
Chapter 13

BRIDGING THE REQUIREMENTS TO DESIGN
TRACEABILITY GAP
How an integrated decision model helps closing the gap

Bernhard Turbana, Markus Kucerab, Athanassios Tsakpinisb, Christian Wolffc
aElectronic Systems Engineering, MBtech Group, Neutraubling, Germany, bernhard.turban@
mbtech-group.com; bCompetence Center SE, University of Applied Sciences, Regensburg,
Germany, {markus.kucera,athanassios.tsakpinis}@informatik.fh-regensburg.de; cMedia
Computing, University of Regensburg, Germany, christian.wolff@computer.org

Abstract: Requirement traceability ensures that software products meet their
requirements and additionally makes the estimation of the consequences of
requirement changes possible. In this article a case study analyses symptoms
of this problem in the process model of ISO 12207, the foundation of SPICE
(ISO 15504), and CMMi. Our analysis is directed at deriving a concept for the
integrated extension of current traceability models with the aspect of
documented design decisions. This integrated decision model is presented
along with an additional case study which illustrates the advantages of this
approach for traceability.

Key words: requirements engineering, traceability, design, rationale management,
decision, embedded systems, SPICE, ISO15504, ISO 12207, CMMi

1. INTRODUCTION

In the development of safety-critical embedded real-time systems, safety
and reliability are of major importance1 (cf. ISO 61508). Therefore, control
and improvement of software processes (cf. ISO 15504 SPICE) are of high
significance. In these processes, traceable and consistent elaboration of
requirements throughout all development cycles (especially the design
phases) is mandatory. However, today’s document-heavy approaches face
problems with redundancy and synchronization of different stakeholders’
views. To handle these issues, we propose an approach that concentrates on

2 Chapter 13

maintaining one consistent view of all requirements between all
stakeholders. In the following design phases, the stakeholders and artifacts
of the different engineering disciplines (Systems engineering, hardware
(HW) and software (SW)) shall be connected by a lightweight model and
tool-based traceability approach.

The core of this approach is a decision model which links requirements,
design problems and design together. As a result, new constraints on the
solution space can be identified and used in a similar way as requirements.
Whereas former traceability approaches regarded decisions as valuable side
information, in our model decisions get directly integrated in the classical
traceability information forming traceable chains of decisions through the
design process. As a side effect, the approach addresses several problems in
rationale management and encourages direct communication between the
stakeholders. This decision model has been integrated into a software
development tool which acts as a bridge between requirements tools like
DOORS and design-oriented tools like Matlab Simulink or Artisan Realtime
Studio.

We start in chapter 2 with describing the state of the art in traceability
research and continue in chapter 3 to analyze problems in establishing
traceability information in current process models. This builds ground for
chapter 4 which introduces our integrated decision model that helps to
improve currently used traceability models. A case study shows how the
model can be applied in a practical setting. Chapter 5 gives hints on the
model’s further support potential for designers while chapter 6 draws a short
conclusion.

2. REQUIREMENT TRACEABILITY TO DESIGN

Requirements management, i.e. the activity of organizing, administrating
and supervising requirements during the whole development process, and
Traceability are mandatory actions to fulfill exigencies imposed by software
engineering standards like SPICE1 (Software Process Improvement and
Capability dEtermination2) or CMMi (Capability Maturity Model
Integration3). Traceability means “comprehensible documentation of
requirements, decisions and their interdependencies to all produced
information/artifacts from project start to project end”4(p.407). Between
artifacts or respectively models of different development processes emerging
structural interruptions and semantic gaps5,6,7(p.138f) endanger a project’s
consistency and the common understanding of its stakeholders. Traceability

1 In the following, we concentrate on SPICE, but our claims are equally valid for CMMi, as

both process models are based on the process model of ISO 12207.

13. Bridging the Requirements to Design Traceability Gap 3

relationships are intended to close these gaps. Paech et al.8 indicate that
traceability in relation to the design of artifacts is typically seen as a set of
bidirectional relationships between requirements and their fulfilling design
entities9.

Research on traceability has proposed various approaches for establishing
or retrieving traceability dependencies. Rochimah et al. present an evaluation
of current state of the art traceability approaches concerned with SW
evolution10. Research has shown that manual creation and maintenance of
traceability relations requires enormous effort and includes substantial
complexity11,9,12. The study of Rochimah et al. further shows that current
research on traceability focuses on automating traceability link
generation10(Table 4). Some automation approaches still depend on manually
established links that are then enriched by supporting automation
mechanisms while others are fully automated. We have analyzed the scope
of automation of these approaches and identified two major areas of
automation:
• Finding interdependencies between different requirements artifacts (e.g.

textual documents, use case descriptions, feature-models or analysis
models) concerned with requirements.

• Finding interdependencies between design and code artifacts.

Only the approach suggested by Spanoudakis13,14 tries to establish
automated trace links from requirements to models, focusing on analysis
models, though.

It is striking that current automated link generation approaches do not
concentrate on establishing links between the requirements world and the
design world. We believe this can be explained by the “name mapping” or
“name referencing” phenomenon: Instead of creating explicit links between
items, the same names are used15(p. 224).

If no automatic code generation is available for a design tool and code
must be typed manually, traceability must also be established between
design and code. As design is (and should be) a more abstract view on the
problem modeled, traceability can also be established by naming
corresponding elements in design and code identically. This is an explicit
heuristic. In addition, another heuristic significantly reinforces this effect in
an implicit way: It is very important to achieve a common understanding of
the project for all different stakeholders. This can only be achieved, if the
project develops a common vocabulary for its used terms. Therefore, in the
field of requirements specification, using precise terminology and
establishing adequate terminology management is a central principle.

However, concerning traces from requirements to design, Paech et al.8
point out that these relationships can be of a more complex nature (cf.

4 Chapter 13

Fig.13-1 below). In principle, non-functional requirements (NFR) restrain
functional requirements (FR) and architectural decisions (AD). On the other
hand, NFRs are realized by FRs and ADs, whereas FRs are realized and
restrained by ADs. Egyed et al. discuss similar observations11 where they
map FRs to nonfunctional aspects (or software attributes) where they
identify conflicting and supporting situations. It becomes clear that such
dependencies are highly dependent on the design context (e.g. the potential
conflict can also be nonexistent, if a FR and a nonfunctional aspect are
realized in different components).

Figure 13-1. Relationships between non-functional (NFR), functional requirements (FR) and
architectural decisions (AD) according to Paech et al.8.

Tracing requirements from the original requirements specification to
design by simple bidirectional links is inaccurate as this would assume the
transition from requirements to design to be a fairly linear and one-
dimensional process. We rather believe that this transition is a creative and
complex mental transfer process performed by designers when gradually
transforming the problem space into a solution space (so called Wicked
Problems16). Thus we assume a substantial gap between the world of
requirements and design (resp. code), since requirements represent the
problem world, whereas design forms the solution world. Accordingly, we
believe that (automatic) traceability link generation can be a valuable
support mechanism to find dependencies between within each sphere (e.g.,
finding all references of a variable used in source code is a simple and state-
of-the-art feature), but it faces high barriers when trying to bridge both
worlds. It can be agreed with Egyed et al. that “while some automation
exists, capturing traces remains a largely manual process” 17(p.115) and such
links degrade over time and must be continuously maintained. Further, the
type of usage of the link information must be considered: Egyed et al.17
distinguish between short-term utilization (are all requirements considered?)
and long-term utilization (assessing a particular change years later). Short-
term utilization is more or less covered by the simple link concept usually
applied by today’s traceability understanding, whereas for mid- and long-
term utilization of more complex relations additional information such as
decisions and their rationale must be considered.

13. Bridging the Requirements to Design Traceability Gap 5

3. SHORTCOMINGS OF CURRENT PROCESS
ARTIFACT MODELS

The SPICE process model uses the standardized process model of ISO
122072. This process model demands the following artifacts:
• A system requirement specification (SYS-RS) collects all requirements

retrieved from the user by the user requirements specification.
• The SYS-RS builds the basis for a high-level system design model with

the prior emphasis on HW-SW-partitioning.
• A HW requirements specification (HW-RS) for the HW and a SW

requirements specification (SW-RS) are derived from the SYS-RS and
the system design model.

• The HW-RS and SW-RS are the basis for the corresponding HW and SW
design models.
We present a detailed analysis of the problems encountered applying

traceability to this kind of process model in 18. In embedded development,
requirements concerning the system, SW and HW are strongly interwoven
and thus a clear separation between requirements and design artifacts leads
to high redundancy and cluttered information. The following example will
demonstrate this (a detailed discussion can be found in 18).

The example has a system requirements specification (SYS-RS) with
three requirements causing a problem encountered in our practice context:
• Req.1: An external watchdog component must monitor the system.
• Req.2: Parametric data must be changeable by the customer during

operation.
• Req.3: Parametric data must be stored in Electrically Erasable

Programmable Read Only Memory (EEPROM).
In current practice, the system design determines that the system will

include a microcontroller, an external watchdog component and an external
EEPROM (cf. Fig.13-2). The HW requirements specification (HW-RS)
derived from the SYS-RS and system design again contains Req.1 and Req.3
linking back (fat upward arrows in Fig.13-2) to the SYS-RS. The detailed
HW design determines that watchdog and EEPROM will share the
connection pins to the controller by a Serial Peripheral Interface (SPI) –
communication interface, because other connected components have already
used up all remaining pins of the controller. Req.1 gets linked to the
watchdog symbol and Req.3 to the EEPROM symbol in the HW design.

The SW requirements specification (SW-RS) contains Req.1, Req.2 and
Req.3 linking back to the SYS-RS. During SW design, the architect
discovers the potential resource conflict in the shared usage of one SPI for
EEPROM and watchdog. Since driving the EEPROM is very time intensive
and triggering the watchdog is time critical, the architect rates this

6 Chapter 13

combination as a risk, but changes of the HW are rejected due to potentially
higher costs. The solution for this conflict, the EEPROM and watchdog
drivers must be “artificially” coupled to implement a cooperative handshake

solution (Fig.13-2: association in SW design model marked “!!!”). The
solution implies that the planned original standard drivers of a supplier must
be adapted internally. In the further progress of the project, these adaptations
cause extra efforts not traceable to its background.

Figure 13-2. An example following previous approaches

4. AN INTEGRATED DECISION MODEL

The above example illustrates two central problems: First, the
requirements in HW_RS and SW_RS are copies of the requirements in the
SYS_RS, leading to high redundancy. In many cases, SW or HW
functionality is already clearly demanded for in the user requirements
specification. Thus a clear separation of those requirements must be taken
over into the SYS_RS and SW_RS respectively HW_RS causing additional
effort and redundancies. To avoid this, we propose to use a single central
requirements specification containing one consistent view on all aspects of
the system to be developed. When a current state of the art requirements

13. Bridging the Requirements to Design Traceability Gap 7

management tools like DOORS® is used, a HW-SW-partitioning of
requirements is also viable using attributes (proposed values: System, HW,
SW, construction, management). Thus, HW-RS as well as SW-RS can be
derived as views with a filter on the specific attribute value.

Second, design activities concerning one design artifact (in our example
HW design) can have serious implications for other requirement or design
artifacts (in our example SW design). This fact is partially considered in the
process model of SPICE: System design has high impact on its SW design
by raising new “requirements” in addition to the original requirements of the
stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related
requirements from the SYS_RS and derive new requirements from the
System design together. However especially in the automotive sector, SW-
design must be subordinated under constraints of extremely cost-optimized
HW components. At the moment, SPICE neglects these critical connections
between HW and SW.

4.1 Introducing the integrated model

Another issue in SW requirements which might benefit from more
intensive discussion is their negotiability. “Real requirements” are part of the
contractual basis between the stakeholders in a project. Changes of such
“real” or “contractual” requirements must typically be harmonized with the
customer via a Change Control Board (CCB) or a similar body used in
project management. For requirements resulting from design decisions
(modeled as DesignConstraints here, see below), it is possible to search for a
project internal solution first, before escalating the issue to the CCB is
considered. Thus, both kinds of requirements should be strictly separated in
their notation.

For this, we propose to use the following taxonomy (Fig. 13-3) to
support a more explicit distinction:
• Requirements are directly allocated to the SYS-RS, since they concern

the legal agreement between customer and contractor.
• „Requirements“ derived from requirements or designs are called

DesignConstraints.
• Requirements and DesignConstraints have similar qualities and structure.

Thus, we use the term RequirementalItem (RI) for both items.
Requirements have to refer to their origin7,4. This relation should apply to

all RIs. The origin of DesignConstraints lies in previously made design
decisions solving the conflicts/forces between RIs and/or architectural items
constraining the broader more abstract solution space to a more concrete
one. These considerations lead to our idea of directly integrating a decision
model into traceability information (cf. Fig.13-4) helping to document the

8 Chapter 13

origin of new DesignConstraints (this especially helps to make the HW' s
influence on SW more transparent19(p.415)) in a lightweight and need-oriented
way. Fig.13-4 shows this concept extending today’s traceability models8 by
an explicit decision model. The diagram sketches a concrete situation, where
a conflict between two requirements (Req_1, Req_2) and two UML model
elements (Class1, Class2) is resolved by a design decision resulting in two
new DesignConstraints (DesConstraint1, DesConstraint2).

Figure 13-3. Requiremental items taxonomy

The conventional scheme of relating requirements to realizing model
elements is extended by a dialog allowing the capturing of documented
decisions. In this dialog, elements of the requirement model and the design
model which are conflicting or which cause a problem can be chosen.
Equally, diagrams describing aspects of the conflicting situation can be
attached as additional information (<<documenting diagrams>>).

Furthermore, the decision can be specified on demand via a text
component. The text component accepts unstructured text, but may also
provide adequate description templates to support the decision
documentation. A possible way for structuring this text is shown in Fig.13-
4 with the decision’s attributes assumptions, rationales and solution
specification.

The decision model presented here is strongly connected to the research
area called rationale management (RM, cf. 20 for an overview). In 18(Ch.5), we
provide a detailed description of the dependencies and implications of
research in RM on our decision model.

13. Bridging the Requirements to Design Traceability Gap 9

Figure 13-4. Documented decisions bridge the gap between requirements, design elements
and resulting design constraints.

4.2 Applying the Decision Model

The following example illustrates how the same situation as in the
example given above is solved by our proposed approach. The system design
is done just as proposed in chapter 3.1 (Fig.13-5). The SYS-RS contains an
attribute that allows a SW-HW partitioning. Req.1 and Req.3 are marked as
relevant for HW and SW, Req.2 only for SW. The HW-RS is not directly
applied, since the relevant HW requirements are marked in the SYS-RS. The
HW design is done similar to Chapter 3.1 and linked to the Req.1 and Req.3
in the SYS-RS. The SW-RS is not applied, since the relevant SW
requirements are marked in the SYS-RS. The SW design will be developed
from the SYS-RS and the system design model. The architect discovers the
same problem concerning watchdog and EEPROM. He opens a decision
wizard and marks Req.1 and Req.3 as conflicting and links to the HW-
design diagram that documents the conflict. As a further rationale, the
architect textually documents „synchronization conflict at SPI between time
intensive EEPROM application and time critical watchdog application“. A
further click helps the architect to put the conflict into the risk list. In the
resulting DesignConstraint, the architect sketches the cooperative handshake
and links the DesignConstraint to the EEPROM and watchdog design
elements in the SW design.

This decision model is currently being implemented in a traceability tool.
In the further project progress necessary changes are detected early by
impact analyses and the additional costs can be compared to the cost savings
of the rejected HW change.

The artifacts HW-RS and SW-RS not realized can be generated out of
the model, on demand by summing up all requirements related to the

10 Chapter 13

corresponding design (HW design model for the HW-RS, SW design
model for the SW-RS).

Figure 13-5. An example following our proposed approach.

The idea of including decisions into the traceability models is not new
(e.g. cf. the recently introduced approach by Tang et al.21). In contrast to
other approaches that record decisions (rationale) as additional information,
our decision model directly integrates into the traceability schema by the
following key characteristics:
• Conflicts between RequirementalItems (and design elements) can be

modeled.
• Decisions do not directly influence dedicated design objects, but they

bear DesignConstraints that can be the treated as new “requirements”
(called RequirementalItems here).

• These RequirementalItems are part of all subsequent traceability
processes.
For a detailed analysis on the differences to other approaches of

documenting rationale in design, we recommend reading 18.

13. Bridging the Requirements to Design Traceability Gap 11

5. HOW THE NEW DECISION MODEL PROVIDES
ADDITIONAL SUPPORT TO DESIGNERS

In the following, we will discuss additional connections and advantages
of the proposed decision model in relation to design-related issues.

5.1 Patterns

„Patterns, as used in software engineering, constitute one of the most
heavily used approaches for organizing reusable knowledge”22(p.19). Patterns
define the abstract core of a solution for a continuously recurring problem
thus allowing to reapply the solution tailored to the concrete problem23.
Patterns are described using a structure template. Even though different
authors use slightly different templates, the description of the problem (often
referred as forces), the solution and its consequences are part of all pattern
templates. Our decision model can be described in terms of such a pattern
template (see also 24(Table1)): The conflict situation corresponds to the problem
description part, whereas the description of consequences in a pattern
description could be modeled by resulting new DesignConstraints. Due to
this analogy, we believe our approach can provide valuable support in
selecting design patterns (e.g. the conflict situation of a decision can indicate
the usage of a specific pattern). At the same time, it can help knowledge
engineers in identifying interesting solutions as new patterns (on the
relationship between design decisions and patterns also refer to 24,25(p.209)). A
pattern library for decisions in modeling embedded systems could be the ul-
timate goal of such an effort.

5.2 Ensuring Adequate Realization of Design and Decisions

As Posch et al.25(p.38) underline, architects also have to ensure that their
design settings are adequately considered and realized by other designers or
coders. Using our model, designers can model the consequences of a
decision as DesignConstraint and relate the DesignConstraints as new
“requirements” (in our terminology: RequirementalItem (RI)) for design
elements. Besides usage in further design or coding processes, the list of
assigned RIs to a design item can also be used as basis for reviews on design
and implementation of the item.

5.3 Support for Architecture Evaluation

Our approach can also provide valuable support at maintenance and
evaluating architectures26. As Moro27(p.321) points out the usage of patterns

12 Chapter 13

and other decisions must be documented for later maintenance and
architecture evaluation issues.

6. SUMMARY AND OUTLOOK

This article shows the interdependencies between the SPICE-layered
process model, requirements, traceability, designs and decisions with special
attention on low redundancy in the traceability information. We suggest a
strict separation between contractual mandatory requirements (“real
requirements”) and requirements resulting from former design decisions
(design constraints). Design decisions are interpreted as links between
requirements, designs and derived DesignConstraints. This closely connects
and synchronizes approaches in requirement traceability and rationale
management. In accordance with the literature28,6,8,29,12, it can be argued that
the influence of requirements on design processes – and vice versa – is only
insufficiently modeled by bidirectional linkages.

In the course of a cooperation project between MBtech Group (formerly
with the Micron Electronic Devices AG, since June 2008 part of MBtech),
the Competence Center for Software Engineering of the University of
Applied Sciences Regensburg and the Media Computing Group of the
University of Regensburg a prototype system is being implemented which
includes the decision model presented here. Customer workshops at MBtech
have shown promising acceptance by designers. At the moment, the tool
environment faces first practical applications in real world projects.

Acknowledgements
This research has been funded by the Bavarian Ministry of Economic Development (Grant

Nr. IUK229). Furthermore, we want to thank all partners that contributed to our research.

7. REFERENCES

1. O. Benediktsson, R. Hunter and A.D. McGettrick. Processes for Software in Safety
Critical Systems. In: Software Process: Improvement and Practice 6 (1), 47-62
(2001).

2. K. Hörmann, L. Dittmann, B. Hindel and M. Müller. SPICE in der Praxis, Interpre-
tationshilfe für Anwender und Assessoren, dpunkt Verlag, Heidelberg (2006).

3. R. Kneuper. CMMI. Verbesserung von Softwareprozessen mit Capability Maturity
Model Integration. Volume 2, dpunkt Verlag, Heidelberg (2006).

4. Ch. Rupp. Requirements-Engineering und –Management, Volume 2, Hanser, Mün-
chen (2002).

13. Bridging the Requirements to Design Traceability Gap 13

5. M. Lindvall. A study of traceability in object-oriented systems development.
Licenciate thesis, Linköping University, Institute of Technology, Sweden (1994).

6. A. von Knethen. Change-Oriented Requirements Traceability. Support for
Evolution of Embedded Systems, Fraunhofer IRB Verlag, Stuttgart (2001).

7. Ch. Ebert. Systematisches Requirements Management, dpunkt, Heidelberg (2005).
8. B. Paech, A. Dutoit, D. Kerkow and A. von Knethen. Functional requirements, non-

functional requirements, and architecture should not be separated - A position
paper, REFSQ Essen (2002).

9. O. Gotel, O., A. Finkelstein. An Analysis of the Requirements Traceability
Problem. Proceedings First International Conference on Requirements Engineering
1994, pp. 94–101 (1994).

10. S. Rochimah, W. Wan Kadir, A. Abdullah. An Evaluation of Traceability
Approaches to Support Software Evolution. International Conference on Software
Engineering Advances (ICSEA) (2007).

11. A. Egyed, P. Grünbacher. Indentifying Requirements Conflicts and Cooperation:
How Quality Attributes and Automated Traceability Can Help. IEEE SW
November/December (2004).

12. B. Ramesh, M. Jarke. Toward Reference Models for Requirements Traceability.
IEEE Transactions on Software Engineering, 27(1) (2001).

13. G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause. Rule-Based
Generation of Requirements Traceability Relations, Journal of Systems and
Software 105-227 (2004).

14. G. Spanoudakis, "Plausible and Adaptive Requirement Traceability Structures," in
Proc. 14th International Conf. Software Eng. and Knowledge Eng. (2002).

15. M. Müller, K. Hörmann, L. Dittmann and J. Zimmer. Automotive SPICE in der Pra-
xis: Interpretationshilfe für Anwender und Assessoren. Dpunkt 1. Auflage, Heidel-
berg (2007).

16. W. Kunz, H. Rittel. Issues as elements of information systems. Working Paper 131,
Center for Urban and Regional Development, University of California, Berkeley
(1970).

17. A. Egyed, P. Grünbacher, M. Heindl, S. Biffl, Value-Based Requirements
Traceability: Lessons Learned. 15th IEEE International Requirements Engineering
Conference (2007).

18. B. Turban, M. Kucera, A. Tsakpinis and Ch. Wolff, An Integrated Decision Model
For Efficient Requirement Traceability in SPICE Compliant Development, Fifth
Workshop on Intelligent Solutions in Embedded Systems (WISES), Madrid (2007).

19. P. Liggesmeyer, and D. Rombach (Eds.): Software Engineering eingebetteter Sys-
teme Grundlagen - Methodik – Anwendungen. Volume 1., Elsevier, München
(2005).

20. A. Dutoit, A., R. McCall, I. Mistrik and B. Paech (Eds.). Rationale Management in
Software Engineering. Springer, Berlin (2006).

14 Chapter 13

21. A. Tang, Y. Jin, J. Han, A rationale-based architecture model for design traceability
and reasoning. Journals of Systems and Software Volume 80(6) 918-934. (2007).

22. A. Dutoit, R. McCall, I. Mistrik and B. Paech. Rationale Management in Software
Engineering: Concepts and Techniques. In 20 (p.1-48) (2006).

23. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995).

24. N.B. Harrison, P. Avgerion, U. Zdun, Using Patterns to Capture Architectural
Decisions. IEEE Software 38- 45 July/August (2007).

25. T. Posch, K. Birken and M. Gerdom, Basiswissen Softwarearchitektur- Verstehen,
entwerfen, bewerten und dokumentieren. dpunkt, Heidelberg (2004).

26. P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures – Methods
and case studies. Addison-Wesley (2002).

27. 27 M. Moro, Modellbasierte Qualitätsbewertung von Softwaresystemen, Books on
Demand GmbH, 1. Auflage (2004).

28. A. von Knethen, A Trace Model for System Requirements Changes on Embedded
Systems, In Proc. of 4th International Workshop on Principles of SW Evolution,
Sept. (2001).

29. R. Pettit, Lessons Learned Applying UML in Embedded Software Systems Design,
Second IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, Wien (2004).

