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Abstract. Graph drawing and visualization represent structural information as 

diagrams of abstract graphs and networks. E-Spring Algorithm, derived from 

the popular spring embedder model, was proposed to eliminate node overlaps in 

the drawings of clustered directed acyclic graphs Gc.  In this paper, we apply 

the E-Spring algorithm to general graphs by minimizing edge-node 

intersections.  Initially, a tree structure is extracted from the original graph 

using the breadth-first search (BFS) algorithm.  The extracted tree is then 

visualized without node overlaps using the E-Spring algorithm, and the 

remaining non-tree edges are appended to this visualization. A post-processing 

step that implements edge routing is performed on the obtained visualization to 

eliminate residual edge-node intersections.  This method has been validated by 

visualizing eBay buyer-seller relationships and Graph Catalog benchmarking 

data.  

Keywords: node overlaps, edge-node intersections, edge routing, graph 

visualization 

1   Introduction 

Graph visualization is an area of extensive research in recent years.  Applications 

of graph visualization include genealogy, cartography, sociology, software 

engineering, VLSI design, and visual analysis.  Cluttered drawings of graphs 

generally produce undesirable visual presentation that could increase the cognitive 

overhead in understanding of the structural information.  Various criteria for 

determining the graph quality have been proposed [2][16][35].  A graph drawing is 

sometimes measured by how well it meets the following aesthetic criteria 

[29][32][37]: 

• Minimization of edge crossings. 

• Minimization of edge-node intersections:  Edges should not intersect with 

finite-size labeled  nodes. 

• Symmetry: Nodes should be sufficiently far apart from their nearest neighbor 

to be easily distinguished and to avoid occlusion. 

•  Readability:  Labels must have legible sizes. 



•   Minimization of area: Visual space is often at a premium and reducing the 

overall area of the bounding box of the graph is often desirable.  

• Avoidance of Overlap: Labels should not overlap with other labels or other 

graphical features. 
 

Various algorithms [2][14][15][16][23][29] have been proposed for removing node 

overlaps in graphs.  Being most widely used, Spring algorithms [9] are a class of 

algorithms for drawing graphs in an aesthetically pleasing way by positioning the 

nodes of a graph in two or three dimensional space so that all the edges are of more or 

less equal length, and there are as few crossing edges as possible.  They assign forces 

as if the edges were springs following Hooke's law, the forces are applied to the 

nodes, pulling them closer together or pushing them further apart. At equilibrium, 

node overlap is gradually reduced [14][29][36].  Spring algorithms are regarded as 

effective tools for visualizing undirected graphs.   

E-Spring algorithm [20] derived from the popular spring embedder model [9] was 

proposed to eliminate node overlaps in clustered directed acyclic graphs (DAGs).  A 

combination of spring and electrostatic forces act on the physical system to remove 

node overlaps at equilibrium.  E-Spring algorithm uses animation for drawing 

clustered DAGs to preserve the user’s mental map [11]. Enhancements to this 

algorithm include determination of a stop condition that utilizes graph geometry to 

determine an upper bound on graph expansion during animated drawing.  DAG 

expansion automatically stops when this condition is met.  This minimizes the overall 

area of the DAG visualization and leads to effective utilization of screen space.  

Further optimization of this algorithm includes performing node interleaving in the 

top and bottom DAG cluster regions to remove residual node overlaps particularly 

effective for graphs with long node labels [21].  E-Spring algorithm ensures removal 

of all node overlaps [22].   

Graphs have been extensively used to represent various important concepts or 

objects.  A graph is generally drawn or represented in the plane so that we can 

understand and study its structure and properties [33].  Directed acyclic graphs 

(DAGs) are an important subset of graphs, and have been used to visualize various 

eBusiness and other applications [17][28].  It is essential that E-Spring algorithm can 

not only visualize graph subsets but also graphs in general. The usefulness of a graph 

drawing depends on its readability [1].  In this paper, we apply the E-Spring 

algorithm to visualize graphs without node overlaps and edge-node intersections.  The 

new method consists of the following four steps: 

   

1.  One or more trees are extracted from a given input graph using the graph 

traversal algorithm, breadth-first search (BFS) [3].   

2.  The extracted trees are visualized using the E-Spring algorithm, which 

removes all node overlaps.   

3.  Non-tree edges (that are not traversed by BFS algorithm) are then appended to 

the visualization so that the whole graph structure can be visualized.   

4.  An edge routing procedure is performed to remove any residual edge-node 

intersections.   

 

The proposed method greatly improves the readability of node labels in the graph 

layouts.  We evaluate our method by visualizing eBay social network data and Graph 



Catalog benchmark data.  Using our method, all node overlaps and edge-node 

intersections are removed in the obtained final layouts. 

 The rest of this paper is organized as follows.  Section 2 describes related work.  

Section 3 presents details of the E-Spring algorithm.  Section 4 describes our method 

for visualizing graphs which includes the clustered graph model, tree extraction, and 

removing edge-node intersections.  Section 5 provides details of our implementation 

and experimental results.  Finally, a conclusion is given in Section 6.   

2   Related Work 

We review related work on visualization of graphs without node overlap and edge-

node intersections, tree search and retrieval algorithms, and edge routing in layouts 

that served as a motivation for this paper.  The family of spring algorithms was 

developed for adjusting cluttered graphs without node overlaps, and includes  force 

scan (FS) [23], force transfer (FT) [14], dynamic natural length spring (DNLS) and 

orthogonal dynamic natural length spring (ODNLS) [29]. The Force-scan method 

(FS) scans in both the horizontal and vertical directions of a graph to find overlapping 

nodes and uses a force along the line connecting the center of two overlapping nodes 

in an iterative fashion to remove node overlaps. In Force-transfer method (FT), forces 

are applied with left-to-right and top-to-bottom scans, and some nodes are moved 

either horizontally or vertically.  Outputs using FS method have smaller area than 

those of FT.  Dynamic natural length spring (DNLS) and orthogonal dynamic natural 

length spring (ODNLS) modify attractive and/or repulsive spring forces between 

nodes to achieve node overlap removal. Both DNLS and ODNLS have a better 

performance than FS and FT in terms of aesthetic criteria such as display symmetry 

and uniform edge.  A fast algorithm (FADE) for two dimensional drawing, geometric 

clustering and multilevel viewing of large undirected graphs is presented in [36].  The 

decomposition tree provides a systematic way to determine the degree of closeness 

between nodes without explicitly calculating the distance between each node.  For 

large clustered undirected graphs, three types of spring forces - internal spring, 

external spring and virtual spring that operate between the vertices of a graph are 

defined for the navigation and visualization of these graphs [10].  In addition to spring 

forces, there are gravitational repulsion forces between all nodes.   

A general framework called “User Hints” treats the map labeling processes as an 

optimization task and supports human interaction along with automated methods [32]. 

Simulated annealing (SA) is a flexible optimization method and solves the problem of 

drawing nice-looking undirected straight-line graphs without node overlaps. The SA 

method uses rules that are derived from an analogy to the process in which liquids are 

cooled to a crystalline form, a process called annealing [5]. A three-dimensional 

system based on the simulated annealing algorithm extends straight-line two-

dimensional drawings of general undirected graphs to three dimensions [4].  This 

system features an advanced 3D user interface that assists the user in choosing and 

modifying the cost function and the optimization components on-line. Various 

approaches for removing node overlapping based on constrained optimization 

techniques are proposed in [31]. These include minimal linear scaling, formulating the 



node overlapping problem as a convex quadratic programming problem to be solved 

by any quadratic solver, local search methods based on adaptation of the EGENET 

solver, and form of Lagrangian multiplier method.  

Graph theory algorithms such as Breadth-first search (BFS) and Depth-first search 

(DFS) efficiently search a given unweighted graph beginning with any source vertex 

[3].  They can used to determine whether a graph is connected and what components 

are connected.  While BFS searches for discovered and undiscovered vertices across 

the breadth of the graph, DFS performs search along the graph depth.  Two minimum-

spanning tree (MST) determination algorithms for weighted graphs are Kruskal [18] 

and Prim [34].  Kruskal’s algorithm is based directly on the generic minimum-

spanning-tree algorithm to find a safe edge to the growing forest by finding and edge 

of the least weight.  Prim’s algorithm is a special case of the generic minimum-

spanning-tree algorithm and has the property that the edges in a set always form a 

single tree.  Dijkstra's algorithm [6] is a graph search algorithm that solves the single-

source shortest path problem for a graph with non-negative edge path costs, producing 

a shortest path tree and is often used in routing. It can also be used for finding costs of 

shortest paths from a single vertex to a single destination vertex. 

An approach to remove edge-node intersections for graphs with non-trivial node 

sizes using the force-scan (FS) algorithm has been proposed in [24].  This method 

integrates the force-scan algorithm and applies it successfully to prevent edge-node 

intersections and overlapping edges.  A new method for the analysis of the inter-

relation of clusters and levels, and their influence on edge crossings and cluster/edge 

crossings has been proposed [12].  It applies two-level crossing reduction algorithms 

for clustered level graphs and retains the optimality of a one-sided two-level crossing 

reduction algorithm.  To solve the problem of edge-node intersections, routing 

algorithms that originate in robot motion planning [25][26][30] have been proposed.  

They are designed for finding a shortest path between two specified points while 

avoiding intersections.  Applications such as Microsoft Visio [41] and Concept Draw 

[38] provide object-avoiding connector routing.   The routes are updated only after 

object movement has been completed rather than as the action is happening.  Another 

well-known library for edge routing in graph layout is the Spline-o-matic library 

developed for GraphViz [40].  This supports poly-line and Bezier curve edge routing.  

An algorithm that draws only the edges with fixed node positions and does not make 

any use of the layered structure is provided in [7].  It starts by drawing the edge as a 

direct line between the source node and the destination node and then re-routes the 

line away from the nodes that intersect with the line.  Another method for integration 

of edge-routing techniques into a force-directed layout is based on constrained stress 

majorisation [8]. It takes an initial layout for the graph, including poly-line paths for 

the edges, and improves this layout by moving the nodes to reduce stress and moving 

edge bend points to straighten the edges and reduce their overall length. Separation 

constraints between nodes and edge bend points are used to ensure that node labels do 

not overlap edges. 

 

 

 

 

 



3   E-Spring Algorithm 

E-Spring algorithm [20] was proposed to eliminate node overlaps in the drawing 

D(Gc) of clustered directed acyclic graphs (Gc), especially for labeled nodes with 

finite length string labels.  In this algorithm, nodes are modeled as unequally charged 

particles, with springs representing edges of the graph. The spring force is derived 

from the following force formula according to Hooke’s law: 

       Fs(d) = C1log(d/C2)           (1) 

where d is the spring length and C1 and C2 are constants.  The new electrostatic force 

generated between any two charged particles representing two connected nodes is 

derived from Coulomb’s law as follows:      

      Fc = kcq1q2/r
2               (2) 

 where q1 is the charge on one body, q2 is the charge on the other body, r is the 

distance between them, and kc is the Coulomb’s force constant.  The combination of 

Fs and Fc is the resultant force between two connected nodes.  Note that for each pair 

of non-connected nodes, the combined force is equal to Fc.  

 The magnitude of charges is obtained by calculating the weight associated with 

each source node. The force function calculated from the weights modeled on 

electrostatic charges eliminates node overlap.  The weight of each source node is 

determined by the number of sink nodes in its immediate vicinity, number of 

hierarchy levels in the tree, and a force scaling factor.  A classification mechanism 

identifies nodes as parents or children.  A parent node along with all its direct child 

leaf nodes constitutes a cluster ci.  A new force function based on the weights is 

applied and the additional displacement contributes to node overlap removal. The 

forces are applied to each node and the positions are updated accordingly.  The 

attractive forces on the springs and the repulsive forces between the positive charges 

act together to generate a drawing free of node overlaps.  A final layout is obtained 

with a locally minimum energy on the nodes when the total force on each node in |V| 

is zero.  Enhancements to this algorithm includes introduction of a ‘stop condition’ to 

reduce the overall size of DAGs leading to more efficient utilization of screen space, 

and ‘node-interleaving’ to remove any residual node overlaps [21].  E-Spring 

algorithm ensures that all node overlaps in a DAG are removed [22].  

 

E-Spring Algorithm 
input: a drawing D(GD) of clustered Gc(V,E) with overlapping nodes 

output :  a new drawing Dnew(Gc) with no node overlaps  

begin  

 mark parent nodes  pk 

 compute force factor f 

  for each subtree i = 0 to k do 

   compute weight Wi   

   calculate new forces Fnewi 

 move nodes based on minimum distance threshold δ and compute final layout  

 until stopping condition  

end 



4   Graph Visualization Methodology 

To visualize a given graph using the E-Spring layout algorithm, we first extract the 

underlying tree structure from the graph.  For this purpose, we utilize Breadth-First 

search (BFS) algorithm, because the derived tree is a ‘fat’ tree [27] that can used for 

generating tree clusters.  A fat tree becomes fatter as one moves up the tree towards 

the root, so a parent node has more children in its vicinity to form clusters.  Section 

4.1 presents the clustered graph model.  Section 4.2 describes the tree extraction 

method.  An edge routing method that removes unnecessary edge-node intersections 

as the 4th step of our approach is described in Section 4.3.  

4.1  Clustered Graph Model  

Our clustered graph model is built on its own backbone tree T derived from the 

existing graph structure. This backbone tree T is a spanning tree which is extracted 

through the implementation of a Breadth-First-Search (BFS) algorithm. 

 

Definition 1: Consider a graph G(V, E) with a set of nodes V = { v1,v2,…,vn}, and the 

set of edges E ⊆  V x V.  A spanning tree T(Vt, Et, r) obtained through the BFS on G 

contains edges in Et.  A set of unreachable edges that are not included in T is 

contained in E’ = E - Et.  

 

Definition 2: Consider a graph G(V, E) with a set of nodes V = {v1,v2,…,vn}, and the 

set of edges E ⊆  V x V.  The BFS algorithm expands node exploration uniformly 

across the breadth of the graph; a parent node
 
v

p
 in Vt of the spanning tree T has a set 

of direct child leaf nodes L r ⊂  Vi in its immediate vicinity.  A parent node together 

with all its direct child leaf nodes forms a cluster ci = {v
p
, Li}, where v

p
 is a parent 

node of all children in Li. 

 
 

Definition 3: A clustered graph GC(C, V’, E’) consists of a set of clusters C = {c1, c2, 

…ck} that are derived from the spanning tree T extracted from G as defined above, a 

set of non-tree nodes V’ and a set of non-tree edges E’.     

4.2  Tree Extraction  

E-Spring algorithm [20][21][22] works well with graphs that follow a clustered tree 

structure, where a parent node has many child nodes in its vicinity to form clusters, 

and nodes have finite length string labels.   For the purpose of using E-Spring 

algorithm for graph visualization, the method we choose for tree extraction has to 

produce fat trees [27].  A fat tree becomes fatter as one moves up the tree towards the 

root, so a parent node can have more direct child nodes.   We therefore choose the 

graph search algorithm breadth-first search (BFS) that begins at the root node and 

explores all the neighboring nodes.  Then for each of those nearest nodes, it explores 

their unexplored neighbor nodes and so on, until it finds the shortest path and 

generates a minimum spanning tree ‘T’ starting from the root node.  Depth-first 



search (DFS) is another algorithm for graph traversal that starts at the root and 

explores as far as possible along each branch before backtracking.  But this method 

does not produce fat trees.  

Extraction of the tree is performed using the BFS method.  Breadth-First search 

(BFS) is a graph traversal algorithm that can be used to find connected components in 

a graph.  Given a graph G = (V, E) and a distinguished source vertex ‘s’, BFS 

explores the edges of G to “discover” every vertex that is reachable from ‘s’ by 

computing the distance (smallest number of edges) from ‘s’ to each reachable vertex 

[3].  The algorithm is given below: 

 

BFS(G,s)  

     unmark all vertices in G 

     choose some starting vertex ‘s’ as root node 

     mark ‘s’ 

     Enqueue(Q,s) 

     T  ← s  

     while Q non-empty 

       choose some vertex ‘v’ from beginning of queue 

        visit ‘v’ 

        for each unmarked neighbor ‘w’ 

           mark ‘w’ 

           Enqueue(Q,w),   

   T   ←     vw 

 

 

 

BFS generates a spanning tree T with root r that contains all reachable vertices.  The 

breadth first search tree T is the shortest path tree starting from its root r.  

Using E-Spring layout algorithm, the extracted spanning tree T can be visualized 

with the elimination of node overlaps.  The missing non-tree nodes in V’ and edges in 

E’ are then be appended to the visualization.  Each edge is drawn as a straight line 

connecting the centers of the two nodes it links.  The resultant visualization thus 

contains all nodes and edges from the initial graph G.  To improvise the obtained 

layouts, we aim to remove residual edge-node intersections.   

4.3  Removing Edge-Node Intersections  

Typically, the drawing of a graph is accompanied by optimizing some cost function 

such as area, number of bends, number of edge crossings, uniformity in the placement 

of vertices, minimum angle etc. [33].   Computation of an aesthetic cost of a drawing 

involves node overlaps, and edge-node intersections [1].  We aim to minimize this 

cost by removing both node overlaps and edge-node intersections.  The visualizations 

obtained after applying the E-Spring algorithm do not contain node overlaps, but 

suffer from intersections between edges and nodes, which greatly hinder readability 

of node labels.  To remove these edge-node intersections, we apply edge routing on 



these layouts as a post-processing step.  For edge routes in a graph layout, several 

relevant readability [24] criteria are: 

• Minimizing the number of edge bends 

• Minimizing the total length of edges   

• Minimizing the number of edge crossings  

Our clustered graph model is built on its own backbone tree T derived from the 

existing graph structure. This backbone tree T is a spanning tree which is extracted 

through the implementation of a Breadth-First-Search (BFS) algorithm. 

‘Orthogonal edge routing’ was implemented for removing edge-node intersections 

in graphs with non-uniform nodes of finite length [24].  Since E-Spring algorithm 

works well with node labels of finite string label length, we aim to implement 

orthogonal edge routing for the obtained visualizations from Section 4.1.  In this type 

of edge routing, a diagram's edges are routed using vertical and horizontal line 

segments only.  An example of orthogonal edge routing is shown in Fig. 1a, b.  Fig. 

1a shows the actual edge-node intersection between edge e(a,c) and node ‘b’ before 

re-routing.  If an algorithm for orthogonal routing drawings is chosen, the output is 

shown in Fig. 1b with removal of the intersection.   

 

 

b

c

a

   

b

c

a

 
 
 
 
 

     (a) Before Rerouting     (b) After Orthogonal Routing 

Fig. 1. Orthogonal Edge Routing. 

 

For performing the post-processing step, we utilized ‘yFiles’ Graph Layout Library 

available from yWorks [42].  Automatic edge routing is provided by 

‘OrthogonalEdgeRouter’ which is a versatile and powerful layout algorithm.  This 

tool also reduces the total number of edge crossings.  We captured individual node, 

edge information such as node graphical position co-ordinates (X,Y) and edge 

connections from the obtained visualization data structure. Since ‘yFiles’ Library has 

a ‘graphml’ interface, we inserted the retrieved node, edge information for the 

visualization into a graphml file.  This file was then loaded into the orthogonal edge 

routing application to remove edge-node intersections. 

 



5   Implementation/Experimental Results 

We have implemented the graph visualization method using E-Spring algorithm 

presented in Section 4 for eBay data and graph benchmark data. In this 

implementation, graph G = (V, E) has the following parameters: 

•  Total number of nodes 1 ≤  |N|  ≤  100 

•  Individual node label string length 3 ≤  S ≤  10 

Input data for this implementation came from the following sources: 

• eBay buyer/seller relationships obtained from eBay [19], where user-name 

string length ‘S’ is chosen from the following two cases: i) S = 3  ii) S = 10. 

• Graph catalog benchmark data (AT & T graphs) obtained from the Graph 

drawing Web site [39] for the following three cases: i) |N| = 60, S = 10, rn = 

9 ii) |N| = 60, S = 10, rn = 39 iii) |N| = 100, S = 10.   

The Breadth-First search (BFS) algorithm presented in Section 4.2 was 

implemented using the Java programming language.  The 4
th
 step for edge routing 

presented in Section 4.3 was implemented using the ‘yFiles’ Graph Layout Library 

from yWorks [42].  The implementation results for the above cases are presented in 

this section.  

5.1  eBay Data  

We plotted the social network graph G(V, E) extracted from eBay [19].  eBay 

customer data for various buyers and sellers was mined from its production 

environment using the Web services API.  The buyer-seller interaction was captured 

by the social network graph.  The graph has total number of nodes |N| = 30, number 

of edges |E| = 41.  This graph is depicted in Fig. 2a.  The java code of the BFS 

algorithm was implemented on this graph with chosen root node rn = 5 (highlighted in 

yellow), and the corresponding tree ‘T’ extracted is depicted in Fig. 2b. 
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Fig. 2.  eBay Data Graph and extracted tree structure. 

 
 

 Fig. 3a, b depict screenshots of the tree visualization obtained using E-Spring 

algorithm, for Case 1: S = 3.  Fig. 4a, b depict screenshots of the same for Case 2: S = 

10.  Fig. 3a, 4a represent extracted tree T while Fig. 3b, 4b represent screenshots after 

non-tree tree edges contained in E’ were appended to the visualizations in Fig. 3a, 4a.  

Fig. 3c, 4c depict screenshots after 4
th
 step using orthogonal edge routing method was 

applied to remove the edge-node intersections. 

 

 
 

    
a) b) 

 



 

 

 

 
c) 

Fig. 3.  eBay data Case ‘1’  |N| = 30, |E| = 41, S = 3. 
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c) 

Fig. 4.  eBay data Case ‘2’ |N| = 30, |E| = 41, S = 10. 

5.2  Graph Catalog Data (AT & T Graphs)  

To validate our method, we implemented graph benchmark data using bigger graphs 

containing higher number of nodes.  The data files i) “graph ug_97” with |N| = 60 and 

ii) “graph ug_379” with |N| = 100 were downloaded from “ug.gz” zip file available 

on the graph drawing Web site [39].  Since E-Spring algorithm removes node 

overlaps especially for nodes of longer string label length, we implemented the 

downloaded AT & T graph structures for string label length S = 10.   

 BFS method extracts a spanning tree starting with a root node.  The choice of this 

node can possibly generate different trees and visualization layouts.  We consider two 

different root nodes based on the node degree.  Fig. 5a, b shows the graph and 

extracted tree T respectively for Case 3 i) with selected root node rn =  9.  This node 

has the highest node degree ND = 16.  Fig. 6 represents tree T for Case 3 ii) with 

selected root node '39'.  This node has the lowest node degree of ND = 7.  Fig. 7a, b, c 

depict screenshots of the visualization obtained using E-Spring algorithm, for Case 

3i): |N| = 60, rn = 9.  Fig. 8a, b, c depict visualization screenshots for Case 3ii): |N| = 

60, rn =39.  Fig. 9a, b, c depict visualization screenshots for Case 4: |N| = 100.  Fig. 

7b, 8b, 9b are screenshots with non-tree tree edges contained in E’ appended to the 

visualization in Fig. 7a, 8a, 9a.  Fig. 7c, 8c, 9c depict screenshots after 4
th
 step using 

orthogonal edge routing was applied to remove edge-node intersections. 

 



 
 

1

3

45

6

7

0

2

8

11

12

13

14
15

16

17

18

19
20

10

21
22

9

27

28 29

30

31

32

23

33

34

35
24

36

37

38

26 54
55

56

57

58

59
60

39

41

42

43

44

45

46

47
48

49

50

51

52

53

40

 
a) 

 

 
 
 
 

0 39 40

54 55 56 57 58 592 1 3 4 5 6
60 50 51 52 53

10

42 43 44 45 46 47 48 4941

8

12 13 14 15 16 17 18 1911 20 21 22

9

7 26 34 27 23 28 29 30 31 32 33 244 35 36 37 38

b)  

Fig. 5.  Catalog data graph and extracted tree structure for Case ‘3 i)’. 
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c) 

Fig. 7.  Catalog data graph Case ‘3 i)’ |N| = 60, |E| = 59, S = 10, Root node (rn) = 9. 
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c) 

Fig. 8.  Catalog data graph Case ‘3 ii)’ |N| = 60, |E| = 59, S = 10, Root node (rn) = 39.   
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c) 

Fig. 9.  Catalog data graph ‘Case ‘4’  |N| = 100, |E| = 250, S = 10. 

5.3   Observations 

For each of the above implemented cases, we retrieved information about node 

traversal in the graph for BFS algorithm, extracted tree T, a set of non-tree edges E’, 

depth of the tree ‘DT’, and number of edge-node intersections in the drawing before 

the 4th step.  This data is depicted in Table 1.  We also measured overall bounding 

areas of graph visualizations before and after post-processing.  Area measurements 

(pixels
2
) are depicted in Table 2.  For our plots and measurements, we use 

terminology “Implementation Data source” 1, 2, 3, 4, 5 respectively for the five 

implemented cases a) eBay data Case 1, b) eBay data Case 2,  c) Graph Catalog 

benchmark data Case 3 i), d) Graph Catalog benchmark data Case 3 ii), and e) Graph 

Catalog benchmark data Case 4.  We have observed that as the graph size increases, 

the extracted tree size, the number of non-tree edges, the depth of the tree and the 

number of edge-node intersections also increase proportionately for all the five data 



sources.  This is due to the presence of larger number of nodes and edges in the input 

graphs.  These measurements are depicted as plotted curves in Fig. 10.  

We observed that the choice of the source root node (rn) affects the tree depth, 

number of edge-node intersections, and the overall graph area.  When source node 

with the highest node degree is chosen (rn = 9) in Case 3 i), the extracted tree depth is 

lower (DT = 5) so more children are present for every parent node in each cluster.  The 

corresponding tree structure has higher tree depth (DT = 7) when source node with 

lowest node degree is chosen (rn = 39) in Case 3 ii).  After missing edges are 

appended, the obtained visualizations indicate the presence of higher number of edge-

node intersections (18) for Case 3 ii) with lowest degree source root node (rn = 39).  

The higher depth of the tree also causes the overall graph area to increase by 20% for 

Case 3 ii) for Graph Catalog data with lowest degree source root node (rn = 39).  

Hence, the selection of the highest degree node as the starting node for breadth-first 

search (BFS) algorithm produces better visualizations for our method. 

After the 4th step of our approach, we observed that the obtained visualizations 

have greater area for nodes with longer string labels (S = 10) and larger graphs (|N| = 

60, |N| = 100).  This is because smaller label size nodes contain more in-between 

node gaps for performing orthogonal edge routing internally as compared to longer 

label size nodes. For nodes with longer string label lengths, the edge route sometimes 

has to be re-routed externally causing an increase in the graph area. Area 

measurement curves are plotted in Fig. 11.  A trade-off exists between removal of 

edge-node intersections and graph area reduction with our method, especially for 

larger graphs with greater label sized nodes.  From the obtained layout visualizations 

we observed that no node overlaps occurred in spanning trees drawn by E-Spring 

algorithm.  The 4th step preserves the mental map, since the node positions were 

captured from the obtained visualization.  We also observe that after the 4th step, all 

edge-node intersections in graph layouts have been removed. 
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Fig. 10.  Attribute values of extracted tree. 

 



Table 1. Data Attributes of Extracted Tree Structure. 

Data 
Source 

 
Extracted 
tree 

size  

Non-
tree 

edges 
Tree 
Depth 

Edge-node 
intersections 

1 30 11 4 7 

2 30 11 4 12 

3 60 5 5 15 

4 60 5 7 18 

5 100 150 10 62 
 

   
 
 
 

Table 2. Graph Area Measurements. 

Data 
Source 

Area 
before 
post-

processing 

Area after 
post-

processing 

1 101775 101775 

2 155800 171000 

3 534435 562275 

4 671824 704740 

5 870499 900467 
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 Fig. 11.  Area sizes before and after post-processing. 

 



6   Conclusion 

E-Spring algorithm was proposed to draw clustered directed acyclic graphs (DAGs), 

and uses physical properties of electric charges and spring constants to remove 

overlaps between node labels.  Since DAGs are only a subset of graphs, we apply E-

Spring algorithm to include general graphs.  The usefulness of a graph drawing 

depends on its readability, which is the capability of conveying the meaning of a 

diagram quickly and clearly.  Readability issues are expressed by aesthetics such as 

minimization of crossings among edges and nodes, and removal of node overlaps.  

Our clustering structure of the graph is built on its own backbone tree derived from 

the existing graph structure. This backbone tree T is a spanning tree which is extracted 

through the implementation of breadth-first-search algorithm. The E-Spring algorithm 

guarantees that the visualized tree is free of node overlaps.  We further improved 

graph readability by removing residual edge-node crossings using the edge routing 

method after the non-tree edges are inserted.  The choice of the root node with the 

highest node degree for breadth-first search (BFS) algorithm results in better 

visualizations.  Implementation was performed on eBay data and Graph catalog 

benchmark data with varying graph sizes, nodes with varying label string lengths, 

different source node selections and our experimental visualization results are 

promising. The resultant graph layouts are free of node overlaps and edge-node 

intersections.  Future work includes enhancing E-Spring algorithm to accept input 

graphs for visualization, aesthetic comparisons for various graphs, and improving the 

quality of  resultant drawings for large graphs.  
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