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Introduction
Ondrej Majer, Ahti-Veikko Pietarinen, and Tero Tulenheimo

ix

1 Games and logic in philosophy
Recent years have witnessed a growing interest in the unifying methodolo-

gies over what have been perceived as pretty disparate logical ‘systems’, or
else merely an assortment of formal and mathematical ‘approaches’ to philo-
sophical inquiry. This development has largely been fueled by an increasing
dissatisfaction to what has earlier been taken to be a straightforward outcome
of ‘logical pluralism’ or ‘methodological diversity’. These phrases appear to
reflect the everyday chaos of our academic pursuits rather than any genuine
attempt to clarify the general principles underlying the miscellaneous ways in
which logic appears to us.

But the situation is changing. Unity among plurality is emerging in con-
temporary studies in logical philosophy and neighbouring disciplines. This is
a necessary follow-up to the intensive research into the intricacies of logical
systems and methodologies performed over the recent years.

The present book suggests one such peculiar but very unrestrained method-
ological perspective over the field of logic and its applications in mathematics,
language or computation: games. An allegory for opposition, cooperation and
coordination, games are also concrete objects of formal study.

As a metaphor for argumentation Aristotle’s Topics and its reincarnations
such as the scholastic Ars Obligatoria are set up as dialogical duels (Pietarinen,
2003a). Logics exploiting this idea resurface in the twentieth century attempts
to clarify the concepts of argument and proof. The game metaphor has re-
tained its strength in contemporary theories of computation (Pietarinen, 2003b,
Japaridze, this volume), in which computation is recast in terms of the symbio-
sis between the Computing System (‘Myself’) and its Environment (‘Nature’).
In mathematics, the benefits of doing so were noted decades ago by Stanislaw
Ulam (1960), who wrote how amusing it is “to consider how one can ‘gamize’
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various mathematical situations (or perhaps the verb should be ‘paizise’ from
the Greek word παιςιη, to play).”

Games as explications of the core philosophical questions concerning the
scientific methodologies were on the brink of being born in the writings of
the early unificators, including Rudolf Carnap, Otto Neurath, Charles Morris
and Carl Gustav Hempel. But they never operationalised the key notions. The
term ‘operationalisation’ is apt, since what was attempted was to give meaning
to ‘operationalisation’. According to operationalism, a concept is synonymous
with the set of operations correlated with it. Influenced by Percy Bridgman’s
and Alfred Einstein’s thoughts, the early workers on what was later to become
the Unity of Science Movement inherited the better parts of the Viennese veri-
ficationism in the methodology of science which, in turn, was allied to, though
also significantly different from, the pragmaticism of Charles Peirce. More-
over, Pietarinen and Snellman (2006) show that the kernel of pragmaticism is,
in turn, essentially game-theoretical in nature.

Accordingly, a sustained attempt has existed in the history and philosophy
of science to articulate the interactive, the strategic and the pragmatic in logic.
The chief reason for the failure of the early philosophers working on uniting the
foundations of scientific methodology was their stout belief in the explanatory
capacities of singular behaviour. In game theory, in contrast, the success lies in
the possibility of there being general, or strategic, habits of acting in a certain
way whenever certain kinds of situations are confronted.

How coincidental it must have been that many of the logicians working on
the operative definitions of logical concepts, including Hugo Dingler and Paul
Lorenzen, were not only champions of the Husserlian notion of Spielbedeutun-
gen (Pietarinen, 2008), but also immersed in the continental branch of opera-
tionalism, which in various forms had already been in vogue around the exiting
new projects emerging in the philosophy of science since the 1920s. Mean-
while, game theory proper was in the making, first in the urban atmospheres
of the continental triangle of Berlin, Vienna and Göttingen, and later on in the
singular intellectual concentrate of the ludic post-war Princeton Campus.

But these historical events constitute just the beginnings of the story, the
impact of which is only beginning to unravel. The present book itself con-
stitutes only a modest fragment of that narrative. The book consists of 12
chapters divided into four parts: Philosophical Issues (Part I), Game-Theoretic
Semantics (Part II), Dialogues (Part III), and Computation and Mathematics
(Part IV). The individual topics covered include, in Part I, the philosophy of
logical games (Chapter 1, Mathieu Marion), the epistemic characterisation re-
sults in game theory, scientific explanation and the philosophy of the social
sciences (Chapter 2, Boudewijn de Bruin), rationality, strategic interaction, fo-
cal points, radical interpretation and the selection of multiple Nash-equilibria
(Chapter 3, Hykel Hosni) and the notion of cognitive agency, cognitive economy
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and fallacies (Chapter 4, John Woods and Dov M. Gabbay). In Part II, the central
methodology is that of game-theoretic semantics, where the germane topics
are independence-friendly (IF) logic, imperfect-information games and weak
dominance (Chapter 5, Merlijn Sevenster), fuzzy logic (Chapter 6, Petr Cintula
and Ondrej Majer) and generalised quantifiers and natural-language seman-
tics (Chapter 7, Robin Clark). Part III is devoted to the method of dialogues,
and it deals with the relationships between the game-theoretic and dialogic
notions of truth and validity (Chapter 8, Shahid Rahman and Tero Tulen-
heimo), fuzzy logic, vagueness, supervaluation and betting (Chapter 9, Chris-
tian G. Fermüller) and epistemic and intuitionistic logic (Chapter 10, Manuel
Rebuschi). Part IV is on the application and use of games in computation and
mathematics. Topics covered have to do with computability logic, game se-
mantics and affine linear logic (Chapter 11, Giorgi Japaridze) and determinacy,
infinite games and intuitionism in mathematics (Chapter 12, Wim Veldman).

As is evident from this impressive list of topics, the method of games is so
widespread across studies in logic and the neighbouring disciplines—including
applications to linguistic semantics and pragmatics, the social sciences, philos-
ophy of science, epistemology, economics, mathematics and computation—
that it prompts us to take seriously the possibility that there is some “greater
conceptual rationale of what it is to be a bona fide science” (Margolis, 1987,
p. xv). Games, as applied to logic, philosophy, epistemology, linguistics, cog-
nition, computation or mathematics, provide at the same time a notably mod-
ern, rigorous and creative formal toolkit that lays bare the structures of logical
and cognitive processes—be they proofs, dialogues, inferences, models, argu-
ments, negotiations, bargaining, or computations—while being the product of
an age-old enquiring mind and human rational action.

To what extent such methods and tools are able ultimately to reconcile the
human and natural sciences (Margolis, 1987) remains to be seen. After all,
the first steps in any expansion over multiple disciplines must begin from the
beginning; in logic, it would begin from charting what the foundational per-
spectives are that logic provides to those fields of intellectual pursuit amenable
to fruitful formalisations. But we believe that the existence of methods in-
escapably linked with the ways in which human rational thought processes
and actions function supports the wider scenario.

Whether the unity holds in those nooks and corners of scientific and intellec-
tual pursuits covered in the present essays we leave for the readers to judge—it
is a question of not only method of logic but also ontology, history of ideas,
scientific practices, and, ultimately, of the fruits that the applications of games
to the multiplicity of intellectual tasks are capable of bearing.

In the remainder of this introduction, we outline the essentials of two major
approaches to how games have been used to explicate logical notions: game-
theoretical semantics and dialogical logic.
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2 Game-Theoretical Semantics
Hintikka (1968) introduced Game-Theoretical Semantics (GTS) for first-

order logic. From the very beginning, the idea was driven by philosophical
considerations. Hintikka’s goal was not merely to provide an alternative char-
acterisation of truth for first-order logic, but to lay down a theory of mean-
ing making use of—and sharpening—Wittgenstein’s idea of ‘language game’,
relating these considerations to Kantian thought and to the idea that logic has
to do with synthetic activity (Hintikka, 1973).

Hintikka extended the game-theoretic interpretation that Henkin (1961) had
in effect provided to quantified sentences in prenex normal form; this interpre-
tation will be discussed further below. He explained how a semantic game is
played with an arbitrary first-order sentence as input.1 He observed that con-
junctions and disjunctions can be treated on a par with universal and existential
quantifier, respectively. After all, (φ∧χ) holds if and only if all of the sentences
φ, χ hold, and (φ∨χ) holds if and only if at least one of the sentences φ, χ holds.
Accordingly, a game for (φ∧χ) proceeds by the “universal” player picking out
one of the conjuncts θ ∈ {φ, χ}, after which the play is continued with respect to
the sentence θ. Similarly, in connection with a game for (φ∨ χ), it is the “exis-
tential player” who makes a choice of a disjunct θ ∈ {φ, χ}. (The objects chosen
are syntactic items in connection with conjunction and disjunction, whereas the
moves for quantifiers involve choosing objects out there in the domain.)

What about negation, then? Hintikka observed that negation has the effect of
changing the roles of the players. After any sequence of moves that the players
have made while playing a game, one of the players has the role of ‘Verifier’
and the other that of ‘Falsifier’. Now a game corresponding to ¬φ continues
with respect to φ, with the players’ roles reversed: the player having the role
of ‘Verifier’ relative to ¬φ assumes relative to φ the role of ‘Falsifier’, and vice
versa.

GTS provides a game-theoretic counterpart to the model-theoretic notion of
truth. In this way, the notions of truth for a great variety of logics can be pro-
vided. Cases in point are propositional logic, first-order logic, modal and tem-
poral logics, independence-friendly logics (Hintikka, 1995, 1996; Sandu, 1993;
Hintikka and Sandu, 1989, 1997), logics with Henkin quantifiers (Henkin,
1961; Krynicki and Mostowski, 1995), infinitely deep languages (Hintikka and
Rantala, 1976; Karttunen, 1984; Hyttinen, 1990) and the logic of Vaught sen-
tences (Vaught, 1973; Makkai, 1977).

Semantic games are two-player games; we may call the two players Eloise
or the ‘initial Verifier’ and Abelard or the ‘initial Falsifier’. The truth of a sen-
tence ϕ in a model M corresponds to the existence of a winning strategy for

1The game interpretation goes back to Charles Peirce’s investigation in the algebra of logic and graphical
logic (Hilpinen, 1982; Pietarinen, 2006b).
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Eloise in the semantic game G(ϕ,M) correlated with ϕ and played onM. The
falsity of ϕ corresponds to the existence of a winning strategy for Abelard.
Intuitively, Eloise can be thought of as defending the claim “ϕ is true in M”
against any attempts of Abelard to refute this claim. Similarly, Abelard defends
the claim “ϕ is false inM” against any attempted refutations of this claim by
Eloise. The games G(ϕ,M) are so defined that ϕ is indeed true (false) in M
iff there exists a method for Eloise (Abelard) to win against all sequences of
moves by Abelard (Eloise).

The mathematical reality behind semantic games may be less picturesque
than the above description in terms of defences against refutations suggests.
Given a semantic game G(ϕ,M), the existence or non-existence of a winning
strategy for either player is an objective fact about the modelM. Whether the
players’ actions bear relevance to the truth or falsity of the sentence is thus
arguable.2

The roots of semantic games go back to the Tarskian definition of truth.
According to Tarski, to test whether a sentence such as ∀x∃yP(x, y) is true in
a model M, reference to objects a and b of the domain M of M is needed.
The sentence is true iff it is the case that for any a there is an object b such
that P(a, b) holds. Thus understood, the truth of the sentence ∀x∃yP(x, y) does
not require the existence of a function f : M → M such that b = f (a) for any
a ∈ M. It only requires the existence of a relation R ⊆ M × M such that for
every a there is at least one b with R(a, b) such that P(a, b) holds inM. To get
from the statement involving relations to the statement concerning functions,
the Axiom of Choice is, in general, needed (Hodges, 1997a). On the other
hand, assuming the Axiom of Choice, the truth-condition of ∀x∃yP(x, y) can
indeed be stated as the requirement that there be a function f such that for any
value a interpreting ∀x, the function produces a witness b = f (a) for ∃y. Such
functions, introduced by Skolem (1920), are known as Skolem functions.

Henkin (1961) considered logical systems in which infinitely long formulas
with infinitely many quantifier alternations are allowed; one of the examples
he mentions is the formula

∃x1∀x2∃x3∀x4 . . . P(x1, x2, . . .). (1)

In connection with such formulas, Henkin suggested that the procedure of pick-
ing up objects corresponds to moves in a game between two players, which
we might for simplicity call the universal player (Abelard) and the existential

2Hodges (2006a, b; Hodges and Krabbe, 2001) has levelled critique on the idea that logical games shed new
light on the semantics of quantifiers, or that logical games could actually have conceptually important roles
to play in justifying certain logical procedures or in defining meanings. But see the rejoinders in Pietarinen
(2006b, Chapter 9) and Hodges and Krabbe (2001) and Marion, this volume, as well as earlier discussion
in Hand (1989).
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player (Eloise). The former is responsible for choosing objects corresponding
to universally quantified variables while the latter similarly interprets existen-
tially quantified variables.

Admittedly, Henkin used the notion of game quite metaphorically. But he
pointed out that logical games are related to Skolem functions and observed
that winning strategies for the existential player are sequences of Skolem func-
tions. For instance, when evaluating the above formula (1) relative to a model
M, any sequence 〈 f1, f3, f5, . . .〉 of Skolem functions, one for each existential
quantifier ∃x2n+1 in (1), gives a winning strategy for the existential player in
the game correlated with the formula (1) in the modelM. In other words, the
formula (1) is true inM if and only if the following second-order formula is
true inM3:

∃ f1∃ f3∃ f5 . . .∀x2∀x4∀x6 . . . P( f1, x2, f3(x2), x4, f5(x2, x4), x6, . . .). (2)

Let us give a precise definition of semantic games for first-order logic. First
we agree on some terminology. If τ is a vocabulary, ψ is a first-order τ-formula
and c is an individual constant (not necessarily from the vocabulary τ), then
ψ[x/c] will stand for the (τ∪{c})-formula that results from substituting c for all
free occurrences of the variable x in ψ. WheneverM is a τ-structure (model),
by convention M will stand for the domain ofM. IfM is a τ-structure,M′ is a
τ′-structure, and τ ⊂ τ′, thenM′ is an expansion ofM, provided that M = M′

andM′ agrees withM on the interpretations of the symbols from τ.
With every vocabulary τ, τ-structureM and first-order τ-sentence ϕ, a two-

player, zero-sum game G(ϕ,M) of perfect information is associated. The games
are played with the following rules.

If ϕ = R(a1, . . . , an), the play has come to an end. If (aM1 , . . . , aMn ) ∈ RM,
the player whose role is ‘Verifier’ wins, and the one whose role is ‘Fal-
sifier’ loses. On the other hand, if (aM1 , . . . , aMn ) � RM, then ‘Falsifier’
wins and ‘Verifier’ loses.

If ϕ = (ψ ∨ χ), then ‘Verifier’ chooses a disjunct θ ∈ {ψ, χ}, and the play
continues as G(θ,M).

ϕ = (ψ ∧ χ), then ‘Falsifier’ chooses a conjunct θ ∈ {ψ, χ}, and the play
continues as G(θ,M).

3In order for the second-order sentence (2) to be equivalent to the sentence (1), the standard interpretation of
second-order logic in the sense of Henkin (1950) must be applied (the other requisite assumption being the
Axiom of Choice). In particular, n-ary function variables are taken to range over arbitrary n-ary functions on
the domain. Note that in (2) a Skolem function f2n+1 for the quantifier ∃x2n+1 is a function of type Mn → M.
Hence a Skolem function for ∃x1 is a zero-place function, that is, a constant.
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If ϕ = ∃xψ, then ‘Verifier’ chooses an element b ∈ M, gives it a name,
say nb, and the play goes on as G(ψ[x/nb],N), whereN is the (τ∪{nb})-
structure expandingM and satisfying nNb = b.

If ϕ = ∀xψ, then ‘Falsifier’ chooses an element b ∈ M, gives it a name,
say nb, and the play goes on as G(ψ[x/nb],N), whereN is the (τ∪{nb})-
structure expandingM and satisfying nNb = b.

If ϕ = ¬ψ, then the play continues as G(ψ,M), with the players’ roles
switched: the ‘Verifier’ of game G(¬ψ,M) is the ‘Falsifier’ of game
G(ψ,M), and vice versa.

In applying the above game rules, any play of G(ϕ,M) reaches an atomic
sentence and hence comes to an end after finitely many moves. These rules
follow Hintikka’s original definition (Hintikka, 1968); in particular, whenever
G(ϕ,M) is a game, ϕ is a sentence—formula with no free occurrences of
variables. However, no conceptual difficulties are involved in generalising the
definition so as to apply to first-order formulas with any number of free vari-
ables. This is accomplished by providing variable assignments γ as an extra
input when specifying games. Accordingly, for every τ-formula ϕ, τ-structure
M, and assignment γ mapping free variables of ϕ to the domain M, a game
G(ϕ,M, γ) can be introduced. The game rules for quantifiers become simpler
when phrased in terms of variable assignments. If for instance ϕ = ∃xψ, then
game G(ϕ,M, γ) proceeds by ‘Verifier’ choosing an element b ∈ M, where-
after the play continues as G(ψ,M, γ′), where γ′ is otherwise like γ but maps x
to b. Unlike in the games defined for sentences, now the vocabulary considered
is not extended by a name for the element b, and the modelM is not expanded.

To make proper use of games for semantic purposes, having laid down a set
of game rules is not enough. We also need the notion of strategy. To this end,
some auxiliary notions must be defined. A history (or, partial play) of game
G(ϕ,M) is any sequence of moves, made in accordance with the game rules.
A terminal history (or, play) is a history at which it is neither player’s turn
to move. The set of non-terminal histories can be partitioned into two classes
P∃ and P∀: those at which it is Eloise’s turn to move and those at which it is
Abelard’s turn to move.

Write O∃ for the set of those tokens of logical operators in ϕ for which it
is Eloise’s turn to move in G(ϕ,M), namely for all existential quantifiers and
disjunction signs with positive polarity, and for all universal quantifiers and
conjunction signs with negative polarity.4 Likewise, write O∀ for the set of the
tokens of operators for which it is Abelard’s turn to move. Then the histories in

4A logical operator has a positive polarity in a formula ϕ, if it appears in ϕ subordinate to n negation signs
with n ∈ {2m : m ∈ N}; otherwise it has a negative polarity.
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the set P∃ can be further partitioned according to the logical operator to which
they correspond: for each O ∈ O∃ there is a subset PO

∃ of P∃ of those histo-
ries at which Eloise must make a move to interpret O. The set P∀ is similarly
partitioned by PO

∀ with O ∈ O∀.
For each O ∈ O∃, Eloise’s strategy function is a function that provides a

move for her at each history belonging to PO
∃ . It is commonplace to stipulate

that at a history h ∈ PO
∃ , Eloise’s strategy function for O takes as its arguments

Abelard’s moves made in h.5 A strategy for Eloise is a set of her strategy func-
tions, one function for each operator in O∃. A strategy for Eloise is winning,
if it leads to a play won by Eloise against any sequence of moves by Abelard.
The notions of strategy function, strategy, and winning strategy are similarly
defined for Abelard.

Assuming the Axiom of Choice, it can then be shown that a first-order sen-
tence ϕ is true (false) in a model M in the usual Tarskian sense if and only
if there exists a winning strategy for Eloise (Abelard) in game G(ϕ,M), (see
Hodges, 1983; Hintikka and Kulas, 1985).6

The fact that any formula ϕ is either true or false in any given model M
manifests on the level of games in that all semantic games for first-order logic
are determined: in any game G(ϕ,M), either Eloise or Abelard has a winning
strategy. Semantic games are zero-sum, two-player games of perfect informa-
tion with finite horizon. The fact that they are determined follows from the
Gale-Stewart theorem (Gale and Stewart, 1953).

The framework of semantic games makes it possible to pursue research at
the interface of game theory and logic. Once a parallel between logical and
game-theoretic notions has been successfully drawn—as it has, for instance,
in connection with the notion of truth-in-a-model for first-order logic and the
game-theoretic notion of the existence of a winning strategy for Eloise in a
semantic game—one can meaningfully bring in further game-theoretic notions
and go on studying the resulting logical systems.

One such avenue is opened up by subjecting games to imperfect information.
The goal is then to study the ‘information flow’ in logical formulas, or the various
relations of dependence and independence between logical constants. This type
of research has led to the investigation of a family of independence-friendly
logics (IF logics), studied in various publications by Jaakko Hintikka, Gabriel
Sandu and many others (Hintikka, 1995, 1996; Hintikka and Sandu, 1989, 1997;
Hodges 1997a, b; Pietarinen, 2001b, 2006a; Sandu, 1993; Väänänen, 2007).

5Normally, allowing Eloise’s own moves as arguments of her strategy functions would not make it any
easier for Eloise to have a winning strategy.
6The Axiom of Choice could be avoided when formulating the relation of the game-theoretic truth-definition
to the Tarskian truth-definition, if strategies in the above sense, namely deterministic strategies, were re-
placed by nondeterministic strategies (Hodges, 2006b; Väänänen, 2006).
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The framework of semantic games with imperfect information has been applied
to a host of variants of IF logic, including IF propositional logic (Pietarinen,
2001a; Sandu and Pietarinen, 2001, 2003; Sevenster, 2006a), IF modal logic
(Bradfield, 2006; Bradfield and Fröschle, 2002; Hyttinen and Tulenheimo, 2005;
Pietarinen, 2001c, 2003c, 2004; Tulenheimo, 2003; Tulenheimo and Sevenster,
2006; Sevenster, 2006b), IF fixpoint logic (Bradfield, 2004) and IF fuzzy logics
(Cintula and Majer, this volume).

Another example of game-theoretic conceptualisations in connection with
logic is furnished by systematically investigating how far the common ground
between logic and game theory can be pushed (van Benthem, 2001). The paper
of Sevenster (this volume) belongs to that tradition.

3 Dialogical logic
Dialogical logic (a.k.a. dialogic) offers a game-theoretic approach to the log-

ical notions of validity and satisfiability. In so doing, it contributes to two of
the four objectives mentioned by Erik C. W. Krabbe in his apology of the di-
alogical standpoint, “Dialogue Logic Restituted” (Hodges and Krabbe, 2001):
the foundations of mathematics and the addition of a third approach to logic
next to model theory and proof theory. The two further objectives are related
to argumentation theory and systematic reconstruction of the language of sci-
ence and politics. Let us concentrate here on dialogical logic seen from the
logic-internal viewpoint.

Given a formula ϕ of, say, propositional logic, it is associated with a game
D(ϕ) referred to as dialogue about ϕ. Such games are between two players,
called the Proponent and the Opponent. Games are so defined that a formula
ϕ of classical propositional logic is valid under the usual criteria (that is, true
under all valuations) iff there is a winning strategy for the Proponent in the dia-
logue about ϕ. The framework is flexible—a game-theoretic characterisation is
obtained similarly, for instance, for validity in first-order logic and in various
modal logics. It has also been applied to paraconsistent, connexive and free
logics (Rahman et al., 1997; Rahman and Rückert, 2001; Rahman and Keiff,
2005). What is more, the contrast between classical and intuitionistic logic
has a clear-cut characterisation in terms of dialogues. Indeed, Paul Lorenzen’s
characterisation of validity in intuitionistic propositional logic in his 1959 talk
“Ein dialogisches Konstruktivitätskriterium” (Lorenzen, 1961) in terms of di-
alogues was of crucial importance to the very birth of dialogical logic. With
hindsight, we may observe that, given rules that define dialogues correspond-
ing to intuitionistic propositional logic, there is a systematic liberalisation that
can be effected with respect to these rules so as to yield classical propositional
logic (Lorenz, 1968).
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The rules of dialogues are divided into two groups—particle rules and struc-
tural rules. The former rules specify, for each logical operator (or ‘logical parti-
cle’), how a formula having this operator as its outmost form can be criticised,
and how such a critique can be answered. Structural rules, by contrast, lay
down the ways in which the dialogues can be carried out—they specify, for
instance, how the dialogue is begun, what types of attacks and defenses are al-
lowed, and what counts, for a given player, as a win of a play of a dialogue. As
it happens, dialogues for intuitionistic logic are obtained from those of classi-
cal logic by changing a single structural rule, while keeping the particle rules
intact. (In classical dialogues, a player may defend himself or herself against
any previously effected challenge, including those that the player has already
defended at least once; while in intuitionistic dialogues, the player may only
defend himself or herself against the most recent of those challenges that have
not yet been defended.)

Dialogical logicians tend to see dialogues as a sui generis approach to logic,
a third realm in addition to proof theory and model theory. Be that as it may,
there is a clear sense in which dialogical logic is naturally coupled with proof
theory, whereas game-theoretical semantics, in contrast, is coupled with the
study of model-theoretic properties. Think of a logic L that admits, as a matter
of fact, a sound and complete proof system, say classical propositional logic
or classical first-order logic. Dialogues provide such a proof system for L.
A winning strategy of the Proponent in a dialogue about ϕ counts as a proof of
ϕ. Crucially, dialogues for the logic L serve to recursively enumerate the set of
valid formulas of L. (Given a valid formula of L, the Opponent’s choices can
only give rise to finitely many moves before a play is reached which is won by
the Proponent and which cannot be further extended.) It is natural to consider
systems of semantic tableaux (Hintikka, 1955; Beth, 1959; Smullyan, 1968;
Fitting, 1969) as mediating the connection between proof theory and dialogues;
there is an important, yet straightforward connection between tableaux on the
one hand, and the totality of plays of dialogues on the other (Rahman and
Keiff, 2005). In particular, for a given refutable formula ϕ of, say, propositional
logic, there is a one-one correspondence between open maximal branches of a
tableau for the signed formula Fϕ and winning strategies of the Opponent in
the dialogue about ϕ. And for a given valid propositional formula ϕ, there is a
way of mechanically transforming the totality of closed branches of a tableau
for Fϕ to a winning strategy of the Proponent, and vice versa.

The moves in dialogues are formal, they do not involve objects out there
(elements of the domains of models). All that is involved is manipulation of lin-
guistic items, such as individual constants substituted for variables.
Hintikka (1973) has called his semantic games ‘games of seeking and finding’,
or ‘games of exploring the world’. Semantic games are ‘outdoor’ games, they
are related to the activities of verifying or falsifying (interpreted) formulas,
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while dialogues are ‘indoor’ games, related to proving—by suitably manipu-
lating sequences of symbols—that certain (uninterpreted) formulas are valid
(Hintikka, 1973, pp. 80–81). From Hintikka’s vantage point, only ‘outdoor’
games can build a bridge between logical concepts and the meaningful use of
language.

Naturally, the realism-antirealism dispute looms large here.7 As is typical in
connection with logics driven by proof theory, philosophically dialogical logic
tends to be associated with antirealism or justificationism, namely the idea
that semantic properties such as truth or validity can only be ascribed to sen-
tences which can be recognised as having this property. In the transition from
premises to conclusion, inference rules preserve assertibility rather than truth
in abstracto. Therefore, a dialogician would typically not accept Hintikka’s ar-
guments for the ‘semantic irrelevance’ of dialogues. Rather, he or she would
argue in favour of a justificationist theory of meaning, whereby an informal
notion of proof would become a central semantic notion. A dialogician might
further hold that dialogues capture such a notion of informal proof. It would
be possible, but not necessary, to combine this view with the conception that
dialogues actually introduce a third realm for logical theorising, adding to what
proof theory and model theory have on offer.

Without entering philosophical discussions on the fundamental nature of
dialogues, it can be observed that the notion of proof or inference to which
dialogues give rise is distinct from the fully formal notion of proof operative
in sound and complete proof systems. One may, at least so it seems, formulate
reasonable dialogues—and reasonable tableau systems—even for pathologi-
cally incomplete logics, namely logics which simply do not admit of any sound
and complete proof system. If so, the type of inference with which dialogues
are concerned is semantic inference—with no a priori claim to always yield a
recursive enumeration of the (uninterpreted) formulas of the language consid-
ered. If dialogues were all about formal proofs, it would be a contradiction in
terms to speak of formal dialogues for incomplete logics.8
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