
Mining Temporal Patterns to Improve Agents
Behavior: Two Case Studies

Philippe Fournier-Viger1, Roger Nkambou1, Usef Faghihi1, and Engelbert
Mephu Nguifo2

1 Université du Québec à Montréal, Montréal, Canada
{fournier viger.philippe, nkambou.roger, faghihi.usef}@courrier.uqam.ca

2 Université Blaise Pascal, Clermont-Ferrand, France
mephu@isima.fr

Abstract. We propose two mechanisms for agent learning based on the
idea of mining temporal patterns from agent behavior. The first one
consists of extracting temporal patterns from the perceived behavior of
other agents accomplishing a task, to learn the task. The second learn-
ing mechanism consists in extracting temporal patterns from an agent’s
own behavior. In this case, the agent then reuses patterns that brought
self-satisfaction. In both cases, no assumption is made on how the ob-
served agents’ behavior is internally generated. A case study with a real
application is presented to illustrate each learning mechanism.

Key words: Data-mining driven agents, agent learning, temporal patterns

1 Introduction

Logging information about agents’ behavior and analyzing it could provide use-
ful knowledge for improving the behavior of agents. However, the amount of data
to be recorded and analyzed can be huge to learn interesting information. As a
solution, we propose to rely on data mining algorithms to analyze agent behav-
iors, and discover temporal regularities. More precisely, in line with researches
indicating that data mining has the potential to improve the learning and rea-
soning capabilities of agents (data-mining driven agents) [1, 2], we propose two
learning mechanisms that are integrated in agents deployed in real applications.
The two learning mechanisms are based on the three same operation phases:
(1) recording behaviors, (2) extracting temporal patterns from this data and (3)
using this knowledge to improve agents’ behavior. The first learning mechanism
is for agents that learn a task by observing other agents performing it. In that
case an agent records the behavior of other agents to discover patterns among
this data that will then constitute its knowledge base. The second learning mech-
anism is for agents that learn from their own behavior. In this case, an agent
records its behavior to then reuse patterns that led to self-satisfaction.

This chapter first introduces the problem of mining temporal patterns and
an algorithm for mining temporal patterns, and discusses related works in agent

2 Fournier-Viger et al.

learning. Next, the second and third sections present the two learning mecha-
nisms based on this algorithm and describe how they are integrated in virtual
agents. Finally, the last section present conclusions and preview our future work.

2 Mining Temporal Patterns from Sequences of Events

According to [10], there are four main kinds of patterns that can be mined from
time-series data. These are trends, similar sequences, sequential patterns and
periodical patterns. In this work we chose to mine sequential pattern [3], as we
are interested in finding relationships between occurrences of events in agents’
behavior. To mine sequential patterns, several algorithms have been proposed
[10]. But to our knowledge, few works have been published on using sequential
pattern mining for agent learning. For example, [14] proposed to implement
sequential pattern mining in a robot playing soccer. In this case, sequential
patterns are used to derive prediction rules about what actions or situations
might occur if some preconditions are satisfied. This is different from the two
forms of learning that we consider in this chapter.

While classical sequential pattern mining algorithms have for only goal to
discover sequential patterns that occurs frequently in several transactions of a
database [3], other algorithms have proposed numerous extensions to the prob-
lem of mining sequential patterns [10]. For this work, we chose a sequential
pattern mining algorithm that we have developed [8], as it combines several
features from other algorithms such as accepting time constraints [11], process-
ing databases with dimensional information [17], eliminating redundancy [20,
18], and also because it offers some original features such as accepting symbols
with numeric values [8]. We describe next some basic features of the algorithm.
Other features will be presented through the chapter with detailed explana-
tions about why they are important for this work. For a technical description
of the algorithm the reader can refer to [8]. Moreover, the reader can down-
load a Java implementation of the algorithm by accessing http://www.philippe-
fournier-viger.com/spmf/.

The algorithm takes as input a database D of sequences of events. An event
X = (i1, i2, ...in) contains a set of items i1, i2, ...in that are considered simulta-
neous, and where each item can be annotated with an integer value. Formally,
a sequence is denoted s =< (t1, X1), (t2, X2), ..., (tn, Xn) >, where each event
Xk is associated to a timestamp tk indicating the time of the event. The size,
n, of a sequence is the number of events in the sequence, i.e. |s|. For exam-
ple, the size of sequence S1 of Fig. 1 (left) contains two events. The sequence
S1 indicates that item a appeared with a value of 2 at time 0 and was fol-
lowed by items b and c with a value of 0 and 4 respectively at time 1. A se-
quence sa = < (ta1, A1), (ta2, A2, ..., (tan, An) > is said to be contained in an-
other sequence sb = < (tb1, B1), (tb2, B2), ..., (tbn, Bm) >, if there exists integers
1 = k1 < k2 < ... < kn ≤ m such that A1 ⊆ Bk1, A2 ⊆ Bk2, ..., An ⊆ Bkn, and
that tbkj − tbk1 is equal to taj − ta1 for each j ∈ 1...m. The relative support of a
sequence sa in a sequence database D is defined as the percentage of sequences

Mining Temporal Patterns to Improve Agents Behavior 3

s ⊆ D that contains sa, and is denoted by supD(sa). The problem of mining
frequent sequences is to find all the sequences sa such that supD(sa) ≥ minsup
for a sequence database D, given a support threshold minsup, and optional time
constraints. The optional time constraints are the minimum and maximum time
intervals required between the head and tail of a sequence and the minimum and
maximum time intervals required between two adjacent events of a sequence.

As an example, Fig. 1 illustrates a database of 6 sequences (left) and the
corresponding patterns found for a minsup of 33% (right). Consider pattern
M5. This pattern appears in sequence S4 and S5. The first event of M5 (0, f)
is contained in the first event of S4 (0, f) and the second event of M5 (2, e)
is contained in the event of S4 (2, a{6}e) that is occuring two time units after
the first event of S4. Since the pattern M5 is contained in S4 and S5, it has
a support of 33% (2 out of 6 sequences). Now consider patterns M1 and M2.
Because the item a appears in sequence S1, S2, S3 and S4 with values 2, 2, 5
and 6 respectively the algorithm separated these values in two groups to create
patterns M1 and M2 instead of creating a single pattern with a support of 66%.
For each of these groups, the median (2 and 5) was kept as an indication of the
values grouped. This clustering of similar values only occurs when the support
is higher or equal to 2 ∗minsup (see [8] for more details).

Fig. 1. A database of 6 sequences (left) and mined sequences (right)

3 Agents that Learn from other Agents

The first form of learning that we consider for an agent is learning by observing
other agents. Researchers have made various proposals for integrating learning-
by-observation in agents (see [19] for a brief review). However, many of them
rely on strong assumptions. For example, van Lent and Laird [19] propose a
framework to learn production rules from recorded human behavior. In this
approach, a human has to teach an agent by performing a task. However, this
approach is tightly linked to a very specific conception of intelligence, as humans
performing a demonstration are required to specify their actions as complex
operators organized in a hierarchy and having goal conditions, and they must
explicitly state their goals during the demonstrations. Contrarily to this view, we
here address the problem of learning-by-observation for an agent by considering
that it can only perceive actions of other agent, without additional information.

4 Fournier-Viger et al.

Fig. 2. The RomanTutor user interface

We illustrate this form of learning in the context of RomanTutor [13] (fig.
2), a virtual learning environment for learning how to operate the Canadarm2
robotic arm on the international space station. The main learning activity in
RomanTutor is to move the arm from one configuration to another. This is
a complex task, as the arm has seven joints and the user must chose at any
time the three best cameras for viewing the environment from around twelve
cameras on the space station, and adjust their parameters. We have integrated a
tutoring agent in RomanTutor to provide assistance to learners during this task.
However, there are a very large number of possibilities for moving the arm from
one position to another, and because one must also consider the safety of the
maneuvers, it is very difficult to define a task model for generating the moves
that a human would execute [7]. For this reason, instead of providing domain
knowledge to the agent, we implemented a learning mechanism which allows the
agent to learn by observing the behavior of other agents performing a task (in
this case, humans). The agent then uses this knowledge to provide assistance to
learners. We describe next the three operation phases of the learning mechanism
as they are implemented in this virtual agent, and an experiment.

3.1 The observing phase

In the observing phase, the virtual agent observes and records the behavior of
users that attempt an arm manipulation exercise (moving the arm from an initial
configuration to a goal configuration). For each attempt, the virtual agent logs
a sequence of events. In this context, an event is a set of actions (items) that are
considered unordered temporally. We defined 112 primitive actions that can be

Mining Temporal Patterns to Improve Agents Behavior 5

recorded in RomanTutor, which are (1) selecting a camera, (2) performing an
increase or decrease of the pan/tilt/zoom of a camera and (3) applying a rotation
value to an arm joint. Actions of types (2) and (3) are annotated with integer
values that indicate respectively the number of increments/decrements applied to
a camera parameter and the number of degrees that a joint is rotated. Defining
actions with integer values is beneficial because, as mentioned, our algorithm
can group automatically actions with similar values an treat these groups as
different actions. An example of a partial sequence of actions recorded for an
user is < (0, 6{2}), (1, 63), (2, 53{4}), (3, 111{2} > which represents decreasing
the rotation value of joint SP (action 6) by 2 units, selecting camera CP3 (action
63), increasing the pan of camera CP2 (action 53) by 4 units and then its zoom
(action 111) by 2 units.

A problem that we faced when designing the virtual agent’s observing phase
is that it would also be useful to annotate sequences with contextual informa-
tion such as success information and the expertise level of a user, to then mine
patterns containing this information. Our solution to this issue is to take ad-
vantage of an extra feature of our algorithm (based on [17]), which is to add
dimensional information to sequences. A database having a set of dimensions
D = D1, D2, ...Dn is called an MD-Database. Each sequence of a MD-Database
(an MD-Sequence) possesses a symbolic value for each dimension. This set of
values is called an MD-Pattern and is denoted d1, d2...dn. In the context of our
virtual agent, we defined two dimensions, ”success” and ”expertise level”, which
are added manually to each sequence recorded. The left side of Fig. 3 shows
an example of an MD-Database having these two dimensions. As an example,
the MD-Sequence B1 has the MD-Pattern ”true”, ”novice” for the dimensions
”success” and ”expertise level”. The symbol ”*”, which means any values, can
also be used in an MD-Pattern. This symbol subsumes all other dimension val-
ues. An MD-Pattern Px = dx1, dx2...dxn is said to be contained in another
MD-Pattern Py = dy1, dy2...dym if dx1 ⊆ dy1, dx2 ⊆ dy2, ..., dxn ⊆ dyn. The
problem of mining frequent sequences with dimensional information is to find all
MD-Sequence appearing in an MD-Database with a support higher or equal to
minsup. As an example, the right part of Fig. 3 shows some patterns that can
be extracted from the MD-Database of Fig. 3, with a minsup of 2 sequences.
In our virtual agent, dimensional information is very important, as it allowed to
successfully identify patterns common to all expertise levels that lead to failure
(”false, *”), for example.

3.2 The learning phase

In the learning phase, the virtual agent applies the algorithm to extract frequent
sequences that build its domain knowledge. For mining patterns, we setup the
algorithm to mine only sequences of size two or greater, as sequence shorter would
not be useful in a tutoring context. Furthermore, we chose to mine sequences with
a maximum time interval between two adjacent events of two. The benefits of
accepting a gap of two is that it eliminates some ”noisy” (non-frequent) learners’

6 Fournier-Viger et al.

Fig. 3. An example of sequential pattern mining with contextual information

actions, but at the same time it does not allow a larger gap size that could make
it less useful for tracking a learner’s actions.

A second important consideration in the learning phase is that when applying
sequential pattern mining, there can be many redundant frequent sequences
found. For example, in Fig. 1 (right), pattern M2 is redundant as it is included
in pattern M3 and it has exactly the same support. To eliminate redundancy,
we rely on an extra feature of our algorithm which allows mining only closed
sequences. ”Closed sequences” are sequences that are not contained in another
sequence having the same support. Mining frequent closed sequences has the
advantage of greatly reducing the size of patterns found, without information loss
(the set of closed frequent sequences allows reconstituting the set of all frequent
sequences and their support) [20]. To mine only frequent closed sequences, our
sequential pattern mining algorithm was extended based on [20] and [18] to mine
closed MD-Sequences (see [8]).

3.3 The application phase

In the third phase, the application phase, the virtual agent provides assistance
to the learner by using the knowledge learned in the learning phase. Recognizing
a learner’s plan is the basic operation that is used to provide assistance. This is
achieved by the plan recognizing algorithm (algorithm 1), described next.

Algorithm 1 (RecognizePlan Algorithm)
RecognizePlan(Student trace, Patterns)

Result := ∅.
FOR each pattern P of Patterns.

IF Student trace is included in P.
Result := Result ∪ {P}.

IF Result = ∅ AND size(Student trace) ≥ 2.
Remove last action of Student trace.
Result := RecognizePlan(Student trace, Patterns).

RETURN Result.

The plan recognizing algorithm RecognizePlan is executed after each student
action. It takes the sequence of actions performed by the student (Student trace)
for the current problem and a set of frequent actions sequences (Patterns) as

Mining Temporal Patterns to Improve Agents Behavior 7

inputs. When the plan recognizing algorithm is called for the first time, the
variable Patterns is initialized with the whole set of patterns found during the
learning phase of the virtual agent. The algorithm first iterates on the set of pat-
terns Patterns to note all the patterns that include Student trace. If no pattern
is found, the algorithm removes the last action performed by the learner from
Student trace and searches again for matching patterns. This is repeated until
the set of matching patterns is not empty or the size of Student trace is smaller
than 2. In our tests, removing user actions has shown to improve the effectiveness
of the plan recognizing algorithm significantly, as it makes the algorithm more
flexible. The next time RecognizePlan is called, it will be called with the set of
matching patterns found by its last execution. This ensures that the algorithm
will not consider patterns that have been previously rejected.

We describe next the main tutoring services that the tutoring agent provides
based on the plan recognizing algorithm.

First, the virtual agent can assess the expertise level of the learner (novice,
intermediate or expert) by looking at the patterns applied. If for example a
learner applies 80% of the time ”intermediate” patterns, then the virtual agent
can assert with confidence that the learner expertise level is ”intermediate”.
Second, the agent can guide the learner. This tutoring service consists in deter-
mining the possible actions from the current problem state and proposing one or
more actions to the learner. This functionality is triggered when the student se-
lects ”What should I do next?” in the RomanTutor interface menu. The virtual
agent then identifies the set of possible next actions according to the matching
patterns found by RecognizePlan and selects the action among this set that is
associated with the pattern that has the highest relative support and that is
the most appropriate for the estimated expertise level of the learner. If no ac-
tions can be identified, the virtual agent can use a path planner [13] to generate
approximate solutions. In this current version, the virtual agent only interacts
with the learner upon request. Nonetheless, it would be possible to program the
virtual agent so that it can intervene if the learner is following an unsuccess-
ful pattern or a pattern that is not appropriate for its expertise level. Testing
different tutorial strategies is part of our current work.

3.4 An experiment

We conducted an experiment in RomanTutor with two exercises to qualitatively
evaluate the virtual agent’s capability to provide assistance. The two exercises
consists each of moving a load with the robotic arm to one of the two cubes
(figure 4.a). We asked twelve users to record plans for these exercises. The average
length was 20 actions. From this data, the virtual agent extracted 558 sequential
patterns with the algorithm. In a subsequent work session, we asked the users to
evaluate the tutoring services provided by the virtual agent. Users agreed that
the assistance provided was helpful. We also observed that the virtual agent
correctly inferred the estimated expertise level of learners.

As an example of interaction with a learner, Fig. 4 illustrates a hint message
given to a learner upon request during scenario 1. The guiding tutoring service

8 Fournier-Viger et al.

Fig. 4. (a) The two scenarios (b) A hint generated by the virtual agent

selected the pattern that has the highest support value, matches the last student
actions, is marked ”success” and corresponds with the estimated expertise level
of the learner. The given hint is to decrease the rotation value of the joint ”EP”
(20◦), increase the rotation value of joint ”WY” (30◦), and finally to select
camera ”CP2” on ”Monitor1”. By default, three steps are showed to the learners
in the hint window depicted in Fig. 4.b. However, the learner can click on the
”More” button to ask for more steps or click on the ”another possibility” button
to ask for an alternative. The description of actions depicted in Fig. 4.a are an
example of resources that can be used to annotate patterns.

Although the pattern mining algorithm was applied once in this experiment,
it would have been possible to make the agent apply it periodically, so that
the agent would continuously update its knowledge base while interacting with
learners. Moreover, we have encoded only two dimensions: expertise level and
success. However additional contextual information could easily be added. In
future work for example, we plan to encode skills involved as dimensional infor-
mation (each skill could be encoded as a dimension). This will allow computing
a subset of skills that characterize a pattern. This will allow diagnosing missing
and misunderstanding skill for users who demonstrated a pattern.

4 Agents that Learn from Their Own Behavior

The second form of learning that we consider for an agent is to learn from its
own behavior. Unlike the learning mechanism implemented in the previous agent,
this learning mechanism is not designed for learning new behaviors or procedural
knowledge, but for making an agent reuse previously self-satisfying behaviors.
We integrated this mechanism in a virtual agent named CTS [5] that we have
also tested in RomanTutor to provide assistance to learners. The following sub-
sections describe CTS, the three operation phases of the learning mechanism
that was integrated in CTS, and two experiments carried in RomanTutor to val-
idate (1) the behavior of the new CTS and (2) the behavior of the data mining
algorithm with large data sets.

Mining Temporal Patterns to Improve Agents Behavior 9

4.1 The CTS Cognitive Agent

CTS (Conscious Tutoring System) is a generic cognitive agent, whose architec-
ture (fig. 5) is inspired by neurobiology and neuropsychology theories of human
brain function. It relies on the functional ”consciousness” [9] mechanism for
much of its operations. It also bears some functional similarities with the phys-
iology of the nervous system. Its modules communicate with one another by
contributing information to its Working Memory (WM) through information
codelets. Based on Hofstadter et al’s idea [12], a codelet is a very simple agent,
”a small piece of code that is specialized for some comparatively simple task”.
As in Baars theory’s [4], these simple processors do much of the processing in
the CTS architecture.

Fig. 5. A simplified view of the CTS architecture (see [6] for more details)

CTS possess two routes for processing external stimuli (cf. fig. 5). Whereas
the ”long route” is the default route, the ”short route” (which will not be de-
scribed here) allows quick reactions when received information is deemed impor-
tant by the pseudo-amygdala, the module responsible for emotional reactions in
CTS [6]. In both cases, the stimuli processing begins with percept codelets [12]
that perform collective interpretations of stimuli. The active nodes of the CTS’s
Perception Network constitute percepts. In the long route, these percepts enter
WM as a single network of codelets, annotated with an activation value. These
codelets create or reinforce associations with other already present codelets and
create a coalition of information codelets. In parallel, the emotional codelets situ-
ated in the CTS’s pseudo-amygdala inspect the previously mentioned coalition’s
informational content, and if it is deemed important, infuse it with a level of ac-
tivation proportional to its emotional valence. During every cognitive cycle, the
coalition in the WM that has the highest activation is selected from the WM by
the ”Attention Mechanism” and is broadcast to all the modules in the CTS ar-

10 Fournier-Viger et al.

chitecture. This selection process ensures that only the most important, urgent,
or relevant information is broadcast in the architecture. Following a broadcast,
every subsystem (module or team of codelets) that recognizes the information
may react to the coalition by appending additional information to it. This pro-
cess of internal publications (as suggested by Baars [4]) can continue for many
cognitive cycles before an action is executed by CTS. The module responsible
for action planning, selection and execution is the Behavior Network (BN) [15].
When the BN receives a broadcast coalition, it selects the appropriate action to
execute. In the current CTS version, we have designed the BN using a graphical
authoring tool. We have implemented in CTS the second form of learning that
we consider in this article. This learning mechanism is implemented in CTS by
the three operation phases, described next.

4.2 The observation phase

In the first phase, the observation phase, CTS records a sequence of events (as
defined in section 2) for each of its executions. Each event X = (ti, Ai) represents
one cognitive cycle. While the timestamp ti of an event indicates the cognitive cy-
cle number, the set of items Ai of an event contains (1) an item that represents
the coalition of information-codelets that was broadcast during the cognitive
cycle and (2) four optional items having numeric values indicating the four emo-
tional valences (high threat, medium fear, low threat, compassion) associated
with the broadcast coalition3. For example, one partial sequence recorded dur-
ing our experimentation was < (1, c2), (2, c4), (3, c8 e2{−0.4}) >. This sequence
shows that during cognitive cycle 1 the coalition c2 was broadcast, followed by
the broadcast of c4 during cognitive cycle 2. Furthermore, it indicates that coali-
tion c8 was broadcast during the third cognitive cycle and that it generated a
negative emotional valence of −0.4 for emotion e2 (medium fear).

4.3 The learning phase

The second operation phase consists of mining frequent patterns from the se-
quences of events recorded for all executions of CTS by applying our sequential
pattern mining algorithm. This process is executed at the end of each CTS execu-
tion, from the moment where five sequences are available (five CTS executions).
Currently, we have setup the sequential pattern mining algorithm to mine only
closed sequences with more than three events and with a support higher than
25%. Applying the algorithm results in a set of frequent sequential patterns.

4.4 The application phase

The third operation phase consists in improving CTS behavior by making CTS
reuse relevant patterns that carry positive emotions. This is done by intervening
3 CTS actually incorporates four emotions inspired by the OCC model of emotions

[16]. See [6] for in-depth details about the emotional mechanism of CTS.

Mining Temporal Patterns to Improve Agents Behavior 11

in the coalition selection phase of CTS. The idea is here to find, during each
cognitive cycle the patterns that are similar to CTS’s current execution to then
select the next coalition to be broadcast that is the most probable of generating
positive emotions for CTS according to these patterns. Influencing the coalitions
that are broadcast will then directly influence the actions that will be taken
by the CTS behavior network. This adaption of CTS could be implemented
in different ways. We used the SelectCoalition algorithm (algorithm 2), which
takes as parameters (1) the sequence of previous CTS broadcasts (Broadcasts),
(2) the set of frequent patterns (Patterns) and (3) the set of coalitions that are
candidates to be broadcast during a given cognitive cycle (CandidateCoalitions).
This algorithm first sets to zero a variable min and a variable max for each
coalition in CandidateCoalitions. Then, the algorithm repeats the following steps
for each pattern p of Patterns. First, it computes the strength of p by multiplying
the sum of the emotional valences associated with the broadcasts in p with
the support of p. Then, it finds all the coalition c ∈ CandidateCoalitions that
appear in p after the sequence of the last k broadcasts of Broadcasts for any
k ≥ 2. For each such coalition c, if the strength of p is higher than c.max,
c.max is set to that new value. If that strength is lower than c.min, c.min is
set to that new value. Finally, when the algorithm finishes iterating over the set
of patterns, the algorithm returns to CTS’s working memory the coalition c in
CandidateCoalitions having the highest positive value for the sum c.min+c.max
and where c.max > 0. This coalition will be the one that will be broadcast next
by CTS’s attention mechanism. In the case of no coalition meeting these criteria,
the algorithm will return a randomly selected coalition from CandidateCoalitions
to CTS’s working memory.

Algorithm 2 (SelectCoalition Algorithm)
SelectCoalition(Patterns, Broadcasts, CandidateCoalitions)

FOR each pattern c ∈ CandidateCoalitions
c.min := 0. c.max := 0.

FOR each pattern P of Patterns.
Strength := CalculateSumOfEmotionalValences(P) * Support(P).
FOR k := 2 to |P|.

Sa := last k Broadcasts of Broadcasts.
IF (Sa ⊆ P)

FOR each coalition c ∈ CandidateCoalitions appearing
after Sa in P

c.max := maxOf(Strength, c.max).
c.min := minOf(Strength, c.min).

RETURN c ∈ CandidateCoalitions with the largest positive
(c.max + c.min) and such that c.max > 0.

The c.max > 0 criterion is included to ensure that the selected coalition
appears in at least one pattern having a positive sum of emotional valences.
Moreover, we have added the c.min + c.max criterion to make sure that pat-
terns with a negative sum of emotional valences will decrease the probability of

12 Fournier-Viger et al.

selecting the coalitions that it contains. In our experiments, this criterion has
proved to be very important as it can make CTS to quickly stop selecting a
coalition appearing in positive patterns, if it becomes part of negative patterns.
The reader should note that algorithms relying on other criteria could have been
used for other applications.

4.5 Testing the new CTS in RomanTutor

To test CTS’s new learning mechanism, users were invited to perform arm ma-
nipulations using RomanTutor with integrated CTS. These experiments aimed
at validating CTS ability to adapt its behavior to learners. During these exper-
iments, we qualitatively observed that CTS adapted its behavior successfully to
learners. Two experiments are here described. The first describes in details one
situation that occurred with User 3 that illustrates well how CTS adapts its be-
havior thanks to the new learning mechanism. The second experiment describes
how the data mining algorithm behaves when the number of recorded sequences
increases.

User 3 tended to make frequent mistakes when he was asked to guess the
arm distance from a specific part of the space station. Obviously, this situation
caused collision risks between the arm and the space station and was thus a very
dangerous situation. This situation was implemented in the CTS’s Behavior
Network. In this situation, CTS has to make a decision between (1) giving a
direct solution such as ”You should move joint SP” (Scenario 1) or giving a brief
hint such as ”This movement is dangerous. Do you know why?” (Scenario 2).

During the interaction with different users, the learning mechanism recorded
several sequences of events for that situation, each of them carrying emotional
valences. The average length of the stored sequences was of 26 events. For ex-
ample, one partial trace saved when CTS gave a hint (scenario 2) to User 2
was < (13, c11), (14, c14), (15, c15), (16, c18), (17, c19 e4{0.8}) >. In this trace,
the positive valence 0.8 for emotion e4 (compassion) was recorded because the
learner answered to an evaluation question correctly after receiving the hint.
In another partial trace saved by CTS < (16, c11), (17, c14), (18, c16), (19, c17),
(20, c20 e2 {−0.4}) >, User 2 received a direct solution from CTS (Scenario 1),
but failed to answer correctly an evaluation question. This resulted in the va-
lence -0.4 being associated to emotion e2 (medium fear). After five executions,
the learning mechanism extracted ten frequent sequences from the recorded se-
quences, with a minimum support (minsup) higher than 0.25.

Now turning back to User 3, during the coalition selection phase of CTS,
the learning mechanism evaluated all mined patterns to detect similar pat-
terns having ended by self-satisfaction. The learning mechanism chose the pat-
tern < (0, c11), (1, c14), (3, c18), (4, c19 e4{0.8}) >, because it contained the
most positive emotional valence, had the highest frequency, and the events
(0, c11), (1, c14) matched with the latest events executed by CTS. Therefore,
CTS chose that it is better to give a hint (Scenario 2) than to give the answer
(Scenario 1) to User 3. Concretely, this was achieved by broadcasting coalition
c18 (Scenario 2) instead of coalition c16 (Scenario 1). If the emotional valence

Mining Temporal Patterns to Improve Agents Behavior 13

had not been as positive as was the case for previous users, CTS might have
chosen Scenario 1 rather than Scenario 2. It should be noted that because the
set of patterns is regenerated after each CTS execution, some new patterns can
be created, while other can disappear, depending on the new sequences of events
that are stored by CTS. This ensures that CTS behavior can change over time
if some scenarios become less positive or more negative, and more generally that
CTS can adapt its behavior to a dynamic environment. In this experiment, the
learning mechanism has shown to be beneficial by allowing CTS to adapt its
actions to learners by choosing between different scenarios based on its previous
experience. This feature is very useful in the context of a tutoring agent, as it
allows the designers to include many alternative behaviors but to let CTS learn
by itself which ones are the most successful.

We performed a second experiment with the learning mechanism, but this
time to observe how the data mining algorithm behaves when the number of
recorded sequences increases. The experiment was done on a 3.6 GHz Pentium 4
computer running Windows XP, and consisted of performing 160 CTS executions
for a situation similar to the previous one where CTS has to choose between
scenario 1 and scenario 2. In this situation, CTS conducts a dialogue with the
student that includes from two to nine messages or questions (an average of six)
depending on what the learner answers and the choices CTS makes (similar to
choosing between scenarios 1 and 2). During each trial, we randomly answered
the questions asked by CTS, and took various measures during CTS’s learning
phase. Each recorded sequence contained approximately 26 broadcasts. Fig. 6
presents the results of the experiment. The first graph shows the time required
for mining frequent patterns after each CTS execution. From this graph, we see
that the time for mining frequent patterns was generally short (less than 6 s)
and increased linearly with the number of recorded sequences. In our context,
this performance is very satisfying. The second graph shows the average size of
patterns found for each execution. It ranges from 9 to 16 broadcasts. The third
graph depicts the number of patterns found. It remained low and stabilized at
around 8.5 patterns during the last executions. The reason why the number
of patterns is small is that we mined only closed patterns (c.f. section 3.2). If
we had not mined only closed patterns, all the subsequences of each pattern
would have been included in the results. Finally, the average time for executing
the SelectCoalition algorithm at each execution. This time was always less than
5 milliseconds. Thus, the costliest operation of the learning mechanism is the
learning phase.

5 Conclusion

In this chapter, we presented the idea of building agents that learn by extracting
temporal patterns from their own behavior or the behavior of other agents. To
demonstrate this idea, we proposed two learning mechanisms. While the first
learning mechanism is aimed at learning new procedural knowledge by observ-
ing other agents performing a task, the second one is designed for making an

14 Fournier-Viger et al.

Fig. 6. Results from second experiment

agent reuse its self-satisfying behaviors. We presented each learning mechanism
through the case study of a virtual agent. The two virtual agents were tested
in real applications and experiments have shown positive results, as regards the
capability of the agents to adapt their behavior and the performance of the
learning mechanisms. The two learning mechanisms should be reusable in other
agents and contexts, as they make little assumption on the architectures of the
observed agents and their decision making processes, and the format for encoding
behaviors is fairly generic.

In future work, we will perform further experiments to measure empirically
how the virtual agents influence the learning of students. We will investigate
different ways of improving the performance of our sequential pattern mining
algorithm, including modifying it to perform an incremental mining of sequential
patterns. We also plan to compare the two learning mechanisms with others agent
learning mechanisms, and to integrate the two virtual agents in other tutoring
systems.

Acknowledgements

The authors thank the Canadian Space Agency, the Fonds Québécois de la
Recherche sur la Nature et les Technologies (FQRNT) and the Natural Sci-
ences and Engineering Research Council (NSERC) for their logistic and financial
support. The authors also thank current and past members of the GDAC and
PLANIART teams who participated in the development of RomanTutor.

Mining Temporal Patterns to Improve Agents Behavior 15

References

1. Cao, L., Luo, C., Zhang, C.: Agent-Mining Interaction: An Emerging Area. Proc.
AIS-ADM 2007, LNAI 4476, pp. 60-73, 2007. Springer-Verlag, Berlin.

2. Symeonidis, A. L., Athanasiadis, I. N., Mitkas, P. A.: A retraining methodology for
enhancing agent intelligence. Knowledge-Based Syst. 20(4), 388-396 (2008)

3. Agrawal, R., Srikant, R.: Mining sequential patterns. Proc. Int. Conf. Data Eng.,
pp. 3-14 (1995)

4. Baars, B.J.: In the theater of consciousness. Oxford Univ. Press, Ofxord. (1997)
5. Dubois, D., Poirier, P., Nkambou, R.: What does Consciousness bring to CTS?.

Proc. 2007 AAAI Fall Symp., pp. 55-60, AAAI Press (2007)
6. Faghihi, U., Poirier, P., Dubois, D., Gaha, M., Nkambou, R.: How emotional mech-

anism learn and helps other types of learning in a cognitive agent. Proc. WI-IAT
2008 (2008)

7. Fournier-Viger, P., Nkambou, R., Mayers, A.: Evaluating spatial representations
and skills in a simulator-based tutoring system. IEEE Trans. Learn. Technol. 1, pp.
63-74 (2008)

8. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E.: A knowledge discovery frame-
work for learning task models from user interactions in intelligent tutoring systems.
Proc. 7th Mex. Int. Conf. Artif. Intell., LNAI 5317, pp. 765-778. Springer (2008)

9. Franklin, S., Patterson, F.G.J.: the LIDA architecture: adding new modes of learning
to an intelligent, autonomous, software agent. Proc. IDPT-2006 (2006)

10. Han, J., Kamber, M.: Data mining: concepts and techniques, Morgan Kaufmann
Publ., San Franc. (2000)

11. Hirate, Y., Yamana, H.: Generalized sequential pattern mining with item intervals.
J. 1(3), 51–60 (2006)

12. Hofstadter, D.R., Mitchell, M.: The Copycat project: a model of mental fluidity
and analogy-making. In: Barnden, J., Holyoak, K., (eds.) Advances in connectionnist
and neural computation theory, pp. 31-113. Lawrence Erlbaum Associates (1992)

13. Kabanza, F., Nkambou, R., Belghith, K.: Path-planning for autonomous training
on robot manipulators in space. Proc. 19th Int. Joint. Conf. Artif. Intell., pp. 1729-
1731 (2005)

14. Lattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential pattern mining for
situation and behavior prediction in simulated robotic soccer. Proc. Robocup 2005
Conf., pp. 118-129 (2005)

15. Maes, P.: How to do the right thing. Connect. Sci. 1, 291–323 (1989)
16. Ortony, A., Clore, G.: cognitive structure of emotion. Cambridge Univ. Press,

Camb. (1988)
17. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q.: Multi-dimensional sequential pat-

tern mining. Proc. 10th Int. Conf. Inf. Knowl. Manag., pp. 81-88 (2001)
18. Songram, P., Boonjing, V., Intakosum, S.: Closed multidimensional sequential pat-

tern mining. Proc. 3rd Int. Conf. Inf. Techn.: New Gener., pp. 512-517 (2006)
19. van Lent, M., Laird, J.E.: Learning procedural knowledge through observation.

Proc. K-CAP 2001, pp. 179-186 (2001)
20. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate

maintenance. IEEE Trans. Knowl. Data Eng. 19(8), 1042–1056 (2007)

