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Abstract This contribution presents a VHDL-AMS implementation of a novel nu-
merical carbon nanotube transistor (CNT) modelling approach which
relies on a flexible and efficient cubic spline non-linear approximation of
the non-equilibrium mobile charge density. The underlying algorithm
creates a rapid and accurate solution of the numerical relationship be-
tween the charge density and the self-consistent voltage. This leads to a
speed-up in the calculation of the current through the channel by about
two orders of magnitude without losing much accuracy. The numeri-
cal approximation is accurate within less than 1.5% of the normalised
RMS error compared with a previously reported theoretical modelling
approach. The proposed VHDL-AMS implementation has been used in
simulations of a logic inverter in SystemVision to demonstrate the feasi-
bility of applying the spline-based technique in development of efficient
and accurate CNT models for applications in circuit-level simulators.
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Introduction
Transistors using carbon nanotubes are expected to become the ba-

sis of next generation integrated circuits [1, 2]. These expectations are
motivated by the growing difficulties in overcoming physical limits of
silicon-based transistors fabricated using current technologies. A num-
ber of theoretical models have been created to describe the interplay
between different physical effects within the nanotube channel and their
effect on the performance of the device [3–8]. The standard methodol-
ogy of modelling carbon nanotube transistors (CNTs) is to derive the
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channel current from the non-equilibrium mobile charge injected into
the channel when voltages are applied to the transistor terminals [1].
However, a common problem these models are facing is the complexity
of calculating the Fermi-Dirac integral and non-linear algebraic equa-
tions which express the relationships between charge densities and the
current. Moreover, the channel current between the source and drain is
affected not only by the non-equilibrium mobile charge in the nanotube
but also by the charges present at terminal capacitances thus adding to
the complexity of the current calculation which is a time-consuming it-
erative approaches. Recently, the standard theoretical methodology has
been improved by approaches where the slow Newton-Raphson iterations
and the numerical evaluation of the Fermi-Dirac integral are replaced
by numerical approximations while still maintaining good performance
compared with theories. These new techniques suggest piece-wise ap-
proximation of charge densities, either linear [6] or non-linear [9] to sim-
plify the numerical calculation. However, while both these approaches
accelerate current calculations significantly, they are not flexible enough
to allow the user to control the trade-offs between the modelling accu-
racy and implementation speed. Here we generalise our earlier piece-wise
non-linear approach [9] and propose a cubic spline piece-wise approxi-
mation of the non-equilibrium mobile charge density and develop a very
accurate technique where a an accuracy better than 1.5% in terms of
average RMS error can be achieved with just a 5-piece spline, which
compares favourably with the 5% obtained by the simple non-linear ap-
proximation [9]. The spline-based approach still achieves a speed up of
around two orders of magnitude compared with a reported implementa-
tion of the theoretical model [10] and allows an easy trade-off between
accuracy and speed. The spline approximation is not only capable of
describing performance of ideal ballistic CNT models, but also extend-
able with non-ballistic effects. The model has been implemented and
tested in MATLAB and VHDL-AMS. As an example, we show how our
VHDL-AMS model can be used to simulate a CMOS-like inverter made
of two complementary CNTs. This illustrates the feasibility of using this
novel model in circuit-level simulators for future logic circuit analysis.

1. Mobile charge density and self-consistent
voltage

When an electric field is applied between the drain and the source
of a CNT, a non-equilibrium mobile charge is generated in the carbon
nanotube channel. It can be described as follows[1, 11, 12]:
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ΔQ = q(NS + ND − N0) (1.1)

where NS is the density positive velocity states filled by the source,
ND is the density of negative velocity states filled by the drain and N0

is the equilibrium electron density. These densities are determined by
the Fermi-Dirac probability distribution:

NS =
1
2

∫ +∞

−∞
D(E)f(E − USF )dE (1.2)

ND =
1
2

∫ +∞

−∞
D(E)f(E − UDF )dE (1.3)

N0 =
∫ +∞

−∞
D(E)f(E − EF )dE (1.4)

where D(E) is the density of states, f is the Fermi probability dis-
tribution, E represents the energy levels per nanotube unit length, and
USF and UDF are defined as

USF = EF − qVSC (1.5)

UDF = EF − qVSC − qVDS (1.6)

where EF is the Fermi level, q is the electronic charge and VSC rep-
resents the self-consistent voltage [1] whose presence in these equations
illustrates that the CNT energy band is affected by the external ter-
minal voltages. The self-consistent voltage VSC is determined by the
terminal voltages and charges at terminal capacitances by the following
non-linear algebraic equation [1, 6]:

VSC = −Qt + qNS(VSC) + qND(VSC) + qN0

CΣ
(1.7)

where Qt represents the charge stored in terminal capacitances and is
defined as

Qt = VGCG + VDCD + VSCS (1.8)

where CG, CD, CS are the gate, drain, and source capacitances respec-
tively and the total terminal capacitance CΣ can be derived by

CΣ = CG + CD + CS (1.9)
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2. Numerical piece-wise approximation of the
charge density

The standard approach to the solution of equation (1.7) is to use the
Newton-Raphson iterative method and in each iteration evaluate the
integrals in equations (1.2) and (1.3) to obtain the state densities ND

and NS . This approach has been proved effective in CNT transistor
modelling [6, 10]. However, the iterative computation and repeated in-
tegrations consume immense CPU resources and thus are unsuitable for
circuit simulation.

Our earlier work [9] proposed a piece-wise non-linear approximation
technique that eliminates the need for these complex calculations. It
suggested to calculate the charge densities and self-consistent voltage
by dividing the continuous density function into a number of linear and
non-linear pieces which together compose a fitting approximation of the
original charge density curve. Then the VSC equation (1.7) is simplified
to a group of linear, quadratic and cubic equations, which can be solved
easily and fast.

Although this approach has been shown to be efficient and accurate
[9], its weakness is that it requires an optimal fitting process when decid-
ing on the number of approximation pieces and intervals of the ranges
which makes the model inflexible and akward to use. Here we propose
to use a cubic spline piece-wise approximation to overcome these diffi-
culties.

For a set of n (n ≥ 3) discrete points (x0, y0), (x1, y1), ..., (xi+1, yi+1)
(i = 0, 1, ..., n − 2), cubic splines can be constructed as follows [13]:

y = Ayi + Byi+1 + Cÿi + Dÿi+1 (1.10)

where A,B,C and D are the coefficients for each pieces of the cubic
spline. For simple demonstration here, the horizontal interval between
every two neighbour points is equal to h, then we have x1−x0 = x2−x1 =
... = xi+1 − xi = h. Therefore, the cubic spline coefficients can be
expressed as functions of x:

A ≡ xi+1 − x

xi+1 − xi
=

xi+1 − x

h
(1.11)

B ≡ 1 − A =
x − xi

xi+1 − xi
=

x − xi

h
(1.12)

C ≡ 1
6
(A3 − A)(xi+1 − xi)2 (1.13)
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D ≡ 1
6
(B3 − B)(xi+1 − xi)2 (1.14)

These equations show that A and B are linearly dependent on x,
while C and D are cubic functions of x. To derive the y(x) expression,
the second-order derivative of y have to be computed via a tridiagonal
matrix:

⎡
⎢⎢⎣

1 4 1
1 4 1

...
1 4 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ÿ0

ÿ1

...
ÿn−1

⎤
⎥⎥⎦ =

6
h2

⎡
⎢⎢⎣

y2 − 2y1 + y0

y3 − 2y2 + y1

...
yn−1 − 2yn−2 + yn−3

⎤
⎥⎥⎦ (1.15)

Now that the cubic spline coefficients and the second derivative have
been obtained, the function of each spline can be derived with the co-
efficients ai, bi, ci and di calculated by using equations (1.11), (1.12),
(1.13), (1.14) and (1.15):

yi = aix
3 + bix

2 + cix + di (1.16)

The two linear regions that extend the cubic splines on both sides can
be described as follows:

y = yn, (x > xn) (1.17)

y = alx + bl, (x < x0) (1.18)

where al = ÿ0 = 3a0x
2
0+2b0x0+c0 and bl = y0−alx0. To demonstrate

the performance of this approach, we have compared the speed and
accuracy of an example model with results of other reported approaches.

3. Performance of numerical approximations
An example model which uses three cubic splines, n = 4, and two

linear pieces at the ends was compared with the theoretical curves cal-
culated from equations (1.2) and (1.3) correspondingly.

To solve the resulting 3rd order polynomial equations, Cardano’s
method [14] is applied to determine the appropriate root which rep-
resents the correct value of VSC .

According to the ballistic CNT transport theory [1, 10] the drain
current caused by the transport of the non-equilibrium charge across the
nanotube can be calculated using the Fermi-Dirac statistics as follows:

IDS =
2qkT

π�

[
F0(

USF

kT
) −F0(

UDF

kT
)
]

(1.19)
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Figure 1.1. Piece-wise cubic spline approximation with n = 4 (circlet line) of mobile
charge compared with the theoretical result (solid line).

where F0 represents the Fermi-Dirac integral of order 0, k is Boltz-
mann’s constant, T is the temperature and � is reduced Planck’s con-
stant.

Since the self-consistent voltage VSC is directly obtained from the
spline model, the evaluation of the drain current poses no numerical
difficulty as energy levels USF , UDF can be found quickly from equations
(1.5), (1.6) and IDS can be calculated using:

IDS =
2qkT

π�

[
log(1 + e

EF −qVSC
kT ) − log(1 + e

EF −q(VSC−VDS)

kT )
]

(1.20)

These calculations are direct and therefore considerably fast, as there
are no Newton-Raphson iterations or integrations of the Fermi-Dirac
probability distribution. For performance comparison, we have also tried
a 4-piece cubic spline approximation (with n = 5) which is expected to
be more accurate but slower than the first model. Table 1.1 shows the
average CPU times for both models and those from FETToy [10] and
previously reported piece-wise models [9], while Table 1.2 compares the
accuracy of both numerical model types. It can be seen from Tables
1.1 and 1.2 that although the spline models sacrifice some speed com-
pared with the simple piece-wise non-linear models, they are still more
than two orders of magnitude faster than FETToy. They also achieve
a much better accuracy than the simple piece-wise non-linear models.
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The extent to which the modelling accuracy was compromised by nu-
merical approximation was measured by calculating average RMS errors
in the simulations and the results are shown in Table 1.2. As expected,
the spline models are more accurate with errors not exceeding 1.0% at
T = 300K and EF = −0.32eV throughout the typical ranges of drain
voltages VDS and gate bias VG. Figure 1.2 shows the IDS characteristics
calculated by FETToy compared with the 3-piece spline model.

Table 1.1. Average CPU time comparison between different models.

3-piece 4-piece CS Model CS Model
Loops FETToy PWNL Model PWNL Model n = 4 n = 5

5 64.43Sec 0.02Sec 0.06Sec 0.57Sec 0.95Sec
10 128.78Sec 0.04Sec 0.12Sec 1.15Sec 1.91Sec
50 642.44Sec 0.19Sec 0.56Sec 5.82Sec 9.59Sec
100 1287.45Sec 0.38Sec 1.12Sec 11.69Sec 19.33Sec

The performance of this approach can be affected by the values of EF ,
T , d and terminal voltages. The choice of the number of cubic spline
approximation pieces is an obvious trade-off between speed and accuracy
as slightly more operations need to be performed with more pieces while
the shape of the mobile charge curve is reflected more accurately.

4. VHDL-AMS implementation
The proposed approach has been used to implement both n-type-like

and p-type-like CNT transistor models in VHDL-AMS and to simulate a
CMOS-like inverter shown in Figure 1.4. The bulk voltage was also con-
sidered to take into account the effects on the charge densities generated

Table 1.2. Average RMS errors in piece-wise and cubic spline approximations for
1nm nanotube at EF = −0.32eV and T = 300K.

3-piece 4-piece CS Model CS Model
VG[V ] PWNL Model PWNL Model n = 4 n = 5

0.1 4.4% 2.0% 1.3% 0.9%
0.2 3.6% 1.7% 1.0% 0.8%
0.3 2.7% 1.4% 0.8% 0.6%
0.4 1.9% 1.0% 0.6% 0.5%
0.5 1.6% 1.2% 0.9% 0.7%
0.6 2.2% 1.6% 1.1% 1.0%
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Figure 1.2. Drain current characteristics at T = 300K and EF = −0.32eV for
FETToy(solid lines) and a 3-piece cubic spline approximation (circlet lines).

by the substrate voltage. This is especially important for the p-type-like
transistor. Figure 1.3 shows IDS characteristics of the n-type-like tran-
sistor implemented in VHDL-AMS which match closely the MATLAB
calculations shown in figure 1.2.

The VHDL-AMS testbench for the inverter invokes the two transistors
as well as a ramp voltage source and a constant voltage source. The
constant source provides the supply voltage VCC for the gate, while
the ramp source was used to produce the output characteristic of the
inverter. The simulation result is shown in figure 1.5. Considering that
the transport characteristics of both transistors are not the same, it is
worth noting that the inverter output is not symmetrical at VCC/2 due
to the stronger n-type-like transistor.

The VHDL-AMS code of the transistor top model is shown below.

−− VHDL−AMS model o f CNT Trans i s tor I−V Charac t e r i s t i c s
−− using cub i c s p l i n e approximation of S/D charge d e n s i t i e s
−− ( c ) Southampton Univers i t y 2008
−− Southampton VHDL−AMS Val idat ion Sui t e
−− Author : Dafeng Zhou , Tom Kazmierski and Bashir M Al−Hashimi
−− School o f E l e c t r on i c s and Computer Science
−− Univers i t y o f Southampton
−− High f i e l d , Southampton SO17 1BJ , United Kingdom
−− Tel . +44 2380 593520 Fax +44 2380 592901
−− e−mail : dz05r@ecs . soton . ac . uk , t j k@ecs . soton . ac . uk
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Figure 1.3. VHDL-AMS simulation results on drain current characteristics at T =
300K and EF = −0.32eV for a 3-piece cubic spline model.

Figure 1.4. Schematics of the simulated inverter.

−− Created : 17 October 2007
−− Last r e v i s e d : November 2008 ( by Dafeng Zhou)
−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− Descr ip t ion :
−− This i s a f a s t numerical model o f b a l l i s t i c t r an spor t
−− in carbon nanotube t r a n s i s t o r s . The d e f au l t va lue o f the
−− Ef i parameter (Fermi l e v e l ) produces n−type− l i k e behaviour ;
−− a p−type− l i k e t r an s i s t o r can be ob ta ined by modi fy ing the
−− Fermi l e v e l . Package cntcurrent prov ides the s p l i n e data a
−− nd the body of func t ion Fcnt which c a l c u l a t e s current Ids
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Figure 1.5. Inverter simulation result; input ramps from 0V to 0.6V .

−− from the s p l i n e s .
−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− VHDL−AMS Model o f B a l l i s t i c CNT Trans i s tor

l ibrary IEEE ;
use IEEE . math real . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;

l ibrary work ;
use work . cntcur r ent . a l l ;
use work . SolveVscEquation pack . a l l ;
use work . co e f f pack . a l l ;

entity CNTTransistor i s

generic ( −− model parameters
T: real := 30 0 . 0 ;
dcnt : real := 1 .0E−9;
E f i : real := −0.32∗1.6E−19;
xmax : real := −0.2;
xmin : real := −0.5;
n : integer := 4 ) ;

port ( te rmina l drain , gate , source , bulk : e l e c t r i c a l ) ;

end entity CNTTransistor ;

architecture Cha r a c t e r i s t i c of CNTTransistor i s

−−t e rmina l va lues
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quantity Vdi across drain to bulk ;
quantity Vgi across gate to bulk ;
quantity Vsi across sour ce to bulk ;
quantity Ids through drain to sour ce ;

begin

Ids == Fcnt (Vgi , Vsi , Vdi , E f i , T, dcnt , xmax , xmin , n ) ;

end architecture Cha r a c t e r i s t i c ;

The coefficients for cubic spline approximation pieces are derived us-
ing a MATLAB script which generates text of the VHDL-AMS package
coeffpack. The generated package is included in the simulation.

Combining equations (1.7), (1.16), (1.17) and (1.18), a series of con-
tinuous linear and 3rd order polynomial equations to solve the self-
consistent voltage are derived using following equations.

ND(VSC) = NS(VSC − VDS) (1.21)

VSC = {−Qt + q(aiV
3
SC + biV

2
SC + ciVSC + di) + q[aj(VSC − VDS)3

+bj(VSC − VDS)2 + cj(VSC − VDS) + dj ] − qN0}/CΣ

(1.22)

From equation (1.21), ND(VSC) can be treated as an x-axial shift of
NS(VSC), and the discrepancy between them is VDS. It can be noticed
from equation (1.22) that, when all the parameters are fixed, the value
of VSC is determined by only VDS and the spline coefficients. For a
given VDS , the summary of NS(VSC) and ND(VSC) can be expressed
as (aiV

3
SC + biV

2
SC + ciVSC + di) + [aj(VSC − VDS)3 + bj(VSC − VDS)2 +

cj(VSC−VDS)+dj ], which consists of several regions based on the chang-
ing of the value of i and j, represented as QsRange and QdRange in an
inner function respectively. It can be seen that QsRange and QsRange
only change when VDS shifts from one of the spline pieces to another,
and in total there are 2n + 1 regions for the expression. Below are the
combination coefficients of different QsRanges and QsRanges due to
the shifting of VDS .

The package listed below contains the code of function Fcnt which
solves the spline approximation of the VSC equation (eqn. 1.22) and
evaluates the drain current.
−−Package o f Cntcurrent

l ibrary IEEE ;
use IEEE . math real . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;
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l ibrary work ;
use work . SolveVscEquation pack . a l l ;
use work . FindQRange pack . a l l ;
use work . co e f f pack . a l l ;

package cntcur r ent i s
function Fcnt (Vgi , Vsi , Vdi , E f i , T, dcnt , xmax , xmin : real ;

n : integer )
return real ;

end package cntcur r ent ;

package body cntcur r ent i s
−− some phy s i c a l cons tant s :
constant e0 : real := 8.854E−12;
constant pi : real := 3 .1415926 ;
constant t0 : real := 1 .5E−9;
constant L : real := 3 .0E−8;
constant q : real := 1 .6E−19;
constant k : real := 3 . 9 ;
constant acc : real := 1 .42E−10;
constant Vcc : real := 3 . 0∗1 . 6E−19;
constant h : real := 6.625E−34;
constant hbar : real := 1 .05E−34;
constant KB : real := 1.380E−23;

function Fcnt (Vgi , Vsi , Vdi , E f i , T, dcnt , xmax , xmin : real ;
n : integer ) return real i s

variable EF, Vd, Vg , Vs , Vds , Ids , Ef t , Ef i , N0 , c , Cox ,
Cge , Cse , Cde , Ctot , qC , qCN0, int , Vsc : real ;

variable yy : r e a l v e c t o r (0 to 1) ;
variable QsRange , QdRange : integer ;

begin
Cox := 2.0∗ pi ∗k∗ e0/ l og ( ( t0+dcnt /2 . 0 ) ∗2.0/ dcnt ) ;
Cge := Cox ;
Cse := 0.097∗Cox ;
Cde := 0.040∗Cox ;
Ctot := Cge+Cse+Cde ;
E f i := E f i ;
i f Ef i > 0 .0 then

Ef t :=−Ef i ;VD:=−Vdi ;VS:=−Vsi ;VG:=−Vgi ;
else

Ef t := Ef i ;VD:=Vdi ;VS:=Vsi ;VG:=Vgi ;
end i f ;
EF:= Ef t /q ;Vd:=Vdi ; Vs:=Vsi ;Vg:=Vgi ;
N0 := 1.1431E3 ;
c := −q∗(Vg∗Cge+Vs∗Cse+Vd∗Cde) /Ctot ;
Vds := Vd − Vs ;
qC := q∗q/Ctot ;
qCN0 := qC∗N0 ;
i n t := (xmax−xmin ) / real (n−1) ;

−− Derive the ranges o f Qs and Qs where the s o l u t i on of Vsc
l o c a t e s

yy := FindQRange (Vds , q , c , qC , qCN0, xmax , xmin , int , n ) ;
QsRange := integer ( yy (0) ) ;
QdRange := integer ( yy (1) ) ;
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−− Calcu la t e the Vsc using Cardone ’ s method from 3rd order
polynomial and l i n e a r equat ions

Vsc := SolveVscEquation (Vds , q , c , qC, qCN0, QsRange , QdRange ) ;

−− Obtain the drain / source current
i f Ef i <=0.0 then

Ids := 4 .0∗q∗KB∗T/h∗( l og (1.0+exp ( q∗(EF−Vsc ) /KB/T) )−l og
(1.0+exp ( q∗(EF−Vsc−Vds) /KB/T) ) ) ;

e l s i f Ef i >0.0 then
Ids := −4.0∗q∗KB∗T/h∗( l og (1.0+exp (q∗(EF−Vsc ) /KB/T) )−l og

(1.0+exp ( q∗(EF−Vsc−Vds) /KB/T) ) ) ;
else

Ids := 0 . 0 ;
end i f ;

return Ids ;
end function Fcnt ;

end package body cntcur r ent ;

5. Conclusion
This contribution proposes to use and investigates the numerical per-

formance of cubic splines in numerical calculations of CNT ballistic
transport current with the aim to provide a practical and numerically
efficient model for implementation in SPICE-like circuit simulators. The
cubic spline approximation is more flexible and easier to use than the ear-
lier piece-wise models [6, 9] and the presented results further reinforce the
suggestions that numerical integrations and internal Newton-Raphson it-
erations can be avoided in the calculation of the self-consistent voltage in
the CNT. The cubic spline parameters assure the continuity of the first
derivative everywhere and were optimised for fitting accuracy. When
compared with FETToy [10], a reference theoretical CNT model, we
have demonstrated that the proposed approximation approach, although
marginally slower than our earlier models, still leads to a computational
cost saving of more than two orders of magnitude while increasing the
modelling accuracy. To verify the feasibility of the proposed model,
VHDL-AMS implementations for both n-type-like and p-type-like tran-
sistors were derived and used to calculate their IDS characteristics as well
the output characteristic a simple logic inverter using the SystemVision
simulator from Mentor Graphics. The results matched closely those from
MATLAB simulations. The new VHDL-AMS model is now available on
the Southampton VHDL-AMS Validation Suite website [15] for public
use.
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