
Functional Design Errors in Digital Circuits



Lecture Notes in Electrical Engineering
Volume 32

For other titles published in this series, go to
www.springer.com/series/7818



Kai-hui Chang · Igor L. Markov · Valeria Bertacco

Functional Design Errors
in Digital Circuits

Diagnosis, Correction and Repair

123



Dr. Kai-hui Chang
University of Michigan
Dept. Electrical Engineering &
Computer Science
Ann Arbor MI 48109-2122
USA
changkh@umich.edu

Dr. Igor L. Markov
University of Michigan
Dept. Electrical Engineering &
Computer Science
Ann Arbor MI 48109-2122
USA
imarkov@umich.edu

Dr. Valeria Bertacco
University of Michigan
Dept. Electrical Engineering &
Computer Science
Ann Arbor MI 48109-2122
USA
valeria@umich.edu

ISBN: 978-1-4020-9364-7 e-ISBN: 978-1-4020-9365-4

DOI 10.1007/978-1-4020-9365-4

Library of Congress Control Number: 2008937577

c© Springer Science+Business Media B.V. 2009
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



To the synergy between
science and engineering



Contents

Dedication v
List of Figures xiii
List of Tables xxi
Preface xxiii

Part I Background and Prior Art

1. INTRODUCTION 3

1.1 Design Trends and Challenges 4

1.2 State of the Art 6

1.3 New Opportunities 8

1.4 Key Innovations and Book Outline 10

2. CURRENT LANDSCAPE IN DESIGN AND VERIFICATION 13

2.1 Front-End Design 13

2.2 Back-End Logic Design 16

2.3 Back-End Physical Design 20

2.4 Post-Silicon Debugging 21

3. FINDING BUGS AND REPAIRING CIRCUITS 25

3.1 Simulation-Based Verification 25
3.1.1 Logic Simulation Algorithms 26
3.1.2 Improving Test Generation and Verification 27

3.2 Formal Verification 28
3.2.1 The Boolean Satisfiability Problem 28
3.2.2 Bounded Model Checking 29
3.2.3 Symbolic Simulation 29



viii Contents

3.2.4 Reachability Analysis 30
3.2.5 Equivalence Checking 31

3.3 Design for Debugging and Post-Silicon Metal Fix 31
3.3.1 Scan Chains 31
3.3.2 Post-Silicon Metal Fix via Focused Ion Beam 32

Part II FogClear Methodologies and Theoretical Advances in Error Repair

4. CIRCUIT DESIGN AND VERIFICATION METHODOLOGIES 37

4.1 Front-End Design 37

4.2 Back-End Logic Design 37

4.3 Back-End Physical Design 38

4.4 Post-Silicon Debugging 40

5. COUNTEREXAMPLE-GUIDED ERROR-REPAIR FRAMEWORK 43

5.1 Background 43
5.1.1 Bit Signatures 43
5.1.2 Don’t-Cares 44
5.1.3 SAT-Based Error Diagnosis 44
5.1.4 Error Model 45

5.2 Error-Correction Framework for Combinational Circuits 46
5.2.1 The CoRé Framework 46
5.2.2 Analysis of CoRé 48
5.2.3 Discussions 49
5.2.4 Applications 49

6. SIGNATURE-BASED RESYNTHESIS TECHNIQUES 51

6.1 Pairs of Bits to be Distinguished (PBDs) 51
6.1.1 PBDs and Distinguishing Power 51
6.1.2 Related Work 52

6.2 Resynthesis Using Distinguishing-Power Search 53
6.2.1 Absolute Distinguishing Power of a Signature 53
6.2.2 Distinguishing-Power Search 53

6.3 Resynthesis Using Goal-Directed Search 54

7. SYMMETRY-BASED REWIRING 57

7.1 Background 58
7.1.1 Symmetries in Boolean Functions 58



Contents ix

7.1.2 Semantic and Syntactic Symmetry Detection 60
7.1.3 Graph-Automorphism Algorithms 62
7.1.4 Post-Placement Rewiring 62

7.2 Exhaustive Search for Functional Symmetries 63
7.2.1 Problem Mapping 63
7.2.2 Proof of Correctness 64
7.2.3 Generating Symmetries from Symmetry

Generators 66
7.2.4 Discussion 66

7.3 Post-Placement Rewiring 67
7.3.1 Permutative Rewiring 67
7.3.2 Implementation Insights 68
7.3.3 Discussion 69

7.4 Experimental Results 69
7.4.1 Symmetries Detected 70
7.4.2 Rewiring 71

7.5 Summary 73

Part III FogClear Components

8. BUG TRACE MINIMIZATION 77

8.1 Background and Previous Work 77
8.1.1 Anatomy of a Bug Trace 77
8.1.2 Known Techniques in Hardware Verification 79
8.1.3 Techniques in Software Verification 81

8.2 Analysis of Bug Traces 81
8.2.1 Making Traces Shorter 82
8.2.2 Making Traces Simpler 83

8.3 Proposed Techniques 84
8.3.1 Single-Cycle Elimination 84
8.3.2 Input-Event Elimination 86
8.3.3 Alternative Path to Bug 86
8.3.4 State Skip 86
8.3.5 Essential Variable Identification 87
8.3.6 BMC-Based Refinement 88

8.4 Implementation Insights 90
8.4.1 System Architecture 90



x Contents

8.4.2 Algorithmic Analysis and Performance
Optimizations 90

8.4.3 Use Model 92

8.5 Experimental Results 93
8.5.1 Simulation-Based Experiments 93
8.5.2 Performance Analysis 97
8.5.3 Essential Variable Identification 98
8.5.4 Generation of High-Coverage Traces 99
8.5.5 BMC-Based Experiments 100
8.5.6 Evaluation of Experimental Results 101

8.6 Summary 102

9. FUNCTIONAL ERROR DIAGNOSIS AND CORRECTION 105

9.1 Gate-Level Error Repair for Sequential Circuits 105

9.2 Register-Transfer-Level Error Repair 106
9.2.1 Background 107
9.2.2 RTL Error Diagnosis 108
9.2.3 RTL Error Correction 114

9.3 Experimental Results 117
9.3.1 Gate-Level Error Repair 117
9.3.2 RTL Error Repair 122

9.4 Summary 130

10. INCREMENTAL VERIFICATION FOR PHYSICAL SYNTHESIS 133

10.1 Background 133
10.1.1 The Current Physical Synthesis Flow 133
10.1.2 Retiming 134

10.2 Incremental Verification 135
10.2.1 New Metric: Similarity Factor 135
10.2.2 Verification of Retiming 136
10.2.3 Overall Verification Methodology 137

10.3 Experimental Results 140
10.3.1 Verification of Combinational Optimizations 140
10.3.2 Sequential Verification of Retiming 144

10.4 Summary 145

11. POST-SILICON DEBUGGING AND LAYOUT REPAIR 147

11.1 Physical Safeness and Logical Soundness 148
11.1.1 Physically Safe Techniques 148
11.1.2 Physically Unsafe Techniques 149



Contents xi

11.2 New Resynthesis Technique – SafeResynth 151
11.2.1 Terminology 152
11.2.2 SafeResynth Framework 152
11.2.3 Search-Space Pruning Techniques 152

11.3 Physically-Aware Functional Error Repair 155
11.3.1 The PAFER Framework 155
11.3.2 The PARSyn Algorithm 156

11.4 Automating Electrical Error Repair 158
11.4.1 The SymWire Rewiring Technique 159
11.4.2 Adapting SafeResynth to Perform Metal Fix 159
11.4.3 Case Studies 160

11.5 Experimental Results 161
11.5.1 Functional Error Repair 162
11.5.2 Electrical Error Repair 164

11.6 Summary 165

12. METHODOLOGIES FOR SPARE-CELL INSERTION 167

12.1 Existing Spare-Cell Insertion Methods 168

12.2 Cell Type Analysis 170
12.2.1 The SimSynth Technique 170
12.2.2 Experimental Setup 172
12.2.3 Empirical Results 173
12.2.4 Discussion 173

12.3 Placement Analysis 174

12.4 Our Methodology 176

12.5 Experimental Results 177
12.5.1 Cell-Type Selection 177
12.5.2 Spare-Cell Placement 178

12.6 Summary 181

13. CONCLUSIONS 183

References 187

Index 199



List of Figures

1.1 Relative delay due to gate and interconnect at different
technology nodes. Delay due to interconnect becomes
larger than the gate delay at the 90 nm technology node. 5

1.2 Estimated mask costs at different technology nodes.
Source: ITRS’05 [153]. 6

2.1 The current front-end design flow. 14

2.2 The current back-end logic design flow. 17

2.3 The current back-end physical design flow. 20

2.4 The current post-silicon debugging flow. 21

2.5 Post-silicon error-repair example. (a) The original buggy
layout with a weak driver (INV). (b) A traditional resyn-
thesis technique finds a “simple” fix that sizes up the
driving gate, but it requires expensive remanufactur-
ing of the silicon die to change the transistors. (c) Our
physically-aware techniques find a more “complex” fix
using symmetry-based rewiring, and the fix can be im-
plemented simply with a metal fix and has smaller phys-
ical impact. 23

3.1 Lewis’ event-driven simulation algorithm. 27

3.2 Pseudo-code for bounded model checking. 29

3.3 The algorithmic flow of reachability analysis. 30



xiv List of Figures

3.4 Schematic showing the process to connect to a lower-
level wire through an upper-level wire: (a) a large hole
is milled through the upper level; (b) the hole is filled
with SiO2; (c) a smaller hole is milled to the lower-
level wire; and (d) the hole is filled with new metal. In
the figure, whitespace is filled with SiO2, and the dark
blocks are metal wires. 32

4.1 The FogClear front-end design flow. 38

4.2 The FogClear back-end logic design flow. 39

4.3 The FogClear back-end physical design flow. 40

4.4 The FogClear post-silicon debugging flow. 41

5.1 Error diagnosis. In (a) a multiplexer is added to model
the correction of an error, while (b) shows the error
cardinality constraints that limit the number of asserted
select lines to N . 45

5.2 Errors modeled by Abadir et al. [1]. 46

5.3 The algorithmic flow of CoRé. 47

5.4 Execution example of CoRé. Signatures are shown above
the wires, where underlined bits correspond to error-
sensitizing vectors. (1) The gate was meant to be AND
but is erroneously an OR. Error diagnosis finds that
the output of the 2nd pattern should be 0 instead of 1;
(2) the first resynthesized netlist fixes the 2nd pattern,
but fails further verification (the output of the 3rd pat-
tern should be 1); (3) the counterexample from step 2
refines the signatures, and a resynthesized netlist that
fixes all the test patterns is found. 48

6.1 The truth table on the right is constructed from the sig-
natures on the left. Signature st is the target signature,
while signatures s1 to s4 are candidate signatures. The
minimized truth table suggests that st can be resynthe-
sized by an INVERTER with its input set to s1. 55

6.2 Given a constraint imposed on a gate’s output and the
gate type, this table calculates the constraint of the gate’s
inputs. The output constraints are given in the first row,
the gate types are given in the first column, and their
intersection is the input constraint. “S.C.” means “sig-
nature complemented.” 56

6.3 The GDS algorithm. 56



List of Figures xv

7.1 Rewiring examples: (a) multiple inputs and outputs are
rewired simultaneously using pin-permutation symme-
try, (b) inputs to a multiplexer are rewired by inverting
one of the select signals. Bold lines represent changes
made in the circuit. 58

7.2 Representing the 2-input XOR function by (a) the truth
table, (b) the full graph, and (c) the simplified graph for
faster symmetry detection. 64

7.3 Our symmetry generation algorithm. 67

7.4 Rewiring opportunities for p and q cannot be detected
by only considering the subcircuit shown in this figure.
To rewire p and q, a subcircuit with p and q as inputs
must be extracted. 68

7.5 Flow chart of our symmetry detection and rewiring
experiments. 70

8.1 An illustration of two types of bugs, based on whether
one or many states expose a given bug. The x-axis
represents FSM-X and the y-axis represents FSM-Y.
A specific bug configuration contains only one state,
while a general bug configuration contains many states. 78

8.2 A bug trace example. The boxes represent input vari-
able assignments to the circuit at each cycle, shaded
boxes represent input events. This trace has three cy-
cles, four input events and twelve input variable
assignments. 79

8.3 Another view of a bug trace. Three bug states are shown.
Formal methods often find the minimal length bug trace,
while semi-formal and constrained-random techniques
often generate longer traces. 79

8.4 A bug trace may contain sequential loops, which can
be eliminated to obtain an equivalent but more compact
trace. 82

8.5 Arrow 1 shows a shortcut between two states on the
bug trace. Arrows marked “2” show paths to easier-
to-reach bug states in the same bug configuration (that
violate the same property). 83

8.6 Single-cycle elimination attempts to remove individ-
ual trace cycles, generating reduced traces which still
expose the bug. This example shows a reduced trace
where cycle 1 has been removed. 85



xvi List of Figures

8.7 Input-event elimination removes pairs of events. In the
example, the input events on signal c at cycle 1 and 2
are removed. 86

8.8 Alternative path to bug: the variant trace at the bottom
hits the bug at step t2. The new trace replaces the old
one, and simulation is stopped. 87

8.9 State skip: if state sj2 = si4 , cycles t3 and t4 can be
removed, obtaining a new trace which includes the se-
quence “... sj1 , sj2 , si5 , ...”. 87

8.10 BMC-based shortcut detection algorithm. 88

8.11 BMC-based refinement finds a shortcut between states
S1 and S4, reducing the overall trace length by one cycle. 89

8.12 A shortest-path algorithm is used to find the shortest
sequence from the initial state to the bug state. The
edges are labeled by the number of cycles needed to go
from the source vertex to the sink. The shortest path
from states 0 to 4 in the figure uses 2 cycles. 90

8.13 Butramin system architecture. 91

8.14 Early exit. If the current state sj2 matches a state si2

from the original trace, we can guarantee that the bug
will eventually be hit. Therefore, simulation can be ter-
minated earlier. 92

8.15 Percentage of cycles removed using different simulation-
based techniques. For benchmarks like B15 and ICU,
state skip is the most effective technique because they
contain small numbers of state variables and state rep-
etition is more likely to occur. For large benchmarks
with long traces like FPU and picoJava, cycle elimina-
tion is the most effective technique. 95

8.16 Number of input events eliminated with simulation-based
techniques. The distributions are similar to cycle elim-
ination because removing cycles also removes input
events. However, input-event elimination works the
most effectively for some benchmarks like S38584 and
DES, showing that some redundant input events can
only be removed by this technique. 96

8.17 Comparison of Butramin’s impact when applied to traces
generated in three different modes. The graph shows
the fraction of cycles and input events eliminated and
the average runtime. 99



List of Figures xvii

9.1 Sequential signature construction example. The signa-
ture of a node is built by concatenating the simulated
values of each cycle for all the bug traces. In this ex-
ample, trace1 is 4 cycles and trace2 is 3 cycles long.
The final signature is then 0110101. 106

9.2 REDIR framework. Inputs to the tool are an RTL de-
sign (which includes one or more errors), test vectors
exposing the bug(s), and correct output responses for
those vectors obtained from high-level simulation. Out-
puts of the tool include REDIR symptom core (a min-
imum cardinality set of RTL signals which need to be
modified in order to correct the design), as well as sug-
gestions to fix the errors. 107

9.3 An RTL error-modeling code example: module half adder
shows the original code, where c is erroneously driven
by “a | b” instead of “a & b”; and module half adder MUX
enriched shows the MUX-enriched version. The differ-
ences are marked in boldface. 110

9.4 Procedure to insert a conditional assignment for a sig-
nal in an RTL description for error modeling. 110

9.5 Procedure to perform error diagnosis using synthesis
and circuit unrolling. PI/PO means primary inputs and
primary outputs. 110

9.6 Procedure to perform error diagnosis using symbolic
simulation. The boldfaced variables are symbolic vari-
ables or expressions, while all others are scalar values. 112

9.7 Design for the example. Wire g1 should be driven by
“r1 & r2”, but it is erroneously driven by “r1 | r2”. The
changes made during MUX-enrichment are marked in
boldface. 113

9.8 Signature-construction example. Simulation values of
variables created from the same RTL variable at all cy-
cles should be concatenated for error correction. 116

10.1 The current post-layout optimization flow. Verifica-
tion is performed after the layout has undergone a large
number of optimizations, which makes debugging
difficult. 134

10.2 Similarity factor example. Note that the signatures in
the fanout cone of the corrupted signal are different. 136



xviii List of Figures

10.3 Resynthesis examples: (a) the gates in the rectangle
are resynthesized correctly, and their signatures may
be different from the original netlist; (b) an error is in-
troduced during resynthesis, and the signatures in the
output cone of the resynthesized region are also differ-
ent, causing a significant drop in similarity factor. 136

10.4 A retiming example: (a) is the original circuit, and (b)
is its retimed version. The tables above the wires show
their signatures, where the nth row is for the nth cycle.
Four traces are used to generate the signatures, produc-
ing four bits per signature. Registers are represented
by black rectangles, and their initial states are 0. As
wire w shows, retiming may change the cycle that sig-
natures appear, but it does not change the signatures
(signatures shown in boldface are identical). 138

10.5 Circuits in Figure 10.4 unrolled three times. The cy-
cle in which a signal appears is denoted using subscript
“@”. Retiming affects gates in the first and the last cy-
cles (marked in dark gray), while the rest of the gates
are structurally identical (marked in light gray). There-
fore, only the signatures of the dark-gray gates will be
different. 139

10.6 Our InVerS verification methodology. It monitors ev-
ery layout modification to identify potential errors and
calls equivalence checking when necessary. Our func-
tional error repair techniques can be used to correct the
errors when verification fails. 139

10.7 The relationship between cell count and the difference
factor. The linear regression lines of the datapoints are
also shown. 142

10.8 The relationship between the number of levels of logic
and the difference factor in benchmark DES perf. The
x-axis is the level of logic that the circuit is modified.
The logarithmic regression line for the error-injection
tests is also shown. 143

11.1 Several distinct physical synthesis techniques. Newly-
introduced overlaps are removed by legalizers after the
optimization phase has completed. 150

11.2 The SafeResynth framework. 153



List of Figures xix

11.3 A restructuring example. Input vectors to the circuit
are shown on the left. Each wire is annotated with its
signature computed by simulation on those test vectors.
We seek to compute signal w1 by a different gate, e.g.,
in terms of signals w2 and w3. Two such restructur-
ing options (with new gates) are shown as gn1 and gn2.
Since gn1 produces the required signature, equivalence
checking is performed between wn1 and w1 to verify
the correctness of this restructuring. Another option,
gn2, is abandoned because it fails our compatibility test. 153

11.4 Conditions to determine compatibility: wiret is the tar-
get wire, and wire1 is the potential new input of the
resynthesized gate. 154

11.5 The pruned search algorithm. 154

11.6 Algorithm for function get potential wires. XOR and
XNOR are considered separately because the required
signature can be calculated uniquely from wiret and
wire1. 155

11.7 The algorithmic flow of the PAFER framework. 156

11.8 The PARSyn algorithm. 157

11.9 The exhaustiveSearch function. 158

11.10 The SymWire algorithm. 159

11.11 Case studies: (a) g1 has insufficient driving strength,
and SafeResynth uses a new cell, gnew, to drive a frac-
tion of g1’s fanouts; (b) SymWire reduces coupling
between parallel long wires by changing their connec-
tions using symmetries, which also changes metal lay-
ers and can alleviate the antenna effect (electric charge
accumulated in partially-connected wire segments dur-
ing the manufacturing process). 161

12.1 A design where an XOR gate must be replaced by a
NAND using spare cells. (a) A high-quality fix with
little perturbation of the layout. (b) A low-quality fix
that requiring long wires due to poor spare-cell place-
ment. (c) Another low-quality fix using several cells
due to a poor selection of cell types. 167

12.2 The SimSynth algorithm. 170

12.3 SimSynth example using a full adder. 172

12.4 Using single gates of different types to generate desired
signals. The success rates are shown in percent. 174



xx List of Figures

12.5 Illustration of different placement methods. Dark cells
are spare cells. PostSpare inserts spare cells after de-
sign placement. Since design cells may be clustered in
some regions, spare-cell distribution is typically non-
uniform. ClusterSpare inserts spare-cell islands on a
uniform grid before design placement, while UniSpare
inserts single spare cells. 175

12.6 Our spare-cell insertion flow. 176
12.7 Delay and wirelength increase after metal fix when us-

ing three different sets of spare-cell selections. Ours
has 23 and 4% smaller delay increase compared to Yee
and Giles, while the wirelength increase is approxi-
mately the same. 178

12.8 Impact of spare-cell placement methods on circuit pa-
rameters: (a) before metal fix; (b)(c) after metal fix.
Ours has 24% smaller delay increase before metal fix
compared with ClusterSpare. The delay increase after
metal fix is 37 and 17% better than the PostSpare and
ClusterSpare methods, respectively. 179

12.9 Average numbers of cells used when fixing bugs in the
benchmarks. By contrasting with Figure 12.4 we show
that SimSynth can help determine spare-cell density.
For example, Alpha has smaller success rate in Fig-
ure 12.4 than its EX block, followed by its ID and IF
blocks. This figure shows that the Alpha design re-
quires more cells than its EX, ID and IF blocks. 181



List of Tables

2.1 Distribution of design errors (in %) in seven micropro-
cessor projects. 15

2.2 A comparison of gate-level error diagnosis and correc-
tion techniques. 19

7.1 A comparison of different symmetry-detection methods. 61

7.2 Number of symmetries found in benchmark circuits. 71

7.3 Wirelength reduction and runtime comparisons between
rewiring, detailed placement and global placement. 72

7.4 The impact of rewiring before and after detailed place-
ment. 72

7.5 The impact of the number of inputs allowed in symme-
try detection on performance and runtime. 73

8.1 Characteristics of benchmarks. 94

8.2 Bugs injected and assertions for trace generation. 94

8.3 Cycles and input events removed by simulation-based
techniques of Butramin on traces generated by semi-
formal verification. 95

8.4 Cycles and input events removed by simulation-based
techniques of Butramin on traces generated by a compact-
mode semi-formal verification tool. 97

8.5 Cycles and input events removed by simulation-based
methods of Butramin on traces generated by constrained-
random simulation. 97

8.6 Impact of the various simulation-based techniques on
Butramin’s runtime. 98

8.7 Essential variable assignments identified in X-mode. 99



xxii List of Tables

8.8 Cycles and input events removed by simulation-based
methods of Butramin on traces that violate multiple
properties. 100

8.9 Cycles removed by the BMC-based method. 101
8.10 Analysis of a pure BMC-based minimization technique. 102
8.11 Analysis of the impact of a bug radius on Butramin

effectiveness. 103
9.1 Error-correction experiment for combinational gate-level

netlists. 119
9.2 Error-correction experiment for combinational gate-level

netlists with reduced number of initial patterns. 119
9.3 Multiple error experiment for combinational gate-level

netlists. 120
9.4 Error correction for combinational gate-level netlists in

the context of simulation-based verification. 121
9.5 Error-repair results for sequential circuits. 122
9.6 Description of bugs in benchmarks. 124
9.7 Characteristics of benchmarks. 125
9.8 RTL synthesis-based error-diagnosis results. 126
9.9 Gate-level error-diagnosis results. 127
9.10 Error-correction results for RTL designs 129
10.1 Characteristics of benchmarks. 140
10.2 Statistics of similarity factors for different types of cir-

cuit modifications. 141
10.3 The accuracy of our incremental verification methodology. 144
10.4 Statistics of sequential similarity factors for retiming

with and without errors. 145
10.5 Runtime of sequential similarity factor calculation (SSF)

and sequential equivalence checking (SEC). 145
11.1 Comparison of a range of physical synthesis techniques

in terms of physical safeness and optimization potential. 151
11.2 Characteristics of benchmarks. 162
11.3 Post-silicon functional error repair results. 163
11.4 Results of post-silicon electrical error repair. 165
12.1 A summary of existing spare-cell insertion techniques

described in US patents. Major contributions are marked
in boldface. 169

12.2 Characteristics of benchmarks 173



Preface

The dramatic increase in design complexity of modern circuits challenges our
ability to verify their functional correctness. Therefore, circuits are often taped-
out with functional errors, which may cause critical system failures and huge
financial loss. While improvements in verification allow engineers to find more
errors, fixing these errors remains a manual and challenging task, consum-
ing valuable engineering resources that could have otherwise been used to im-
prove verification and design quality. In this book we solve this problem by
proposing innovative methods to automate the debugging process throughout
the design flow. We first observe that existing verification tools often focus
exclusively on error detection, without considering the effort required by error
repair. Therefore, they tend to generate tremendously long bug traces, making
the debugging process extremely challenging. Hence, our first innovation is a
bug trace minimizer that can remove most redundant information from a trace,
thus facilitating debugging. To automate the error-repair process itself, we de-
velop a novel framework that uses simulation to abstract the functionality of the
circuit, and then rely on bug traces to guide the refinement of the abstraction.
To strengthen the framework, we also propose a compact abstraction encoding
using simulated values. This innovation not only integrates verification and
debugging but also scales much further than existing solutions. We apply this
framework to fix bugs both in gate-level and register-transfer-level circuits.
However, we note that this solution is not directly applicable to post-silicon
debugging because of the highly-restrictive physical constraints at this design
stage which allow only minimal perturbations of the silicon die. To address this
challenge, we propose a set of comprehensive physically-aware algorithms to
generate a range of viable netlist and layout transformations. We then select
the most promising transformations according to the physical constraints. Fi-
nally, we integrate all these scalable error-repair techniques into a framework
called FogClear. Our empirical evaluation shows that FogClear can repair er-
rors in a broad range of designs, demonstrating its ability to greatly reduce



xxiv Preface

debugging effort, enhance design quality, and ultimately enable the design and
manufacture of more reliable electronic devices.

This book is divided into three parts. In Part I we provide necessary back-
ground to understand this book and illustrate prior art. In Part II we present our
FogClear methodologies and describe theoretical advances in error repair, in-
cluding a counterexample-guided error-repair framework and signature-based
resynthesis techniques. In Part III we explain different components used in
the FogClear flow in detail, including bug trace minimization, functional error
diagnosis and correction, an incremental verification system for physical syn-
thesis, post-silicon debugging and layout repair, as well as methodologies for
spare-cell insertion. Finally, we conclude this book and summarize our key
techniques in the last chapter.


