
From Tree to Graph - Experiments with E-Spring

Algorithm

Pushpa Kumar
1
, Kang Zhang

1
, and Mao Lin Huang

2

1 University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75063, USA

{pkumar, kzhang}@utdallas.edu

 2 University of Technology, PO Box 123, Broadway NSW 2007, Sydney, Australia

{maolin}@ it.uts.edu.au

Abstract. Graph drawing and visualization represent structural information as

diagrams of abstract graphs and networks. E-Spring Algorithm, derived from

the popular spring embedder model, was proposed to eliminate node overlaps in

the drawings of clustered directed acyclic graphs Gc. In this paper, we apply

the E-Spring algorithm to general graphs by minimizing edge-node

intersections. Initially, a tree structure is extracted from the original graph

using the breadth-first search (BFS) algorithm. The extracted tree is then

visualized without node overlaps using the E-Spring algorithm, and the

remaining non-tree edges are appended to this visualization. A post-processing

step that implements edge routing is performed on the obtained visualization to

eliminate residual edge-node intersections. This method has been validated by

visualizing eBay buyer-seller relationships and Graph Catalog benchmarking

data.

Keywords: node overlaps, edge-node intersections, edge routing, graph

visualization

1 Introduction

Graph visualization is an area of extensive research in recent years. Applications

of graph visualization include genealogy, cartography, sociology, software

engineering, VLSI design, and visual analysis. Cluttered drawings of graphs

generally produce undesirable visual presentation that could increase the cognitive

overhead in understanding of the structural information. Various criteria for

determining the graph quality have been proposed [2][16][35]. A graph drawing is

sometimes measured by how well it meets the following aesthetic criteria

[29][32][37]:

• Minimization of edge crossings.

• Minimization of edge-node intersections: Edges should not intersect with

finite-size labeled nodes.

• Symmetry: Nodes should be sufficiently far apart from their nearest neighbor

to be easily distinguished and to avoid occlusion.

• Readability: Labels must have legible sizes.

• Minimization of area: Visual space is often at a premium and reducing the

overall area of the bounding box of the graph is often desirable.

• Avoidance of Overlap: Labels should not overlap with other labels or other

graphical features.

Various algorithms [2][14][15][16][23][29] have been proposed for removing node

overlaps in graphs. Being most widely used, Spring algorithms [9] are a class of

algorithms for drawing graphs in an aesthetically pleasing way by positioning the

nodes of a graph in two or three dimensional space so that all the edges are of more or

less equal length, and there are as few crossing edges as possible. They assign forces

as if the edges were springs following Hooke's law, the forces are applied to the

nodes, pulling them closer together or pushing them further apart. At equilibrium,

node overlap is gradually reduced [14][29][36]. Spring algorithms are regarded as

effective tools for visualizing undirected graphs.

E-Spring algorithm [20] derived from the popular spring embedder model [9] was

proposed to eliminate node overlaps in clustered directed acyclic graphs (DAGs). A

combination of spring and electrostatic forces act on the physical system to remove

node overlaps at equilibrium. E-Spring algorithm uses animation for drawing

clustered DAGs to preserve the user’s mental map [11]. Enhancements to this

algorithm include determination of a stop condition that utilizes graph geometry to

determine an upper bound on graph expansion during animated drawing. DAG

expansion automatically stops when this condition is met. This minimizes the overall

area of the DAG visualization and leads to effective utilization of screen space.

Further optimization of this algorithm includes performing node interleaving in the

top and bottom DAG cluster regions to remove residual node overlaps particularly

effective for graphs with long node labels [21]. E-Spring algorithm ensures removal

of all node overlaps [22].

Graphs have been extensively used to represent various important concepts or

objects. A graph is generally drawn or represented in the plane so that we can

understand and study its structure and properties [33]. Directed acyclic graphs

(DAGs) are an important subset of graphs, and have been used to visualize various

eBusiness and other applications [17][28]. It is essential that E-Spring algorithm can

not only visualize graph subsets but also graphs in general. The usefulness of a graph

drawing depends on its readability [1]. In this paper, we apply the E-Spring

algorithm to visualize graphs without node overlaps and edge-node intersections. The

new method consists of the following four steps:

1. One or more trees are extracted from a given input graph using the graph

traversal algorithm, breadth-first search (BFS) [3].

2. The extracted trees are visualized using the E-Spring algorithm, which

removes all node overlaps.

3. Non-tree edges (that are not traversed by BFS algorithm) are then appended to

the visualization so that the whole graph structure can be visualized.

4. An edge routing procedure is performed to remove any residual edge-node

intersections.

The proposed method greatly improves the readability of node labels in the graph

layouts. We evaluate our method by visualizing eBay social network data and Graph

Catalog benchmark data. Using our method, all node overlaps and edge-node

intersections are removed in the obtained final layouts.

 The rest of this paper is organized as follows. Section 2 describes related work.

Section 3 presents details of the E-Spring algorithm. Section 4 describes our method

for visualizing graphs which includes the clustered graph model, tree extraction, and

removing edge-node intersections. Section 5 provides details of our implementation

and experimental results. Finally, a conclusion is given in Section 6.

2 Related Work

We review related work on visualization of graphs without node overlap and edge-

node intersections, tree search and retrieval algorithms, and edge routing in layouts

that served as a motivation for this paper. The family of spring algorithms was

developed for adjusting cluttered graphs without node overlaps, and includes force

scan (FS) [23], force transfer (FT) [14], dynamic natural length spring (DNLS) and

orthogonal dynamic natural length spring (ODNLS) [29]. The Force-scan method

(FS) scans in both the horizontal and vertical directions of a graph to find overlapping

nodes and uses a force along the line connecting the center of two overlapping nodes

in an iterative fashion to remove node overlaps. In Force-transfer method (FT), forces

are applied with left-to-right and top-to-bottom scans, and some nodes are moved

either horizontally or vertically. Outputs using FS method have smaller area than

those of FT. Dynamic natural length spring (DNLS) and orthogonal dynamic natural

length spring (ODNLS) modify attractive and/or repulsive spring forces between

nodes to achieve node overlap removal. Both DNLS and ODNLS have a better

performance than FS and FT in terms of aesthetic criteria such as display symmetry

and uniform edge. A fast algorithm (FADE) for two dimensional drawing, geometric

clustering and multilevel viewing of large undirected graphs is presented in [36]. The

decomposition tree provides a systematic way to determine the degree of closeness

between nodes without explicitly calculating the distance between each node. For

large clustered undirected graphs, three types of spring forces - internal spring,

external spring and virtual spring that operate between the vertices of a graph are

defined for the navigation and visualization of these graphs [10]. In addition to spring

forces, there are gravitational repulsion forces between all nodes.

A general framework called “User Hints” treats the map labeling processes as an

optimization task and supports human interaction along with automated methods [32].

Simulated annealing (SA) is a flexible optimization method and solves the problem of

drawing nice-looking undirected straight-line graphs without node overlaps. The SA

method uses rules that are derived from an analogy to the process in which liquids are

cooled to a crystalline form, a process called annealing [5]. A three-dimensional

system based on the simulated annealing algorithm extends straight-line two-

dimensional drawings of general undirected graphs to three dimensions [4]. This

system features an advanced 3D user interface that assists the user in choosing and

modifying the cost function and the optimization components on-line. Various

approaches for removing node overlapping based on constrained optimization

techniques are proposed in [31]. These include minimal linear scaling, formulating the

node overlapping problem as a convex quadratic programming problem to be solved

by any quadratic solver, local search methods based on adaptation of the EGENET

solver, and form of Lagrangian multiplier method.

Graph theory algorithms such as Breadth-first search (BFS) and Depth-first search

(DFS) efficiently search a given unweighted graph beginning with any source vertex

[3]. They can used to determine whether a graph is connected and what components

are connected. While BFS searches for discovered and undiscovered vertices across

the breadth of the graph, DFS performs search along the graph depth. Two minimum-

spanning tree (MST) determination algorithms for weighted graphs are Kruskal [18]

and Prim [34]. Kruskal’s algorithm is based directly on the generic minimum-

spanning-tree algorithm to find a safe edge to the growing forest by finding and edge

of the least weight. Prim’s algorithm is a special case of the generic minimum-

spanning-tree algorithm and has the property that the edges in a set always form a

single tree. Dijkstra's algorithm [6] is a graph search algorithm that solves the single-

source shortest path problem for a graph with non-negative edge path costs, producing

a shortest path tree and is often used in routing. It can also be used for finding costs of

shortest paths from a single vertex to a single destination vertex.

An approach to remove edge-node intersections for graphs with non-trivial node

sizes using the force-scan (FS) algorithm has been proposed in [24]. This method

integrates the force-scan algorithm and applies it successfully to prevent edge-node

intersections and overlapping edges. A new method for the analysis of the inter-

relation of clusters and levels, and their influence on edge crossings and cluster/edge

crossings has been proposed [12]. It applies two-level crossing reduction algorithms

for clustered level graphs and retains the optimality of a one-sided two-level crossing

reduction algorithm. To solve the problem of edge-node intersections, routing

algorithms that originate in robot motion planning [25][26][30] have been proposed.

They are designed for finding a shortest path between two specified points while

avoiding intersections. Applications such as Microsoft Visio [41] and Concept Draw

[38] provide object-avoiding connector routing. The routes are updated only after

object movement has been completed rather than as the action is happening. Another

well-known library for edge routing in graph layout is the Spline-o-matic library

developed for GraphViz [40]. This supports poly-line and Bezier curve edge routing.

An algorithm that draws only the edges with fixed node positions and does not make

any use of the layered structure is provided in [7]. It starts by drawing the edge as a

direct line between the source node and the destination node and then re-routes the

line away from the nodes that intersect with the line. Another method for integration

of edge-routing techniques into a force-directed layout is based on constrained stress

majorisation [8]. It takes an initial layout for the graph, including poly-line paths for

the edges, and improves this layout by moving the nodes to reduce stress and moving

edge bend points to straighten the edges and reduce their overall length. Separation

constraints between nodes and edge bend points are used to ensure that node labels do

not overlap edges.

3 E-Spring Algorithm

E-Spring algorithm [20] was proposed to eliminate node overlaps in the drawing

D(Gc) of clustered directed acyclic graphs (Gc), especially for labeled nodes with

finite length string labels. In this algorithm, nodes are modeled as unequally charged

particles, with springs representing edges of the graph. The spring force is derived

from the following force formula according to Hooke’s law:

 Fs(d) = C1log(d/C2) (1)

where d is the spring length and C1 and C2 are constants. The new electrostatic force

generated between any two charged particles representing two connected nodes is

derived from Coulomb’s law as follows:

 Fc = kcq1q2/r
2 (2)

 where q1 is the charge on one body, q2 is the charge on the other body, r is the

distance between them, and kc is the Coulomb’s force constant. The combination of

Fs and Fc is the resultant force between two connected nodes. Note that for each pair

of non-connected nodes, the combined force is equal to Fc.

 The magnitude of charges is obtained by calculating the weight associated with

each source node. The force function calculated from the weights modeled on

electrostatic charges eliminates node overlap. The weight of each source node is

determined by the number of sink nodes in its immediate vicinity, number of

hierarchy levels in the tree, and a force scaling factor. A classification mechanism

identifies nodes as parents or children. A parent node along with all its direct child

leaf nodes constitutes a cluster ci. A new force function based on the weights is

applied and the additional displacement contributes to node overlap removal. The

forces are applied to each node and the positions are updated accordingly. The

attractive forces on the springs and the repulsive forces between the positive charges

act together to generate a drawing free of node overlaps. A final layout is obtained

with a locally minimum energy on the nodes when the total force on each node in |V|

is zero. Enhancements to this algorithm includes introduction of a ‘stop condition’ to

reduce the overall size of DAGs leading to more efficient utilization of screen space,

and ‘node-interleaving’ to remove any residual node overlaps [21]. E-Spring

algorithm ensures that all node overlaps in a DAG are removed [22].

E-Spring Algorithm
input: a drawing D(GD) of clustered Gc(V,E) with overlapping nodes

output : a new drawing Dnew(Gc) with no node overlaps

begin

 mark parent nodes pk

 compute force factor f

 for each subtree i = 0 to k do

 compute weight Wi

 calculate new forces Fnewi

 move nodes based on minimum distance threshold δ and compute final layout

 until stopping condition

end

4 Graph Visualization Methodology

To visualize a given graph using the E-Spring layout algorithm, we first extract the

underlying tree structure from the graph. For this purpose, we utilize Breadth-First

search (BFS) algorithm, because the derived tree is a ‘fat’ tree [27] that can used for

generating tree clusters. A fat tree becomes fatter as one moves up the tree towards

the root, so a parent node has more children in its vicinity to form clusters. Section

4.1 presents the clustered graph model. Section 4.2 describes the tree extraction

method. An edge routing method that removes unnecessary edge-node intersections

as the 4th step of our approach is described in Section 4.3.

4.1 Clustered Graph Model

Our clustered graph model is built on its own backbone tree T derived from the

existing graph structure. This backbone tree T is a spanning tree which is extracted

through the implementation of a Breadth-First-Search (BFS) algorithm.

Definition 1: Consider a graph G(V, E) with a set of nodes V = { v1,v2,…,vn}, and the

set of edges E ⊆ V x V. A spanning tree T(Vt, Et, r) obtained through the BFS on G

contains edges in Et. A set of unreachable edges that are not included in T is

contained in E’ = E - Et.

Definition 2: Consider a graph G(V, E) with a set of nodes V = {v1,v2,…,vn}, and the

set of edges E ⊆ V x V. The BFS algorithm expands node exploration uniformly

across the breadth of the graph; a parent node

v

p
 in Vt of the spanning tree T has a set

of direct child leaf nodes L r ⊂ Vi in its immediate vicinity. A parent node together

with all its direct child leaf nodes forms a cluster ci = {v
p
, Li}, where v

p
 is a parent

node of all children in Li.

Definition 3: A clustered graph GC(C, V’, E’) consists of a set of clusters C = {c1, c2,

…ck} that are derived from the spanning tree T extracted from G as defined above, a

set of non-tree nodes V’ and a set of non-tree edges E’.

4.2 Tree Extraction

E-Spring algorithm [20][21][22] works well with graphs that follow a clustered tree

structure, where a parent node has many child nodes in its vicinity to form clusters,

and nodes have finite length string labels. For the purpose of using E-Spring

algorithm for graph visualization, the method we choose for tree extraction has to

produce fat trees [27]. A fat tree becomes fatter as one moves up the tree towards the

root, so a parent node can have more direct child nodes. We therefore choose the

graph search algorithm breadth-first search (BFS) that begins at the root node and

explores all the neighboring nodes. Then for each of those nearest nodes, it explores

their unexplored neighbor nodes and so on, until it finds the shortest path and

generates a minimum spanning tree ‘T’ starting from the root node. Depth-first

search (DFS) is another algorithm for graph traversal that starts at the root and

explores as far as possible along each branch before backtracking. But this method

does not produce fat trees.

Extraction of the tree is performed using the BFS method. Breadth-First search

(BFS) is a graph traversal algorithm that can be used to find connected components in

a graph. Given a graph G = (V, E) and a distinguished source vertex ‘s’, BFS

explores the edges of G to “discover” every vertex that is reachable from ‘s’ by

computing the distance (smallest number of edges) from ‘s’ to each reachable vertex

[3]. The algorithm is given below:

BFS(G,s)

 unmark all vertices in G

 choose some starting vertex ‘s’ as root node

 mark ‘s’

 Enqueue(Q,s)

 T ← s

 while Q non-empty

 choose some vertex ‘v’ from beginning of queue

 visit ‘v’

 for each unmarked neighbor ‘w’

 mark ‘w’

 Enqueue(Q,w),

 T ← vw

BFS generates a spanning tree T with root r that contains all reachable vertices. The

breadth first search tree T is the shortest path tree starting from its root r.

Using E-Spring layout algorithm, the extracted spanning tree T can be visualized

with the elimination of node overlaps. The missing non-tree nodes in V’ and edges in

E’ are then be appended to the visualization. Each edge is drawn as a straight line

connecting the centers of the two nodes it links. The resultant visualization thus

contains all nodes and edges from the initial graph G. To improvise the obtained

layouts, we aim to remove residual edge-node intersections.

4.3 Removing Edge-Node Intersections

Typically, the drawing of a graph is accompanied by optimizing some cost function

such as area, number of bends, number of edge crossings, uniformity in the placement

of vertices, minimum angle etc. [33]. Computation of an aesthetic cost of a drawing

involves node overlaps, and edge-node intersections [1]. We aim to minimize this

cost by removing both node overlaps and edge-node intersections. The visualizations

obtained after applying the E-Spring algorithm do not contain node overlaps, but

suffer from intersections between edges and nodes, which greatly hinder readability

of node labels. To remove these edge-node intersections, we apply edge routing on

these layouts as a post-processing step. For edge routes in a graph layout, several

relevant readability [24] criteria are:

• Minimizing the number of edge bends

• Minimizing the total length of edges

• Minimizing the number of edge crossings

Our clustered graph model is built on its own backbone tree T derived from the

existing graph structure. This backbone tree T is a spanning tree which is extracted

through the implementation of a Breadth-First-Search (BFS) algorithm.

‘Orthogonal edge routing’ was implemented for removing edge-node intersections

in graphs with non-uniform nodes of finite length [24]. Since E-Spring algorithm

works well with node labels of finite string label length, we aim to implement

orthogonal edge routing for the obtained visualizations from Section 4.1. In this type

of edge routing, a diagram's edges are routed using vertical and horizontal line

segments only. An example of orthogonal edge routing is shown in Fig. 1a, b. Fig.

1a shows the actual edge-node intersection between edge e(a,c) and node ‘b’ before

re-routing. If an algorithm for orthogonal routing drawings is chosen, the output is

shown in Fig. 1b with removal of the intersection.

b

c

a

b

c

a

 (a) Before Rerouting (b) After Orthogonal Routing

Fig. 1. Orthogonal Edge Routing.

For performing the post-processing step, we utilized ‘yFiles’ Graph Layout Library

available from yWorks [42]. Automatic edge routing is provided by

‘OrthogonalEdgeRouter’ which is a versatile and powerful layout algorithm. This

tool also reduces the total number of edge crossings. We captured individual node,

edge information such as node graphical position co-ordinates (X,Y) and edge

connections from the obtained visualization data structure. Since ‘yFiles’ Library has

a ‘graphml’ interface, we inserted the retrieved node, edge information for the

visualization into a graphml file. This file was then loaded into the orthogonal edge

routing application to remove edge-node intersections.

5 Implementation/Experimental Results

We have implemented the graph visualization method using E-Spring algorithm

presented in Section 4 for eBay data and graph benchmark data. In this

implementation, graph G = (V, E) has the following parameters:

• Total number of nodes 1 ≤ |N| ≤ 100

• Individual node label string length 3 ≤ S ≤ 10

Input data for this implementation came from the following sources:

• eBay buyer/seller relationships obtained from eBay [19], where user-name

string length ‘S’ is chosen from the following two cases: i) S = 3 ii) S = 10.

• Graph catalog benchmark data (AT & T graphs) obtained from the Graph

drawing Web site [39] for the following three cases: i) |N| = 60, S = 10, rn =

9 ii) |N| = 60, S = 10, rn = 39 iii) |N| = 100, S = 10.

The Breadth-First search (BFS) algorithm presented in Section 4.2 was

implemented using the Java programming language. The 4
th
 step for edge routing

presented in Section 4.3 was implemented using the ‘yFiles’ Graph Layout Library

from yWorks [42]. The implementation results for the above cases are presented in

this section.

5.1 eBay Data

We plotted the social network graph G(V, E) extracted from eBay [19]. eBay

customer data for various buyers and sellers was mined from its production

environment using the Web services API. The buyer-seller interaction was captured

by the social network graph. The graph has total number of nodes |N| = 30, number

of edges |E| = 41. This graph is depicted in Fig. 2a. The java code of the BFS

algorithm was implemented on this graph with chosen root node rn = 5 (highlighted in

yellow), and the corresponding tree ‘T’ extracted is depicted in Fig. 2b.

5

2 4

1

0

8

9

3

25 26 27

6

22 24 28

7

21

22

23

15

1011

16 17

14

13

18

19
20

29 30
 a)

5

0 1 2 4 8 9

15 18 7 26 3 6 25 10 11 12 13 14

24 20 21 22 23 27 28 16 17 19

3029

b)

Fig. 2. eBay Data Graph and extracted tree structure.

 Fig. 3a, b depict screenshots of the tree visualization obtained using E-Spring

algorithm, for Case 1: S = 3. Fig. 4a, b depict screenshots of the same for Case 2: S =

10. Fig. 3a, 4a represent extracted tree T while Fig. 3b, 4b represent screenshots after

non-tree tree edges contained in E’ were appended to the visualizations in Fig. 3a, 4a.

Fig. 3c, 4c depict screenshots after 4
th
 step using orthogonal edge routing method was

applied to remove the edge-node intersections.

a) b)

c)

Fig. 3. eBay data Case ‘1’ |N| = 30, |E| = 41, S = 3.

a) b)

c)

Fig. 4. eBay data Case ‘2’ |N| = 30, |E| = 41, S = 10.

5.2 Graph Catalog Data (AT & T Graphs)

To validate our method, we implemented graph benchmark data using bigger graphs

containing higher number of nodes. The data files i) “graph ug_97” with |N| = 60 and

ii) “graph ug_379” with |N| = 100 were downloaded from “ug.gz” zip file available

on the graph drawing Web site [39]. Since E-Spring algorithm removes node

overlaps especially for nodes of longer string label length, we implemented the

downloaded AT & T graph structures for string label length S = 10.

 BFS method extracts a spanning tree starting with a root node. The choice of this

node can possibly generate different trees and visualization layouts. We consider two

different root nodes based on the node degree. Fig. 5a, b shows the graph and

extracted tree T respectively for Case 3 i) with selected root node rn = 9. This node

has the highest node degree ND = 16. Fig. 6 represents tree T for Case 3 ii) with

selected root node '39'. This node has the lowest node degree of ND = 7. Fig. 7a, b, c

depict screenshots of the visualization obtained using E-Spring algorithm, for Case

3i): |N| = 60, rn = 9. Fig. 8a, b, c depict visualization screenshots for Case 3ii): |N| =

60, rn =39. Fig. 9a, b, c depict visualization screenshots for Case 4: |N| = 100. Fig.

7b, 8b, 9b are screenshots with non-tree tree edges contained in E’ appended to the

visualization in Fig. 7a, 8a, 9a. Fig. 7c, 8c, 9c depict screenshots after 4
th
 step using

orthogonal edge routing was applied to remove edge-node intersections.

1

3

45

6

7

0

2

8

11

12

13

14
15

16

17

18

19
20

10

21
22

9

27

28 29

30

31

32

23

33

34

35
24

36

37

38

26 54
55

56

57

58

59
60

39

41

42

43

44

45

46

47
48

49

50

51

52

53

40

a)

0 39 40

54 55 56 57 58 592 1 3 4 5 6
60 50 51 52 53

10

42 43 44 45 46 47 48 4941

8

12 13 14 15 16 17 18 1911 20 21 22

9

7 26 34 27 23 28 29 30 31 32 33 244 35 36 37 38

b)

Fig. 5. Catalog data graph and extracted tree structure for Case ‘3 i)’.

39

23 54 55 56 57 58 59 60

40

50 51 52 5342 43 44 45 46 47 48 4941

9

7 26 34 27
28

29 30 31 32 33 244 35 36 37 38

0

2 1 3 4 5 6

108

12 13 14 15 16 17 18 19 20 21 22

Fig. 6. Extracted tree structure for catalog data graph Case ‘3 ii)’.

a) b)

c)

Fig. 7. Catalog data graph Case ‘3 i)’ |N| = 60, |E| = 59, S = 10, Root node (rn) = 9.

a)

b)

c)

Fig. 8. Catalog data graph Case ‘3 ii)’ |N| = 60, |E| = 59, S = 10, Root node (rn) = 39.

a)

b)

c)

Fig. 9. Catalog data graph ‘Case ‘4’ |N| = 100, |E| = 250, S = 10.

5.3 Observations

For each of the above implemented cases, we retrieved information about node

traversal in the graph for BFS algorithm, extracted tree T, a set of non-tree edges E’,

depth of the tree ‘DT’, and number of edge-node intersections in the drawing before

the 4th step. This data is depicted in Table 1. We also measured overall bounding

areas of graph visualizations before and after post-processing. Area measurements

(pixels
2
) are depicted in Table 2. For our plots and measurements, we use

terminology “Implementation Data source” 1, 2, 3, 4, 5 respectively for the five

implemented cases a) eBay data Case 1, b) eBay data Case 2, c) Graph Catalog

benchmark data Case 3 i), d) Graph Catalog benchmark data Case 3 ii), and e) Graph

Catalog benchmark data Case 4. We have observed that as the graph size increases,

the extracted tree size, the number of non-tree edges, the depth of the tree and the

number of edge-node intersections also increase proportionately for all the five data

sources. This is due to the presence of larger number of nodes and edges in the input

graphs. These measurements are depicted as plotted curves in Fig. 10.

We observed that the choice of the source root node (rn) affects the tree depth,

number of edge-node intersections, and the overall graph area. When source node

with the highest node degree is chosen (rn = 9) in Case 3 i), the extracted tree depth is

lower (DT = 5) so more children are present for every parent node in each cluster. The

corresponding tree structure has higher tree depth (DT = 7) when source node with

lowest node degree is chosen (rn = 39) in Case 3 ii). After missing edges are

appended, the obtained visualizations indicate the presence of higher number of edge-

node intersections (18) for Case 3 ii) with lowest degree source root node (rn = 39).

The higher depth of the tree also causes the overall graph area to increase by 20% for

Case 3 ii) for Graph Catalog data with lowest degree source root node (rn = 39).

Hence, the selection of the highest degree node as the starting node for breadth-first

search (BFS) algorithm produces better visualizations for our method.

After the 4th step of our approach, we observed that the obtained visualizations

have greater area for nodes with longer string labels (S = 10) and larger graphs (|N| =

60, |N| = 100). This is because smaller label size nodes contain more in-between

node gaps for performing orthogonal edge routing internally as compared to longer

label size nodes. For nodes with longer string label lengths, the edge route sometimes

has to be re-routed externally causing an increase in the graph area. Area

measurement curves are plotted in Fig. 11. A trade-off exists between removal of

edge-node intersections and graph area reduction with our method, especially for

larger graphs with greater label sized nodes. From the obtained layout visualizations

we observed that no node overlaps occurred in spanning trees drawn by E-Spring

algorithm. The 4th step preserves the mental map, since the node positions were

captured from the obtained visualization. We also observe that after the 4th step, all

edge-node intersections in graph layouts have been removed.

0

20

40

60

80

100

120

140

160

1 2 3 4 5

Implementation Data Source

T
re
e
 A
tt
ri
b
u
te
 V
a
lu
e

DAG size

Missing edges

Depth

Edge-node int

Fig. 10. Attribute values of extracted tree.

Table 1. Data Attributes of Extracted Tree Structure.

Data
Source

Extracted
tree

size

Non-
tree

edges
Tree
Depth

Edge-node
intersections

1 30 11 4 7

2 30 11 4 12

3 60 5 5 15

4 60 5 7 18

5 100 150 10 62

Table 2. Graph Area Measurements.

Data
Source

Area
before
post-

processing

Area after
post-

processing

1 101775 101775

2 155800 171000

3 534435 562275

4 671824 704740

5 870499 900467

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 3 4 5

Implementation Data Source

A
re
a
 (
in
 p
ix
e
ls
)

Before post-processing

After post-processing

 Fig. 11. Area sizes before and after post-processing.

6 Conclusion

E-Spring algorithm was proposed to draw clustered directed acyclic graphs (DAGs),

and uses physical properties of electric charges and spring constants to remove

overlaps between node labels. Since DAGs are only a subset of graphs, we apply E-

Spring algorithm to include general graphs. The usefulness of a graph drawing

depends on its readability, which is the capability of conveying the meaning of a

diagram quickly and clearly. Readability issues are expressed by aesthetics such as

minimization of crossings among edges and nodes, and removal of node overlaps.

Our clustering structure of the graph is built on its own backbone tree derived from

the existing graph structure. This backbone tree T is a spanning tree which is extracted

through the implementation of breadth-first-search algorithm. The E-Spring algorithm

guarantees that the visualized tree is free of node overlaps. We further improved

graph readability by removing residual edge-node crossings using the edge routing

method after the non-tree edges are inserted. The choice of the root node with the

highest node degree for breadth-first search (BFS) algorithm results in better

visualizations. Implementation was performed on eBay data and Graph catalog

benchmark data with varying graph sizes, nodes with varying label string lengths,

different source node selections and our experimental visualization results are

promising. The resultant graph layouts are free of node overlaps and edge-node

intersections. Future work includes enhancing E-Spring algorithm to accept input

graphs for visualization, aesthetic comparisons for various graphs, and improving the

quality of resultant drawings for large graphs.

References

1. Battista, G.D., Eades, P.: Algorithms for drawing graphs: an annotated bibliography.

Computational Geometry. 4, 235--282 (1994)
2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, New Jersey, USA (1999)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT

Press and McGraw-Hill, New York, USA (2001)

4. Cruz, I.F., Twarog, J.P.: 3D Graph Drawing with Simulated Annealing. In: Proceedings of

the Symposium on Graph Drawing, pp. 162--165. Springer-Verlag, London, UK (1995)

5. Davidson, R., Harel, D.: Drawing Graphs Nicely Using Simulated Annealing, ACM

Transactions on Graphics. 15, 301--331 (1996)

6. Dijksta, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik.

1, 269--271 (1959)

7. Dolulil, J., Katreniakova, J.: Edge Routing with Fixed Node Positions. In: Proceedings of
the 12th International Conference Information Visualisation, pp. 626--631. IEEE Computer

Society Washington, DC, USA (2008)

8. Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout.

In: Proceedings 14th Intl. Symp. Graph Drawing (GD ’06), pp. 8--19. Springer-Verlag,

Berlin, Heidelberg (2007)

9. Eades, P.: A heuristic for graph drawing. Congressus Numerantium. 42, 149--160 (1984)
10. Eades, P., Huang, M.L.: Navigating Clustered Graphs using Force-Directed Methods,

Journal of Graph Algorithms and Applications. 4, 157--181 (2000)

11. Eades, P., Lai, W., Misue, K., Sugiyama, K.: Layout adjustment and the mental map.

Journal of Visual Languages and Computing. 6, 83--210 (1995)

12. Forster, M.: Crossings in Clustered Level Graphs, Ph.D.Dissertation (2004)

13. Healy, P., Nikolov, N.S.: Graph Drawing. Springer-Verlag, Berlin, Heidelberg (2006)

14. Huang, X., Lai, W., Sajeev, A.S.M., Gao, J.: A new algorithm for removing node

overlapping in graph visualization. Information Sciences. 177, 2821--2844 (2007)

15. Kakoulis, K.G., Tollis, I.G.: A unified approach to labeling graphical features. In:

Proceedings 14th Annual ACM Symposium of Computational Geometry (SoCG'98), pp.

347--356. ACM New York, NY, USA (1998)

16. Kaufmann, M., Dorothea, W.: Drawing graphs, methods and models. Springer-Verlag,
Berlin, Heidelberg (2001)

17. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. Chapman & Hall, London,

UK (2004)

18. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman

Problem. American Mathematical Society. 7, 48--50 (1956)

19. Kumar, P., Zhang, K.: Social Network Analysis of Online Marketplaces. In: Proceedings
IEEE International Conference on e-Business Engineering, pp. 363--367. IEEE Computer

Society Washington, DC, USA (2007)

20. Kumar, P., Zhang, K., Wang, Y.: Visualization of Clustered Directed Acyclic Graphs

without Node Overlapping. In: Proceedings 12th International Conference on Information

Visualization, pp. 38--43. IEEE Computer Society Washington, DC, USA (2008)

21. Kumar, P., Zhang K.: Visualization of Clustered Directed Acyclic Graphs with Node

Interleaving. In: Proceedings of the 24th Annual ACM Symposium on Applied Computing

(SAC ‘09), pp. 1800--1805. ACM New York, NY, USA (2009)

22. Kumar, P., Zhang, K.: Node Overlap Removal in Clustered Directed Acyclic Graphs.

Journal of Visual Languages and Computing (JVLC). Article in press,

doi:10.1016/j.jvlc.2009.04.007 (2009)

23. Lai, W.: Layout Adjustment and Boundary Detection for a Diagram. In: Proceedings of
Computer Graphics International (CGI '01), pp. 351--354. IEEE Computer Society

Washington, DC, USA (2001)

24. Lai, W., Eades, P.: Removing edge-node intersections in drawings of graphs. Information

Processing Letters. 81, 105--110 (2002)

25. Larson, R.C., Li, V.O.K.: Finding minimum rectilinear distance paths in the paths in the

presence of barriers. Networks. 11, 285--304 (1981)

26. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers.

Networks. 14, 393--410 (1984)

27. Leiserson, C.E.: Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing.

IEEE Transactions on Computers. 34, 892--901 (1985)

28. Leymann, F.: Web Services Flow Language (WSFL 1.0), IBM (2001)
29. Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping. In:

Proceedings of the 2005 Asia-Pacific symposium on Information visualization (APVIS '05),

pp. 131--140. Australian Computer Society, Inc. Darlinghurst, Australia (2005)

30. Lozano-Perez, T., Wesley, M.A.: An algorithm for planning collision-free paths among

polyhedral obstacles. Communications of ACM. 22, 22560--22570 (1979)

31. Marriott, K., Stuckey, P., Vam, T., He, W.: Removing Node Overlapping in Graph Layout
Using Constrained Optimization. Constraints. 8, 143--171 (2003)

32. Nascimento, H.A.D., Eades, P.: User Hints for map labeling. Journal of Visual Languages

and Computing. 19, 39--74 (2008)

33. Papakostas, A., Tollis, I.G.: Interactive Orthogonal Graph Drawing. IEEE Transactions on

Computers. 47, 1297--1309 (1998)

34. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical

Journal. 36, 1389--1401 (1957)

35. Purchase, H.C., Cohen, R.F., James, M.: Validating Graph Drawing Aesthetics. In:

Proceedings of the Symposium on Graph Drawing (GD ’95), pp. 435--446. Springer-Verlag,

London, UK (1995)

36. Quigley A., Eades, P.: Graph Drawing, Clustering, and Visual Abstraction. In: Proceedings

of the 8th International Symposium on Graph Drawing (GD '00), pp. 197--210. Springer-

Verlag, Berlin, Heidelberg (2000)

37. Taylor, M., Rodgers, P.: Applying Graphical Design Techniques to Graph Visualization. In:

Proceedings of the Ninth International Conference on Information Visualization (IV '05),

pp. 651--656. IEEE Computer Society Washington, DC, USA (2005)

38. ConceptDraw, http://www.conceptdraw.com/en/products/cd5/main.php
39. Home of Graphdrawing, http://www.graphdrawing.org

40. Graphviz - Graph Visualization Software, http://www.graphviz.org

41. Microsoft Office Online – Visio, http://office.microsoft.com/en-us/visio/default.aspx

42. yWorks, http://www.yworks.com/products/yfiles/doc/developers-guide/index.html

