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Abstract: Requirement traceability ensures that software products meet their 
requirements and additionally makes the estimation of the consequences of 
requirement changes possible. In this article a case study analyses symptoms 
of this problem in the process model of ISO 12207, the foundation of SPICE 
(ISO 15504), and CMMi. Our analysis is directed at deriving a concept for the 
integrated extension of current traceability models with the aspect of 
documented design decisions. This integrated decision model is presented 
along with an additional case study which illustrates the advantages of this 
approach for traceability. 
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1. INTRODUCTION 

In the development of safety-critical embedded real-time systems, safety 
and reliability are of major importance1 (cf. ISO 61508). Therefore, control 
and improvement of software processes (cf. ISO 15504 SPICE) are of high 
significance. In these processes, traceable and consistent elaboration of 
requirements throughout all development cycles (especially the design 
phases) is mandatory. However, today’s document-heavy approaches face 
problems with redundancy and synchronization of different stakeholders’ 
views. To handle these issues, we propose an approach that concentrates on 
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maintaining one consistent view of all requirements between all 
stakeholders. In the following design phases, the stakeholders and artifacts 
of the different engineering disciplines (Systems engineering, hardware 
(HW) and software (SW)) shall be connected by a lightweight model and 
tool-based traceability approach. 

The core of this approach is a decision model which links requirements, 
design problems and design together. As a result, new constraints on the 
solution space can be identified and used in a similar way as requirements. 
Whereas former traceability approaches regarded decisions as valuable side 
information, in our model decisions get directly integrated in the classical 
traceability information forming traceable chains of decisions through the 
design process. As a side effect, the approach addresses several problems in 
rationale management and encourages direct communication between the 
stakeholders. This decision model has been integrated into a software 
development tool which acts as a bridge between requirements tools like 
DOORS and design-oriented tools like Matlab Simulink or Artisan Realtime 
Studio. 

We start in chapter 2 with describing the state of the art in traceability 
research and continue in chapter 3 to analyze problems in establishing 
traceability information in current process models. This builds ground for 
chapter 4 which introduces our integrated decision model that helps to 
improve currently used traceability models. A case study shows how the 
model can be applied in a practical setting. Chapter 5 gives hints on the 
model’s further support potential for designers while chapter 6 draws a short 
conclusion. 

2. REQUIREMENT TRACEABILITY TO DESIGN 

Requirements management, i.e. the activity of organizing, administrating 
and supervising requirements during the whole development process, and 
Traceability are mandatory actions to fulfill exigencies imposed by software 
engineering standards like SPICE1 (Software Process Improvement and 
Capability dEtermination2) or CMMi (Capability Maturity Model 
Integration3). Traceability means “comprehensible documentation of 
requirements, decisions and their interdependencies to all produced 
information/artifacts from project start to project end”4(p.407). Between 
artifacts or respectively models of different development processes emerging 
structural interruptions and semantic gaps5,6,7(p.138f) endanger a project’s 
consistency and the common understanding of its stakeholders. Traceability 

 
1 In the following, we concentrate on SPICE, but our claims are equally valid for CMMi, as 

both process models are based on the process model of ISO 12207. 
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relationships are intended to close these gaps. Paech et al.8 indicate that 
traceability in relation to the design of artifacts is typically seen as a set of 
bidirectional relationships between requirements and their fulfilling design 
entities9.  

Research on traceability has proposed various approaches for establishing 
or retrieving traceability dependencies. Rochimah et al. present an evaluation 
of current state of the art traceability approaches concerned with SW 
evolution10. Research has shown that manual creation and maintenance of 
traceability relations requires enormous effort and includes substantial 
complexity11,9,12. The study of Rochimah et al. further shows that current 
research on traceability focuses on automating traceability link 
generation10(Table 4). Some automation approaches still depend on manually 
established links that are then enriched by supporting automation 
mechanisms while others are fully automated. We have analyzed the scope 
of automation of these approaches and identified two major areas of 
automation: 
• Finding interdependencies between different requirements artifacts (e.g. 

textual documents, use case descriptions, feature-models or analysis 
models) concerned with requirements. 

• Finding interdependencies between design and code artifacts. 
 

Only the approach suggested by Spanoudakis13,14 tries to establish 
automated trace links from requirements to models, focusing on analysis 
models, though. 

It is striking that current automated link generation approaches do not 
concentrate on establishing links between the requirements world and the 
design world. We believe this can be explained by the “name mapping” or 
“name referencing” phenomenon: Instead of creating explicit links between 
items, the same names are used15(p. 224).  

If no automatic code generation is available for a design tool and code 
must be typed manually, traceability must also be established between 
design and code. As design is (and should be) a more abstract view on the 
problem modeled, traceability can also be established by naming 
corresponding elements in design and code identically. This is an explicit 
heuristic. In addition, another heuristic significantly reinforces this effect in 
an implicit way: It is very important to achieve a common understanding of 
the project for all different stakeholders. This can only be achieved, if the 
project develops a common vocabulary for its used terms. Therefore, in the 
field of requirements specification, using precise terminology and 
establishing adequate terminology management is a central principle.   

However, concerning traces from requirements to design, Paech et al.8 
point out that these relationships can be of a more complex nature (cf. 



4 Chapter 13
 
Fig.13-1 below). In principle, non-functional requirements (NFR) restrain 
functional requirements (FR) and architectural decisions (AD). On the other 
hand, NFRs are realized by FRs and ADs, whereas FRs are realized and 
restrained by ADs. Egyed et al. discuss similar observations11 where they 
map FRs to nonfunctional aspects (or software attributes) where they 
identify conflicting and supporting situations. It becomes clear that such 
dependencies are highly dependent on the design context (e.g. the potential 
conflict can also be nonexistent, if a FR and a nonfunctional aspect are 
realized in different components). 

 

Figure 13-1. Relationships between non-functional (NFR), functional requirements (FR) and 
architectural decisions (AD) according to Paech et al.8. 

Tracing requirements from the original requirements specification to 
design by simple bidirectional links is inaccurate as this would assume the 
transition from requirements to design to be a fairly linear and one-
dimensional process. We rather believe that this transition is a creative and 
complex mental transfer process performed by designers when gradually 
transforming the problem space into a solution space (so called Wicked 
Problems16). Thus we assume a substantial gap between the world of 
requirements and design (resp. code), since requirements represent the 
problem world, whereas design forms the solution world. Accordingly, we 
believe that (automatic) traceability link generation can be a valuable 
support mechanism to find dependencies between within each sphere (e.g., 
finding all references of a variable used in source code is a simple and state-
of-the-art feature), but it faces high barriers when trying to bridge both 
worlds. It can be agreed with Egyed et al. that “while some automation 
exists, capturing traces remains a largely manual process” 17(p.115) and such 
links degrade over time and must be continuously maintained. Further, the 
type of usage of the link information must be considered: Egyed et al.17 
distinguish between short-term utilization (are all requirements considered?) 
and long-term utilization (assessing a particular change years later). Short-
term utilization is more or less covered by the simple link concept usually 
applied by today’s traceability understanding, whereas for mid- and long-
term utilization of more complex relations additional information such as 
decisions and their rationale must be considered. 
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3. SHORTCOMINGS OF CURRENT PROCESS 
ARTIFACT MODELS 

The SPICE process model uses the standardized process model of ISO 
122072. This process model demands the following artifacts: 
• A system requirement specification (SYS-RS) collects all requirements 

retrieved from the user by the user requirements specification. 
• The SYS-RS builds the basis for a high-level system design model with 

the prior emphasis on HW-SW-partitioning. 
• A HW requirements specification (HW-RS) for the HW and a SW 

requirements specification (SW-RS) are derived from the SYS-RS and 
the system design model. 

• The HW-RS and SW-RS are the basis for the corresponding HW and SW 
design models. 
We present a detailed analysis of the problems encountered applying 

traceability to this kind of process model in 18. In embedded development, 
requirements concerning the system, SW and HW are strongly interwoven 
and thus a clear separation between requirements and design artifacts leads 
to high redundancy and cluttered information. The following example will 
demonstrate this (a detailed discussion can be found in 18). 

The example has a system requirements specification (SYS-RS) with 
three requirements causing a problem encountered in our practice context: 
• Req.1: An external watchdog component must monitor the system.  
• Req.2: Parametric data must be changeable by the customer during 

operation.  
• Req.3: Parametric data must be stored in Electrically Erasable 

Programmable Read Only Memory (EEPROM). 
In current practice, the system design determines that the system will 

include a microcontroller, an external watchdog component and an external 
EEPROM (cf. Fig.13-2). The HW requirements specification (HW-RS) 
derived from the SYS-RS and system design again contains Req.1 and Req.3 
linking back (fat upward arrows in Fig.13-2) to the SYS-RS. The detailed 
HW design determines that watchdog and EEPROM will share the 
connection pins to the controller by a Serial Peripheral Interface (SPI) – 
communication interface, because other connected components have already 
used up all remaining pins of the controller. Req.1 gets linked to the 
watchdog symbol and Req.3 to the EEPROM symbol in the HW design. 

The SW requirements specification (SW-RS) contains Req.1, Req.2 and 
Req.3 linking back to the SYS-RS. During SW design, the architect 
discovers the potential resource conflict in the shared usage of one SPI for 
EEPROM and watchdog. Since driving the EEPROM is very time intensive 
and triggering the watchdog is time critical, the architect rates this 
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combination as a risk, but changes of the HW are rejected due to potentially 
higher costs. The solution for this conflict, the EEPROM and watchdog 
drivers must be “artificially” coupled to implement a cooperative handshake 

solution (Fig.13-2: association in SW design model marked “!!!”). The 
solution implies that the planned original standard drivers of a supplier must 
be adapted internally. In the further progress of the project, these adaptations 
cause extra efforts not traceable to its background. 

 

Figure 13-2. An example following previous approaches 

4. AN INTEGRATED DECISION MODEL  

The above example illustrates two central problems: First, the 
requirements in HW_RS and SW_RS are copies of the requirements in the 
SYS_RS, leading to high redundancy. In many cases, SW or HW 
functionality is already clearly demanded for in the user requirements 
specification. Thus a clear separation of those requirements must be taken 
over into the SYS_RS and SW_RS respectively HW_RS causing additional 
effort and redundancies. To avoid this, we propose to use a single central 
requirements specification containing one consistent view on all aspects of 
the system to be developed. When a current state of the art requirements 
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management tools like DOORS® is used, a HW-SW-partitioning of 
requirements is also viable using attributes (proposed values: System, HW, 
SW, construction, management). Thus, HW-RS as well as SW-RS can be 
derived as views with a filter on the specific attribute value. 

Second, design activities concerning one design artifact (in our example 
HW design) can have serious implications for other requirement or design 
artifacts (in our example SW design). This fact is partially considered in the 
process model of SPICE: System design has high impact on its SW design 
by raising new “requirements” in addition to the original requirements of the 
stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related 
requirements from the SYS_RS and derive new requirements from the 
System design together. However especially in the automotive sector, SW-
design must be subordinated under constraints of extremely cost-optimized 
HW components. At the moment, SPICE neglects these critical connections 
between HW and SW. 

4.1 Introducing the integrated model 

Another issue in SW requirements which might benefit from more 
intensive discussion is their negotiability. “Real requirements” are part of the 
contractual basis between the stakeholders in a project. Changes of such 
“real” or “contractual” requirements must typically be harmonized with the 
customer via a Change Control Board (CCB) or a similar body used in 
project management. For requirements resulting from design decisions 
(modeled as DesignConstraints here, see below), it is possible to search for a 
project internal solution first, before escalating the issue to the CCB is 
considered. Thus, both kinds of requirements should be strictly separated in 
their notation.  

For this, we propose to use the following taxonomy (Fig. 13-3) to 
support a more explicit distinction: 
• Requirements are directly allocated to the SYS-RS, since they concern 

the legal agreement between customer and contractor.  
• „Requirements“ derived from requirements or designs are called 

DesignConstraints. 
• Requirements and DesignConstraints have similar qualities and structure. 

Thus, we use the term RequirementalItem (RI) for both items. 
Requirements have to refer to their origin7,4. This relation should apply to 

all RIs. The origin of DesignConstraints lies in previously made design 
decisions solving the conflicts/forces between RIs and/or architectural items 
constraining the broader more abstract solution space to a more concrete 
one. These considerations lead to our idea of directly integrating a decision 
model into traceability information (cf. Fig.13-4) helping to document the 
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origin of new DesignConstraints (this especially helps to make the HW' s 
influence on SW more transparent19(p.415)) in a lightweight and need-oriented 
way. Fig.13-4 shows this concept extending today’s traceability models8 by 
an explicit decision model. The diagram sketches a concrete situation, where 
a conflict between two requirements (Req_1, Req_2) and two UML model 
elements (Class1, Class2) is resolved by a design decision resulting in two 
new DesignConstraints (DesConstraint1, DesConstraint2). 

 

Figure 13-3. Requiremental items taxonomy 

The conventional scheme of relating requirements to realizing model 
elements is extended by a dialog allowing the capturing of documented 
decisions. In this dialog, elements of the requirement model and the design 
model which are conflicting or which cause a problem can be chosen. 
Equally, diagrams describing aspects of the conflicting situation can be 
attached as additional information (<<documenting diagrams>>). 

Furthermore, the decision can be specified on demand via a text 
component. The text component accepts unstructured text, but may also 
provide adequate description templates to support the decision 
documentation. A possible way for structuring this text is shown in Fig.13-
4 with the decision’s attributes assumptions, rationales and solution 
specification.  

The decision model presented here is strongly connected to the research 
area called rationale management (RM, cf. 20 for an overview). In 18(Ch.5), we 
provide a detailed description of the dependencies and implications of 
research in RM on our decision model.  
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Figure 13-4. Documented decisions bridge the gap between requirements, design elements 
and resulting design constraints. 

4.2 Applying the Decision Model 

The following example illustrates how the same situation as in the 
example given above is solved by our proposed approach. The system design 
is done just as proposed in chapter 3.1 (Fig.13-5). The SYS-RS contains an 
attribute that allows a SW-HW partitioning. Req.1 and Req.3 are marked as 
relevant for HW and SW, Req.2 only for SW. The HW-RS is not directly 
applied, since the relevant HW requirements are marked in the SYS-RS. The 
HW design is done similar to Chapter 3.1 and linked to the Req.1 and Req.3 
in the SYS-RS. The SW-RS is not applied, since the relevant SW 
requirements are marked in the SYS-RS. The SW design will be developed 
from the SYS-RS and the system design model. The architect discovers the 
same problem concerning watchdog and EEPROM. He opens a decision 
wizard and marks Req.1 and Req.3 as conflicting and links to the HW-
design diagram that documents the conflict. As a further rationale, the 
architect textually documents „synchronization conflict at SPI between time 
intensive EEPROM application and time critical watchdog application“. A 
further click helps the architect to put the conflict into the risk list. In the 
resulting DesignConstraint, the architect sketches the cooperative handshake 
and links the DesignConstraint to the EEPROM and watchdog design 
elements in the SW design. 

This decision model is currently being implemented in a traceability tool. 
In the further project progress necessary changes are detected early by 
impact analyses and the additional costs can be compared to the cost savings 
of the rejected HW change.  

The artifacts HW-RS and SW-RS not realized can be generated out of 
the model, on demand by summing up all requirements related to the 
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corresponding design (HW design model for the HW-RS, SW design 
model for the SW-RS). 

 

Figure 13-5. An example following our proposed approach. 

The idea of including decisions into the traceability models is not new 
(e.g. cf. the recently introduced approach by Tang et al.21). In contrast to 
other approaches that record decisions (rationale) as additional information, 
our decision model directly integrates into the traceability schema by the 
following key characteristics: 
• Conflicts between RequirementalItems (and design elements) can be 

modeled. 
• Decisions do not directly influence dedicated design objects, but they 

bear DesignConstraints that can be the treated as new “requirements” 
(called RequirementalItems here).  

• These RequirementalItems are part of all subsequent traceability 
processes. 
For a detailed analysis on the differences to other approaches of 

documenting rationale in design, we recommend reading 18. 
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5. HOW THE NEW DECISION MODEL PROVIDES 
ADDITIONAL SUPPORT TO DESIGNERS 

In the following, we will discuss additional connections and advantages 
of the proposed decision model in relation to design-related issues. 

5.1 Patterns 

„Patterns, as used in software engineering, constitute one of the most 
heavily used approaches for organizing reusable knowledge”22(p.19). Patterns 
define the abstract core of a solution for a continuously recurring problem 
thus allowing to reapply the solution tailored to the concrete problem23. 
Patterns are described using a structure template. Even though different 
authors use slightly different templates, the description of the problem (often 
referred as forces), the solution and its consequences are part of all pattern 
templates. Our decision model can be described in terms of such a pattern 
template (see also 24(Table1)): The conflict situation corresponds to the problem 
description part, whereas the description of consequences in a pattern 
description could be modeled by resulting new DesignConstraints. Due to 
this analogy, we believe our approach can provide valuable support in 
selecting design patterns (e.g. the conflict situation of a decision can indicate 
the usage of a specific pattern). At the same time, it can help knowledge 
engineers in identifying interesting solutions as new patterns (on the 
relationship between design decisions and patterns also refer to 24,25(p.209)). A 
pattern library for decisions in modeling embedded systems could be the ul-
timate goal of such an effort. 

5.2 Ensuring Adequate Realization of Design and Decisions  

As Posch et al.25(p.38) underline, architects also have to ensure that their 
design settings are adequately considered and realized by other designers or 
coders. Using our model, designers can model the consequences of a 
decision as DesignConstraint and relate the DesignConstraints as new 
“requirements” (in our terminology: RequirementalItem (RI)) for design 
elements. Besides usage in further design or coding processes, the list of 
assigned RIs to a design item can also be used as basis for reviews on design 
and implementation of the item. 

5.3 Support for Architecture Evaluation 

Our approach can also provide valuable support at maintenance and 
evaluating architectures26. As Moro27(p.321) points out the usage of patterns 
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and other decisions must be documented for later maintenance and 
architecture evaluation issues. 

6. SUMMARY AND OUTLOOK 

This article shows the interdependencies between the SPICE-layered 
process model, requirements, traceability, designs and decisions with special 
attention on low redundancy in the traceability information. We suggest a 
strict separation between contractual mandatory requirements (“real 
requirements”) and requirements resulting from former design decisions 
(design constraints). Design decisions are interpreted as links between 
requirements, designs and derived DesignConstraints. This closely connects 
and synchronizes approaches in requirement traceability and rationale 
management. In accordance with the literature28,6,8,29,12, it can be argued that 
the influence of requirements on design processes – and vice versa – is only 
insufficiently modeled by bidirectional linkages. 

In the course of a cooperation project between MBtech Group (formerly 
with the Micron Electronic Devices AG, since June 2008 part of MBtech), 
the Competence Center for Software Engineering of the University of 
Applied Sciences Regensburg and the Media Computing Group of the 
University of Regensburg a prototype system is being implemented which 
includes the decision model presented here. Customer workshops at MBtech 
have shown promising acceptance by designers. At the moment, the tool 
environment faces first practical applications in real world projects. 
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