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Preface

The dramatic increase in design complexity of modern circuits challenges our
ability to verify their functional correctness. Therefore, circuits are often taped-
out with functional errors, which may cause critical system failures and huge
financial loss. While improvements in verification allow engineers to find more
errors, fixing these errors remains a manual and challenging task, consum-
ing valuable engineering resources that could have otherwise been used to im-
prove verification and design quality. In this book we solve this problem by
proposing innovative methods to automate the debugging process throughout
the design flow. We first observe that existing verification tools often focus
exclusively on error detection, without considering the effort required by error
repair. Therefore, they tend to generate tremendously long bug traces, making
the debugging process extremely challenging. Hence, our first innovation is a
bug trace minimizer that can remove most redundant information from a trace,
thus facilitating debugging. To automate the error-repair process itself, we de-
velop a novel framework that uses simulation to abstract the functionality of the
circuit, and then rely on bug traces to guide the refinement of the abstraction.
To strengthen the framework, we also propose a compact abstraction encoding
using simulated values. This innovation not only integrates verification and
debugging but also scales much further than existing solutions. We apply this
framework to fix bugs both in gate-level and register-transfer-level circuits.
However, we note that this solution is not directly applicable to post-silicon
debugging because of the highly-restrictive physical constraints at this design
stage which allow only minimal perturbations of the silicon die. To address this
challenge, we propose a set of comprehensive physically-aware algorithms to
generate a range of viable netlist and layout transformations. We then select
the most promising transformations according to the physical constraints. Fi-
nally, we integrate all these scalable error-repair techniques into a framework
called FogClear. Our empirical evaluation shows that FogClear can repair er-
rors in a broad range of designs, demonstrating its ability to greatly reduce



xxiv Preface

debugging effort, enhance design quality, and ultimately enable the design and
manufacture of more reliable electronic devices.

This book is divided into three parts. In Part I we provide necessary back-
ground to understand this book and illustrate prior art. In Part II we present our
FogClear methodologies and describe theoretical advances in error repair, in-
cluding a counterexample-guided error-repair framework and signature-based
resynthesis techniques. In Part III we explain different components used in
the FogClear flow in detail, including bug trace minimization, functional error
diagnosis and correction, an incremental verification system for physical syn-
thesis, post-silicon debugging and layout repair, as well as methodologies for
spare-cell insertion. Finally, we conclude this book and summarize our key
techniques in the last chapter.


