position of car i by setting vposi(x , y+
1) to true if vposi(x , y) were true before the rule was executed, and so on.
The guard of the righti rule checks that the car is in the left lane and that
one position ahead in the right lane is available, and the r.h.s. updates the
position. Similarly for lefti . Note that the operations on vehicles’ positions
are modulo-m operations, where m is the number of positions in the road.

We similarly define a module taxi -i for each taxi i ∈ taxis — see Figure 6.

Ambulances follow the same schema except that they have two-step rules
which (also) can only be executed when the road is clear. We define a module
ambu-i for each ambulance i ∈ ambu — see Figure 7.



38 Ågotnes, van der Hoek, Rodŕıguez-Aguilar, Sierra, and Wooldridge

module taxi-i controls vposi (0, 1), . . . , vposi (0,m), vposi (1, 1), . . . , vposi (1,m)
init

(as for car-i)
update

(as for car-i)

Figure 6. Taxis in the ambulance scenario.

module ambu-i controls vposi (0, 1), . . . , vposi (0,m), vposi (1, 1), . . . , vposi (1,m)
init

(as for car-i)
update

stilli : (as for car-i)
straighti : (as for car-i)
righti : (as for car-i)
lefti : (as for car-i)
straightstraighti :

∨

x∈{0,1},1≤j≤m
(

vposi (x , j ) ∧
∧

k 6=i (¬vposk (x , (j + 1)mod m) ∧ ¬vposk (x , (j + 2)mod m))
)

;

vposi (0, 1)′ := vposi (0,m − 1); vposi (1, 1)′ := vposi (1,m − 1);
vposi (0, 2)′ := vposi (0,m); vposi (1, 2)′ := vposi (1,m);

···
vposi (0,m)′ := vposi (0,m − 2); vposi (1,m)′ := vposi (1,m − 2)

straightrighti :
∨

1≤j≤m
(

vposi (1, j ) ∧
∧

k 6=i (¬vposk (1, (j + 1)mod m) ∧ ¬vposk (0, (j + 2)mod m))
)

;

vposi (0, 1)′ := vposi (1,m − 1); vposi (1, 1)′ := ⊥;
vposi (0, 2)′ := vposi (1,m); vposi (1, 2)′ := ⊥;

···
vposi (0,m)′ := vposi (1,m − 2); vposi (1,m)′ := ⊥

rightstraighti :
∨

1≤j≤m
(

vposi (1, j ) ∧
∧

k 6=i (¬vposk (0, (j + 1)mod m) ∧ ¬vposk (0, (j + 2)mod m))
)

;

vposi (0, 1)′ := vposi (1,m − 1); vposi (1, 1)′ := ⊥;
vposi (0, 2)′ := vposi (1,m); vposi (1, 2)′ := ⊥;

···
vposi (0,m)′ := vposi (1,m − 2); vposi (1,m)′ := ⊥

straightlefti :
∨

1≤j≤m
(

vposi (0, j ) ∧
∧

k 6=i (¬vposk (0, (j + 1)mod m) ∧ ¬vposk (1, (j + 2)mod m))
)

;

vposi (1, 1)′ := vposi (0,m − 1); vposi (0, 1)′ := ⊥;
vposi (1, 2)′ := vposi (0,m); vposi (0, 2)′ := ⊥;

···
vposi (1,m)′ := vposi (0,m − 2); vposi (0,m)′ := ⊥

leftstraighti :
∨

1≤j≤m
(

vposi (0, j ) ∧
∧

k 6=i (¬vposk (1, (j + 1)mod m) ∧ ¬vposk (1, (j + 2)mod m))
)

;

vposi (1, 1)′ := vposi (0,m − 1); vposi (0, 1)′ := ⊥;
vposi (1, 2)′ := vposi (0,m); vposi (0, 2)′ := ⊥;

···
vposi (1,m)′ := vposi (0,m − 2); vposi (0,m)′ := ⊥

Figure 7. Ambulances in the ambulance scenario.
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In addition to the rules car and taxi modules have, ambulances have rules
for moving two units at a time. straightstraighti moves two positions directly
ahead, and the guard checks that both positions immediately ahead are
unoccupied. straightrighti means moving to the position which is two steps
ahead in the right lane; given that the ambulance is currently in the left lane
and the final position in the right lane is unoccupied. The difference between
straightrighti and rightstraighti is that the former also requires the position
immediately ahead to be available, corresponding to driving straight and
then turning right, and instead the latter also requires the position one step
to the right to be available, corresponding to first turning right. Similarly
for straightlefti and leftstraighti .

Thus, the srml description of the model consists of a collection of these
modules. Note that the description of the modules here abstracts away from
the number of vehicles in general as well as the number of the particular
vehicle types. In reality, for a given number of vehicles, there are equally
many modules. However, all the car (taxi, ambulance) modules are defined
in the same way. For example, if there are four vehicles {1, 2, 3, 4} and
vehicles 1 and 2 are cars, vehicle 3 is a taxi, and vehicle 4 is an ambulance,
then the srml description consists of the modules named car -1, car -2, taxi -3
and ambu-4.

Normative Systems

We now go on to use snl to describe the norms discussed above in the form
of four separate normative systems (see Figure 8). Normative system η1 has
a constraint rule for each car {c0, . . . , cq} and each taxi {t0, . . . , tr}, disabling
any movement if they are immediately in front of an ambulance; η2 has two
constraint rules for each car, disabling switching to the right lane and moving
ahead if already in the right lane; η3 has one constraint rule for each vehicle,
disabling any movement in the case that there is another vehicle immediately
to the right; finally, η4 has one constraint rule for each ambulance, disabling
two-step moves in the case that there is another ambulance one step ahead
in either lane.

Model Checking

For a fixed number of vehicles v , cars cars, taxis taxis and ambulances ambu,
let ρ(v , cars, taxis, ambu) denote the srml system defined above. As noted
earlier, ρ(v , cars, taxis, ambu) induces a Kripke structure Kρ(v ,cars,taxis,ambu).
We can now model check formulae containing references to η1, η2, etc., by
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normative-system η1
∨

x∈{0,1},1≤y≤m,a∈ambu vposc0 (x , (y + 1)mod m) ∧ vposa (x , y)

disables straightc0 , rightc0
.
.
.
∨

x∈{0,1},1≤y≤m,a∈ambu vposcq (x , (y + 1)mod m) ∧ vposa (x , y)

disables straightcq , rightcq
∨

x∈{0,1},1≤y≤m,a∈ambu vpost0 (x , (y + 1)mod m) ∧ vposa (x , y)

disables straightt0 , rightt0
..
.
∨

x∈{0,1},1≤y≤m,a∈ambu vpostr (x , (y + 1)mod m) ∧ vposa (x , y)

disables straighttr , righttr

normative-system η2
∨

1≤y≤m vposc0 (0, y) disables straightc0
⊤ disables rightc0
..
.
∨

1≤y≤m vposcq (0, y) disables straightcq
⊤ disables rightcq

normative-system η3
∨

1≤j≤v,1≤y≤m (vpos1(1, y) ∧ vposj (0, y)) disables straight1, right1
.
..
∨

1≤j≤v,1≤y≤m (vposv (1, y) ∧ vposj (0, y)) disables straightv , rightv

normative-system η4
∨

x ,x ′∈{0,1},1≤y≤m,a∈ambu (vposa0
(x , y) ∧ vposa (x ′, (y + 1)mod m))

disables straightstraighta0
, straightrighta0

, rightstraighta0
, straightlefta0

, leftstraighta0

.

.

.
∨

x ,x ′∈{0,1},1≤y≤m,a∈ambu (vposas (x , y) ∧ vposa (x ′, (y + 1)mod m))

disables straightstraightas , straightrightas , rightstraightas , straightleftas , leftstraightas

Figure 8. Normative systems η1 to η4.

using the snl normative systems above as interpretations. Furthermore, we
let η12 denote the normative system obtained by taking the union of η1 and
η2, and so on. Let I denote the interpretation of all these normative systems.

Of primary interest is, of course, whether or not there will be crashes in
the system under various circumstances. We define:

crash =
∨

i 6=j ,x∈{0,1},k

vposi(x , k) ∧ vposj (x , k)

We have the following.

(P1) Without norms, there might be crashes:

Kρ(v ,cars,taxis,ambu) |=I Pη∅♦crash
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In other words, the unrestricted system permits a run along which
a crash happens.

(P2) The combination of the normative systems η1, η2, η3 and η4 always
ensures that there are no crashes:

Kρ(v ,cars,taxis,ambu) |=I Oη1234
¬crash

In other words, it is an obligatory property of a run that a crash never
happens.

The two properties above hold no matter how many vehicles of each type
there are. The following are examples of normative properties which hold
for particular configurations of vehicles:

(P3) If there are no ambulances (ambu = ∅), then η3 ensures that there are
no crashes:

Kρ(v ,cars,taxis,ambu) |=I Oη3
¬crash

(P4) If there is only one ambulance (ambu = {a0}), then the combination of
the normative systems η1, η2 and η3 ensures that there are no crashes:

Kρ(v ,cars,taxis,ambu) |=I Oη123
¬crash

(P5) If there is more than one ambulance, then the combination of the
normative systems η1, η2 and η3 is not enough to ensure that there
are no crashes:

Kρ(v ,cars,taxis,ambu) |=I Pη123
♦crash

A Note on Analysis

The properties above can be checked by manual inspection: this is a techni-
cally straightforward, but rather tedious process. Instead, we have analysed
this case study using the mocha model checker [4]. mocha implements
model checking for ctl and atl [3] against models specified using the Re-
active Systems language, of which srml is a subset. Of course, we cannot
directly check ntl and snl properties in this way. Instead, to realise the
effect of normative systems, we manually “implement” them by modifying
the conditions of relevant srml rules; this allows us to represent a (strict)
subset of ntl properties as ctl formulae.

Figure 9 summarises some test results with different scenarios. A ‘0’
under a norm means that the norm is not applied, and a ‘1’ that it is. A
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crash is possible when a ‘1’ appears under the Crash column, corresponding
to the formula Pη♦crash being true, where η is the combination of normative
systems under consideration. These test results are of course in accordance
with the results presented above: property (P1) can be observed in rows 1,
3 and 10. Line 17 is an instance of property (P2). Line 2 is an instance of
property (P3). Line 9 is an instance of property (P4). Property (P5) can
be observed on lines 10–16.

#Ambulances #Taxis #Cars η1 η2 η3 η4 Crash

1 0 0 2 0 0 0 0 1

2 0 0 2 0 0 1 0 0

3 1 0 1 0 0 0 0 1

4 1 0 1 0 0 1 0 1

5 1 0 1 0 1 1 0 1

6 1 0 1 1 0 0 0 1

7 1 0 1 1 0 1 0 1

8 1 0 1 1 1 0 0 1

9 1 0 1 1 1 1 0 0

10 2 1 1 0 0 0 0 1

11 2 1 1 0 0 1 0 1

12 2 1 1 0 1 1 0 1

13 2 1 1 1 0 0 0 1

14 2 1 1 1 0 1 0 1

15 2 1 1 1 1 0 0 1

16 2 1 1 1 1 1 0 1

17 2 1 1 1 1 1 1 0

Figure 9. Testing η1, η2, η3, η4 with different numbers of ambulances, taxis and cars.

6. Discussion

6.1. Related Work

The work presented in this paper has its roots in several different communi-
ties, the most significant being the tradition of using deontic logic in com-
puter science to reason about normative behaviour of systems [30, 12, 19],
and the use of model checking and temporal logics such as ctl to analyse
the temporal properties of systems [14, 11].

The two main differences between the language of ntl and the language
of conventional deontic logic (henceforth “deontic logic”) are, first, contextual
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deontic operators allowing a formula to refer to several different normative
systems, and, second, the use of temporal operators. All deontic expressions
in ntl refer to time: Pη

gϕ (“it is permissible in the context of η that ϕ
is true at the next time point”); Oη ϕ (“it is obligatory in the context of
η that ϕ always will be true”); etc. Conventional deontic logic contains no
notion of time. In order to compare our temporal deontic statements with
those of deontic logic we must take the temporal dimension to be implicit
in the latter. Two of the perhaps most natural ways of doing that is to take
“obligatory” (Oϕ) to mean “always obligatory” (Oη ϕ), or “obligatory at
the next point in time” (Oη

gϕ), respectively, and similarly for permission.
In either case, all the principles of Standard Deontic Logic (sdl) (see, e.g.,
[9]) hold also for ntl, viz., O(ϕ → ψ) → (Oϕ → Oψ) (K ); ¬O⊥ (D):9 and
from ϕ infer Oϕ (N ). The two mentioned temporal interpretations of the
(crucial) deontic axiom D are (both ntl validities):

¬Oη ⊥ and ¬Oη
g⊥

A more detailed understanding of the relationship between ntl and other
deontic logics would also be useful. Observe that our language is in one sense
rather restricted: every deontic attitude is towards the future, never about
the present or past. Indeed, when reasoning about normative behaviour of
a system, it is also not easy to see what an obligation towards an objective,
purely propositional formula, actually means. Our framework focuses on
ideal transitions, rather than ideal states. This choice of design makes it
also not easy to compare our set-up with other temporal deontic logics.
We cannot, for instance, express properties like Oη

gϕ → gOηϕ (for a
discussion of such “perfect recall”-like properties for temporal deontic logic,
see [8]). There is another interesting direction to relax our class of formulae,
however: namely, to allow for arbitrary linear temporal logic formulas Tϕ
in the scope of an obligation Oη.

10 This would allow us for instance to
express that in system η, property ϕ needs to be true within three steps:
Oη( gϕ∨ g gϕ∨ g g gϕ). Semantically, this would also pave the way to
define a norm as a restriction on runs, rather than transitions. One can for
instance think of a norm that forbids any run in which some “unwanted”
transition occurs more than n times. As a special case this would facilitate
to enforce fairness and liveness conditions by a norm [15].

9Actually, the scheme D is Oϕ → ¬O¬ϕ, but for the logics that we consider here, both
representations are equivalent.

10The ‘η∅ fragment’ of this language would still be a strict subset of ctl∗, so the overall
language might still be well-behaved.
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Contrary-to-Duty obligations are structures involving two obligations,
where the second obligation “takes over” when the first is violated [21]. Log-
ics that deal with this kind of obligation typical add actions, time, a default
component or a notion of context (signalling that the primary obligation has
been violated, and we are now entering a sub-ideal context) to their semantic
machinery to deal with them [21]. ntl is already equipped with a temporal
component, and it would certainly also be possible to label the transitions
in our semantics with actions. However, given that we incorporate a suite of
norms within one system, it seems ntl can also represent “sub-ideal” con-
texts. Technically, η2 represents the secondary obligations that come into
force when η1 is violated, if the domain dom(η2) = {t | ∃u (t , u) ∈ η2}
is exactly the range ran(η1) = {t | ∃s (s, t) ∈ η1} of η1. We leave a de-
tailed comparison between existing temporal deontic logics and ntl for fu-
ture works, as well as any investigation into the usefulness of ntl to model
contrary-to-duty obligations.

It has been argued that “deadlines are important norms in most inter-
actions between agents” [13, page 40], and this naturally suggests the need
for a temporal component in reasoning about systems with norms. Indeed,
the authors of [13] used ctl in their paper Designing a Deontic Logic of
Deadlines [7], and one of their authors reduces Strategic Deontic Temporal
Logic to atl in [6]11.

One of our concerns in this paper was to give a computationally grounded
semantics for deontic modalities, in that we aim to give the semantics a clear
computational interpretation; in this respect, our work is similar in spirit to
the deontic interpreted systems model of Lomuscio and Sergot [19]. Perhaps
the most obvious difference is that while we consider “bad transitions”, Lo-
muscio and Sergot are concerned with “bad states”.

We should also mention work by Sergot and Craven on the use of vari-
ants of the C+ language for representing and reasoning about deontic sys-
tems [23, 24]. The nC+ language they develop can be understood as an
alternative to srml/snl for defining (symbolic) representations of Kripke
models and normative systems. The main difference is that the C+ language
provides a richer, higher level, arguably more general, logical framework for
specifying models than srml/snl. In fact their work emerges from a rather
different community — reasoning about action and non-monotonic reason-
ing in artificial intelligence. It would be interesting to undertake a more
formal investigation of the relationship between the two frameworks, with
respect to both expressive power and computational complexity. It seems

11The latter paper includes an application to Chisholm’s paradox.
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plausible that analogues of our srml/snl model checking problems will be
more complex in the richer framework of nC+, although we emphasise that
currently we have no results here. Note that the first of the papers cited
above also presents an outline of how normative properties expressed in ctl
can be evaluated using standard model checking tools, and uses an example
similar to that used in this paper.

Finally, ntl is closely related to a system called Normative atl, which
was introduced in [31]. In fact, ntl is related to ctl [14] in the same way as
that Normative atl is related to atl [3]: however, ntl (and specifically its
semantics) is much simpler (and we believe more intuitive) than Normative
atl [31], and we present many more technical results associated with our
logic.

6.2. Future Work

A number of issues suggest themselves for future work:

• Regarding ntl, tight bounds for complexity of uninterpreted symbolic
model checking, and the complexity of satisfiability, which has not been
addressed within this paper.

• The calculus of normative systems, as mentioned in Section 2, could be
developed further. In this paper, we have considered only set-theoretic
operations on normative systems, (taking their union and intersection),
but other possible operators might be considered as well, such as what
happens when a normative system is “restricted” to some set of players,
or when it is restricted to those constraints that some players regard as
in their best interests. To capture these latter concerns, we would need
some notion of preference or goals.

• Another issue of interest is that of “reasonableness”, and in particular
the extent to which this constraint is necessary.

• We might usefully consider the possibility and implications of non-
compliance. It seems inevitable that in real systems, some agents will fail
to comply with a normative system, even if it is in their best interests
to do so. This raises two issues: First, what is the right way to go about
dealing with this possibility with respect to the design of normative sys-
tems themselves, and second, how are we to deal with these concerns at
the language level?

• We might also consider prioritised collections of normative systems (“if
this normative system fails, then use this”).
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• Finally, of course, a full implementation of a model checker encompassing
the variations discussed in Section 4 would be desirable, and as ever, more
detailed case studies would be useful to further evaluate the logic.

6.3. Conclusions

The design and application of normative systems and social laws is a major
area of research activity in the multi-agent systems community. If we are
going to make use of such social laws, then it seems only appropriate that
we develop formalisms that allow us to explicitly and directly reason about
them. In this paper, we have developed a Normative Temporal Logic that
is intended for this purpose, being careful to give a semantics to deontic
modalities that has a clear computational interpretation. We see the key
advantages of ntl as follows. First, the fact that the formalism is so closely
related to ctl is likely to be an advantage from the point of view of compre-
hension and acceptance within the mainstream model checking/verification
community. Second, the fact that the language has a clear computational in-
terpretation means that it can be applied in a computational setting without
any ambiguity of interpretation. Third, the clear identification of different
normative systems within the language, and the ability to talk about these
directly, represents a novel step forward. While ntl arguably lacks some
of the nuances of more conventional deontic and deontic temporal logics,
we believe these advantages imply that the language and the approach it
embodies merit further research.
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