
Model Checking Information Flow

Michael W. Whalen, David A. Greve, and Lucas G. Wagner

Abstract Information flow modeling describes how information can be transferred
between different locations within a software and/or hardware system. In this chapter,
we define a notion of information flow based on traces that is useful for describing
flow relations for synchronous dataflow languages such as Simulink® [11] and
SCADE™ [4] that are often used for hardware/software co-design. We then define an
automated method for analyzing information flow properties of Simulink models using
model checking. This method is based on creating a flow model that tracks informa-
tion flow throughout the model. Often, information flow properties are defined in
terms of some form of noninterference, which states informally that objects in one se-
curity domain cannot perceive the actions of objects within another domain. We dem-
onstrate that this method preserves the GWV functional notion of noninterference.
We then describe how this proof relates to the GWV theorem and provide some in-
sight into the relationship of the flow model and the flow graphs used in GWVr1. Fi-
nally, we demonstrate our analysis technique by analyzing the architecture of the
Turnstile high-assurance cross-domain guard platform using our Gryphon translation
framework and the Prover™ model checker.

1 Introduction

In order to describe the secure operation of a computer system, it is useful to study
how information propagates through that system. For example, an unintended propa-
gation of information between different components may constitute a covert channel
that can be used by an attacker to gain access to protected information. We are there-

Michael W. Whalen, David A. Greve, Lucas G. Wagner
Rockwell Collins, Inc., Cedar Rapids, Iowa, USA

2

fore interested in determining how and when information may be communicated
throughout a system. At Rockwell Collins, we have spent several years modeling in-
formation flow problems to support precise formal analyses of different kinds of soft-
ware and hardware models.
 In this chapter, we describe an analysis procedure that can be used to check a varie-
ty of information flow properties of hardware and software systems. One of the prop-
erties that can be checked is a form of noninterference [5, 20, 19, 21] that is defined
over system traces. Informally, it states that a system input does not interfere with a
particular output if it is possible to vary the trace of that input without affecting the
output in question.

Although great strides have been made in the development of formal analysis tools
over the last few years, there have been relatively few instances reported of their suc-
cessful application to industrial problems outside of the realm of hardware engineer-
ing. In fact, software and system engineers are often completely unaware of the oppor-
tunities these tools offer. One of the goals of our analysis was that it could be
completely automated and directly applicable to the tools and languages used by engi-
neers at Rockwell Collins, such as MATLAB Simulink® [11] and Esterel Technolo-
gies SCADE Suite™ [4]. These tools are achieving widespread use in the avionics
and automotive industry, and can also be used to describe hardware designs. The
graphical models produced by these tools have straightforward formal semantics and
are amenable to formal analysis. Furthermore, it is often the case that software and/or
hardware implementations are generated directly from these models, so the analysis
model is kept synchronized with the actual system artifact.

Our analysis is based on annotations that can be added directly to a Simulink or
SCADE model that describe specific sources and sinks of information. After this an-
notation phase, the translation and model checking tools can be used to automatically
demonstrate a variety of information flow properties. In the case of non-interference,
they will prove either that there is no information flow between the source and sinks,
or demonstrate a source of information flow in the form of a counterexample.

The result returned by the model checker must be justified by a general claim re-
garding the soundness of the analysis and the annotated model. To justify our analys-
es, we first define a kind of trace equivalence. This trace equivalence is just a form of
the GWVr1 characterization defined earlier in Greve’s information flow chapter [6].
We then define syntax and semantics for a synchronous dataflow language and pro-
vide an information flow semantics for the language. Next, we demonstrate that this
information flow semantics characterizes (i.e. enforces) the trace equivalence, and de-
fine non-interference as a dual-property of the information flow characterization. The
information flow semantics is then directly reflected into a “flow model” that is emit-
ted as part of the translation and conjoined with the original model. We finally show

3

that model checking this conjoined model yields the same result as executing the flow
model semantics.

The organization of the rest of the chapter is as follows: Section 2 introduces the
concepts involved through the use of a motivating shared buffer example. Section 3
describes an abstract formalization of information flow through trace equivalence,
presents the syntax and semantics for a simplified dataflow language, and proves an
interference theorem, i.e., that the information flow semantics preserves the trace
equivalence. Section 4 demonstrates how non-interference can be defined as a corol-
lary of the interference theorem. Section 5 describes how this formalization is realized
in the Gryphon tool suite. Section 6 describes how the tools can be used to analyze in-
transitive interference. Section 7 describes connections between the formalization in
this chapter and the GWV formulation from Greve [6]. Section 8 describes applica-
tions of the analysis: the shared buffer model and also a large-scale model of the
Rockwell Collins Turnstile high-assurance guard. Section 9 presents future directions
for the analysis and concludes.

2 A Motivating Example

To motivate our presentation, we use an example of a shared buffer model, shown in
Fig. 1. In this model, secret and unclassified information both pass through a shared
buffer. In order to prevent leakage of secret information, this buffer is coordinated by
a scheduler (bottom of the figure) that mediates access to the buffer. On the left, there
are two input processes for secret and unclassified input. On the right, there are two
output processes for secret and unclassified output.

4

Secret
Unclassified
Secret/Unclassified

Secret
Unclassified
Secret/Unclassified

SI

UI

SO

UO

BUFFER

mode=SECRET & S_Write

mode=UNCLASSIFIED &

U_Write

mode=SECRET &

S_Read

mode=UNCLASSIFIED & U_Read

SI

UI

SO

UO

BUFFER

mode=SECRET & S_Write

mode=UNCLASSIFIED &

U_Write

mode=SECRET &

S_Read

mode=UNCLASSIFIED & U_Read

WAITING

SECRET UNCLASSIFIED

S_Write

S_Read

U_Write

U_Read

WAITING

SECRET UNCLASSIFIED

S_Write

S_Read

U_Write

U_Read

Fig. 1 Shared Buffer Architecture.

When the scheduler is in the WAITING state, a write request from either input
process will result in that process obtaining the buffer. The process will continue to
control the buffer until a corresponding read from the buffer is completed. The con-
troller is designed to ensure that the secret data is only allowed to be consumed by the
secret output, and symmetrically that the unclassified data is only consumed by the
unclassified output.

Given this system, we would like to determine whether or not there is information
flow between the secret processes and the unclassified processes. In other words, is it
possible for the unclassified processes to glean information of any kind from the secret
processes and vice versa? This information sharing is usually called interference; non-
interference is the dual idea expressing that no information sharing occurs. In this ex-
ample, the potential for interference exists via the scheduler. Unclassified processes
can perceive the state of the buffer (whether they are able to read and write from it) via
the scheduler, which is affected by the secret processes.

If we decide that this interference is allowable, we would like to be able to deter-
mine whether there are any other sources of interference between the secret and un-
classified processes. An analysis which does not account for the current system state
will probably decide that there is the potential for interference, since both kinds of

5

processes use a shared buffer. We would like a more accurate analysis that accounts
for the scheduler state in order to show that there is no interference through the shared
buffer.

This example demonstrates important features of the analysis that we will describe
in the next sections:

• Conditional Information Flow: We would like the analysis to account for enough
of the system state to allow an accurate analysis (e.g., that no information flows
from a secret input to unclassified output through the shared buffer)

• “Covert” Information Flow: The scheduler does not directly convey information
from secret processes to unclassified processes, yet its state allows information
about the secret processes to be perceived. The analysis should detect this interfe-
rence.

• Intransitive Information Flow: If we are willing to allow information flow
through the scheduler, there should be a mechanism to allow us to tag this informa-
tion path as “allowable” and determine if other sources of flow exist. In the non-
interference literature, this is generally described as intransitive noninterference [5,
19, 20]. The meaning of intransitive has to do with the nature of information flows.
Since the scheduler depends on the secret input and the unclassified output depends
on the scheduler, a transitive analysis would assert that the unclassified output de-
pends on the secret input. However, we would like to be able to tag certain media-
tion points (e.g., downgraders or encryptors) as “allowed” sources of information
flow.

2.1 Shared Buffer Simulink Model

A Simulink model of the shared buffer example is shown in Fig. 2. The inputs to
the model are shown on the left: we have the requests to use the buffer from the four
processes (the secret input/output process and the unclassified input/output processes)
as well as the input buffer data from the secret and unclassified input processes. The
scheduler subsystem determines access to the buffer, while the buffer subsystem uses
the scheduler state to determine which process writes to the shared buffer.

6

2

so_data

1

uo_data

si_req

ui_req

so_req

uo_req

state

scheduler

is_mode_unclassified

is_mode_secret

[ui_data]

[si_data]

[uo_req]

[so_req]

[ui_req]

[si_req]

[State]

[ui_req]

[si_req]

[ui_data]

[State]

[si_data]

[State]

[uo_req]

[so_req]

[State]

From1 0

0

State

si_data

ui_data

buf f er_data

Buffer

6

uo_req

5

so_req

4

ui_data

3

ui_req

2

si_data

1

si_req

Fig. 2 Shared Buffer Example in Simulink.

The information flow analysis is performed in terms of a set of principal variables.
These variables are the variables that we are interested in tracking through the model.
We always track the input variables to the model, and we sometimes track computed
variables internal to the model. To perform the analysis, the Simulink model is anno-
tated to add the principal variables as shown in Fig. 3.

2

so_data

1

uo_data

si_req

ui_req

so_req

uo_req

state

scheduler

State

si_data

ui_data

buf f er_data

buffer

is_mode_unclassified

is_mode_secret

principal

Gryphon if_principal uo

principal

Gryphon if_principal ui 1

principal

Gryphon if_principal ui

principal

Gryphon if_principal so

principal

Gryphon if_principal si 1

principal

Gryphon if_principal si

[ui_data]

[si_data]

[uo_req]

[so_req]

[ui_req]

[si_req]

[State]

[ui_req]

[si_req]

[ui_data]

[State]

[si_data]

[State]

[uo_req]

[so_req]

[State]

From1 0

0

6

uo_req

5

so_req

4

ui_data

3

ui_req

2

si_data

1

si_req

Fig. 3 Annotated Simulink Model.

Once we have annotated the model, we use the Gryphon tool set [24] to automati-
cally construct an information flow model that can be model checked on a variety of

7

model checking tools including NuSMV [8], SAL [23], and Prover [16]. The analysis
process extends the original model with a flow model that operates over sets of prin-
cipal variables. Each computed variable in the original model has a flow variable in
the flow model that tracks its dependencies in terms of the principal variables.

For model checking, sets of principal variables are encoded as bit sets, and check-
ing whether information flow is possible is the same as determining whether it is poss-
ible that one of the principal bits is set. For the model above, the translation generates
the following bit set for the principals:

Principal bit vector: {
 si maps to bit: 0,
 so maps to bit: 1,
 ui maps to bit: 2,
 uo maps to bit: 3 }

Now we can write properties over output variables. For example, suppose we want
to show that the secret output data is unaffected by the unclassified input or output
principal. In this case, we could write:

LTLSPEC G(!(gry_IF_so_data[ui_idx] |
gry_IF_so_data[uo_idx]));

gry_IF is the prefix used for the flow variables, so the analysis checks whether there
is flow to the so_data output from the ui principal or the uo principal. These principals
correspond to flow from the ui_req, ui_data, and uo_req input variables.

As described earlier, this property is violated, because there is information flow
from the unclassified processes to the secret output through the scheduler. NuSMV
generates a counterexample that we can examine to determine how the information
leak occurred.

After analyzing the problem, we decide that the flow of information through the
scheduler state is allowable. We would now like to search for additional sources of
flow. By adding an additional principal for the scheduler state, as shown in Fig. 4, we
can ignore the flows from the ui and uo principals that occur through the scheduler.
After re-running the analysis, the model checker finds no other sources of information
flow.

8

2

so_data

1

uo_data

si_req

ui_req

so_req

uo_req

state

scheduler

State

si_data

ui_data

buf f er_data

buffer

is_mode_unclassified

is_mode_secret

principal

Gryphon if_principal uo

principal

Gryphon i f_principal ui 1

principal

Gryphon if_principal ui

principal

Gryphon if_principal so

principal

Gryphon if_principal si 1

principal

Gryphon if_principal si

principal

Gryphon if_principal scheduler

[ui_data]

[si_data]

[uo_req]

[so_req]

[ui_req]

[si_req]

[State]

[ui_req]

[si_req]

[ui_data]

[State]

[si_data]

[State]

[uo_req]

[so_req]

[State]

From1 0

0

6

uo_req

5

so_req

4

ui_data

3

ui_req

2

si_data

1

si_req

Fig. 4 Annotated Simulink Model with Intransitive Flow.

3 Information Flow Modeling for Synchronous Dataflow
Languages

Languages such as Simulink [11] and SCADE [4] are examples of synchronous dataf-
low languages. The languages are synchronous because computation proceeds in a
sequence of discrete instants. In each instant, inputs are perceived and states and out-
puts are computed. From the perspective of the formal semantics, the computations
are instantaneous. The languages are dataflow because they can be understood as a
system of assignment equations, where an assignment can be computed as soon as the
equations on which it is dependent are computed. The equations can either be
represented textually or graphically. As an example, consider a system that computes
the values of two variables, X and Y, based on 4 inputs: a, b, c, and d, shown in Fig. 2:

Fig. 5 Graphical and textual presentation of a set of equations.

9

The variables (often referred to as signals) in a dataflow model are used to label a
particular computation graph. Therefore, it is incorrect to view the equations as a set
of constraints on the model: a set of equations shown in Fig. 6 is not a valid model be-
cause X and Y mutually refer to one another. This is shown in Fig. 6, where the bold
lines indicate the cyclic dependencies. Such a system may have no solution or infi-
nitely many solutions, so cannot be directly used as a deterministic program. If
viewed as a graph, these sets of equations have data dependency cycles, and are consi-
dered incorrect.

*
2

a
X

Y d

X = 2a + Y

Y = X + d

+

+

Fig. 6 Cyclic set of equations.

However, in order for the language to be useful, we must be able to have mutual
reference between variables. To allow benign cyclic dependencies, we create a step-
delay operator (i.e., a latch) using the comma operator. For example: {X = 2a / Y; Y
= 1, (X + d))} defines a system where X is equal to 2a divided by the current value of
Y, while Y is initially equal to 1, and thereafter equal to the previous value of X plus
d.

There are several examples of textual dataflow languages, including Lustre [7], Lu-
cid Synchrone [3], and Signal [9] that differ in terms of structuring mechanisms, com-
putational complexity (i.e., whether recursion is allowed), and in terms of clocks that
define the rates of computation for variables. Our analysis is defined over the Lustre
language. Lustre is the kernel language of the SCADE tool suite and also the internal
language of the Rockwell Collins Gryphon tool suite. Lustre is also sufficient to mod-
el the portions of the Simulink/Stateflow languages that are suitable for hard-
ware/software co-design.

3.1 Modeling Information Flow

When describing information flow, we are often attempting to define a non-
interference relation of some kind. There have been several formulations of non-
interference [5, 20, 21, 19] involving transition systems and process algebras which
have focused on non-interference in terms of a trace of actions (inputs) fed into some
machine that generates outputs. The idea of non-interference is simple: a security do-

10

main u does not interfere with domain v if no action performed by u can influence sub-
sequent outputs of v.

In the formulation of [20], non-interference is demonstrated by removing actions
from the trace T (call it T’) and showing that under certain conditions the final output
of the machine is the same. However, for synchronous dataflow languages such as
Lustre or Simulink, characterizing the “removable” inputs is difficult, as each input
variable is assigned a value in each step; one must define predicates over the cross
product of the input variables. Characterizing the “action” of a model with potentially
tens or hundreds of outputs presents similar difficulties.

Instead, following Greve in the earlier chapter [6], we would like to define a notion
of non-interference on individual variables within a model in terms of correspon-
dences between two traces. In our formulation, a trace is a sequence of model states,
each state containing the assignments to all variables within the model. We define a
set of principal variables as a superset of the inputs, and then define an Interferes
function for any variable c that describes the set of principals that could possibly affect
the value of c. We determine the correctness of the Interferes set in terms of trace cor-
respondence. The Interferes set is correct if, given any variable c and traces π0 and π1,
if the traces agree on all the variables of Interferes(c), then they will agree on c. In
other words, the variables in Interferes(c) are sufficient to determine the value of c at
any step. Equivalently, any principal variable outside the Interferes set cannot affect
the value of c.

Formalized in the PVS notation [22], the theorem that we are proving is as follows:
 InterferenceTheorem: LEMMA
 FORALL (p: Program, gt1:gtrace, st1,st2:strace):
 FORALL (idx:index):
 WFp(p) & St(p,st1) & St(p,st2) &
 IFt(p,st1,gt1) &
 vtraceEquivSet(DepSet(idx,gt1),st1,st2) =>
 liftv(idx,st1) = liftv(idx,st2)

This theorem states that if two traces are equivalent (vtraceEquivSet) on the dependen-
cies computed for a variable idx by our Interferes set (DepSet(idx,gt1)), then two trac-
es agree on the value of idx. The details of the theorem and steps in the proof will be
explained in the following sections.

How this is used in practice is that the user suggests what is believed to be a non-
interfering principal variable for some variable c and a model checker is used to de-
termine whether or not this variable interferes with (i.e., affects) c.

11

3.2 Using PVS

PVS [22, 15] is a mechanized theorem prover based on classical, typed higher-
order-logic. Specifications are organized into (potentially parameterized) theories,
which are collections of type and function definitions, assumptions, axioms and theo-
rems. The proof language of PVS is composed of a variety of primitive inference pro-
cedures that may be combined to construct more powerful proof strategies.

Normally in PVS the proof process is performed interactively, and the proof script
encoding the entire proof is not visible to the user. In our development, we used the
ProofLite [14] extension to PVS in order to embed the proofs as comments into the
PVS theories. To make the theories shorter and easier to understand, we omit the
ProofLite scripts in this chapter. However, the interested reader is encouraged to visit
the Springer web site to view and run the scripts.

3.3 Traces and Processes

The semantics of synchronous dataflow languages are usually defined in terms of
traces that describe the behavior of the system over time. These traces are formalized
in the language of the PVS theorem prover in Fig. 7. We are interested in two kinds of
traces. First, we are interested in the trace of values produced by the execution of the
system. We define the set of values that can be assigned to variables using the opaque
type vtype1. The execution traces are mappings from instants in time to states, where
states map variables to values, and are defined by the strace and state types, respec-
tively. The variables in our model correspond to indices in Greve’s formulation, and
we use the term index to identify a variable in a trace.

Second, we are interested in tracing the dependencies of a variable in terms of a set
of other variables (in GWV terms, the information flow graph). These traces map in-
stants in time to graph states, where each graph maps an index (i.e., variable) to sets of
indices. At each instant, for a given variable v the graph captures a set of variables
that are necessary for computing v. These traces are defined by the gtrace and graph-
State types, respectively.

Note that our states are defined over an infinite set of variables nat. In a real sys-
tem, we would have a finite set, but this can be modeled by simply ignoring all va-
riables above some maximum index. This change does not affect the formalization or
the proofs.

1 Opaque types in PVS allow one to define a type as an unspecified set of values.

12

Traces: THEORY
BEGIN

 index: TYPE = nat
 time: TYPE = nat
 vtype: TYPE+

 state : TYPE = [index -> vtype]
 strace: TYPE = [time -> state]

 get(i: index, s: state): vtype = s(i)

 graphState: TYPE = [index -> set[index]]
 gtrace: TYPE = [time -> graphState]
END Traces

Fig. 7 Traces Theory.

Next, we define processes that constrain the traces in Fig. 8. The processes are
built from expressions: an (unspecified) set of unary and binary operators, constant,
variable, and conditional (if/then/else) expressions. We next partition the indices into
gates, latches, and inputs. Gates are computed from the current values of other va-
riables, while latches are computed from the previous values of other variables.
Latches also have an initial value which is their value in the first step of a trace. In-
puts are not computed and assumed to be externally provided.

The processes described in Fig. 8 define a simple synchronous dataflow language,
such as Simulink or SCADE. For the purposes of this discussion, the structuring me-
chanisms of these languages (nodes and subsystems) as well as the clocking mechan-
isms for variables can be thought of as syntactic sugar.

ProcessExprTypes: THEORY
BEGIN
 IMPORTING Traces

 BopType: TYPE+
 UopType: TYPE+

 BopEx(Bop: BopType, v1,v2: vtype): vtype
 UopEx(Uop: UopType, v0: vtype): vtype
 isTrue(v0: vtype): bool
END ProcessExprTypes

13

ProcessExpr: DATATYPE
BEGIN
 IMPORTING ProcessExprTypes

 Constant(value : vtype): Constant?
 Variable(name : index): Variable?
 ITE(test: ProcessExpr, thn: ProcessExpr,
 els: ProcessExpr): ite?
 Bop(OpB: BopType, a1: ProcessExpr,
 a2: ProcessExpr): Bop?
 Uop(OpU: UopType, a0: ProcessExpr): Uop?
END ProcessExpr

ProcessAssignment: DATATYPE
BEGIN
 IMPORTING ProcessExpr
 Gate (gexpr: ProcessExpr): Gate?
 Latch(v0: vtype, lexpr: ProcessExpr): Latch?
 Input: Input?
END ProcessAssignment

Program: THEORY
BEGIN
 IMPORTING ProcessAssignment
 IMPORTING IndexSet[index]

 Program: TYPE = [index -> ProcessAssignment]

 StatesP(p: Program): set[index] =
 (LAMBDA (v: index): Latch?(p(v)))

 InputsP(p: Program): set[index] =
 (LAMBDA (v: index): Input?(p(v)))

 GatesP(p: Program): set[index] =
 (LAMBDA (v: index): Gate?(p(v)))

 De(e: ProcessExpr): RECURSIVE set[index] =
 CASES e OF
 Constant(value): Empty,
 Variable(name): singleton(name),

14

 ITE(test,thn,els): De(test) + De(thn) +
 De(els),
 Bop(OpB,a1,a2): De(a1) + De(a2),
 Uop(OpU,a0): De(a0)
 ENDCASES
 MEASURE e by <<

 belowSet(n: nat, s: set[nat]): bool =
 FORALL (i: nat): member(i,s) => (i < n)

 Ae(v: index, a: ProcessAssignment): ProcessExpr =
 CASES a OF
 Gate (gexpr) : gexpr,
 Latch(v0,lexpr): lexpr,
 Input : Variable(v)
 ENDCASES;

 WFp(p: Program) : bool =
 FORALL (v: index):
 belowSet(v, De(Ae(v,p(v))) & GatesP(p))

 WFPrograms : TYPE = { p : Program | WFp(p) }

END Program

Fig. 8 Processes and Programs.

In general, a set of simultaneous equations may yield zero or multiple solutions.
We want a program to be functional, given a particular input trace. In order to ensure
that the assignments yield functional traces, we need a strict ordering on gate assign-
ments. Since indices are defined as naturals, it suffices to define an ordering such that
the assignment expression for a variable may only refer to gate indices that are strictly
smaller than the index being assigned. Note that only gate indices are restricted – it is
possible to write benign cyclic dependencies involving latches.

The Ae function returns the assignment expression associated with a particular in-
dex. For inputs, Ae just returns a variable expression referring to the input. The De
predicate defines the dependencies of an expression and WFp defines the functional
well-formedness constraint on programs. Note that this predicate also forms a basis
for inducting over the gates within the program that we will use for several of the
proofs.

15

3.4 Semantic Rule Conventions

We define different kinds of semantics for the values produced by a program and
also for information flow. The semantic functions introduced follow a naming con-
vention to make them easier to follow and to relate to one another. The form of the
semantics functions is as follows:
<TYPE><syntax><OPTIONAL RESTRICTION>

For example, the Se function defines the value-semantic function for expressions, and
the IFsG function defines the information-flow function for states with respect to
gates.
The <TYPE>s of semantics that will be used in the following discussion are as fol-
lows:

S: value semantics for traces
D: syntactic dependencies
DS: dependencies based on syntax and current state
IF: information flow dependencies

The <syntax>es that will be discussed are the following:
e: expressions
i: indices (assignments)
s: states
t: traces

The <OPTIONAL RESTRICTION>s restrict the semantic functions at a particular
syntactic level to:

I: Inputs
G: Gates
L: Latches

3.5 Value Trace Semantics

We next create semantic functions for the expressions and programs in Fig. 8. Fol-
lowing [1] and [12] the semantics are defined in terms of trace conformance, as shown
in Fig. 9. We state that a trace conforms to a program if the values computed by the
assignment expressions for the gates and latches correspond to the values in the trace.
The Se function computes a value from a Process expression. The SsG predicate
checks conformance between the gate assignments and a state, and the SsL predicates
check conformance between the latch assignments and the trace. The St predicate de-
fines trace conformance over both gates and latches.

16

ProcessSemantics: THEORY
BEGIN
 IMPORTING Program

 Se(e: ProcessExpr, s: state): RECURSIVE vtype =
 CASES e OF
 Constant(value): value,
 Variable(name): s(name),
 ITE(test,thn,els):
 IF isTrue(Se(test,s)) THEN Se(thn,s)
 ELSE Se(els,s) ENDIF,
 Bop(OpB,a1,a2): BopEx(OpB,Se(a1,s),Se(a2,s)),
 Uop(OpU,a0): UopEx(OpU,Se(a0,s))
 ENDCASES
 MEASURE e by <<

 Si(p: Program)(i: index, s0: state): vtype =
 CASES p(i) OF
 Gate (gexpr) : s0(i),
 Latch(v0,lexpr) : Se(lexpr,s0),
 Input : s0(i)
 ENDCASES

 SsG(p: Program, s0: state): bool =
 FORALL (v: index): Gate?(p(v)) =>
 (s0(v) = Se(Ae(v,p(v)),s0))

 SsL0(p: Program, s0: state): bool =
 FORALL (v: index): Latch?(p(v)) =>
 (s0(v) = v0(p(v)))

 SsLn(p: Program, s0,s1: state): bool =
 FORALL (v: index): Latch?(p(v)) =>
 (get(v,s1) = Si(p)(v,s0))

 St(p: Program, st: strace): bool =
 FORALL (n: nat):
 IF (n = 0) THEN
 SsL0(p,st(0)) & SsG(p,st(0))
 ELSE
 SsLn(p,st(n-1),st(n)) & SsG(p,st(n))
 ENDIF

17

END ProcessSemantics

 Fig. 9 Process Trace Semantics.

3.6 Creating an Accurate Model of Information Flow

Now we can create a semantics that tracks information flow through the model, shown
in Fig. 10. This semantics maps indices to the set of indices used when computing the
value of the index. For expressions, we create two different semantics; the first tracks
the indices that are immediately used within the computation of the expression; the
second traces the indices back to principal variables, which are the actual concern of
the information flow analysis. For the moment, we consider the inputs as the principal
variables. We expand this notion when we talk about intransitive interference in Sec-
tion 6.

ProcessIndexSets: THEORY
BEGIN
 IMPORTING ProcessSemantics
 IMPORTING MemberRules[index]

 DSe(e: ProcessExpr, s0: state):
 RECURSIVE set[index] =
 CASES e OF
 Constant(value): Empty,
 Variable(name): singleton(name),
 ITE(test,thn,els):
 IF isTrue(Se(test,s0)) THEN
 SDe(test,s0) + SDe(thn,s0)
 ELSE
 SDe(test,s0) + SDe(els,s0)
 ENDIF,
 Bop(OpB,a1,a2): SDe(a1,s0) + SDe(a2,s0),
 Uop(OpU,a0): SDe(a0,s0)
 ENDCASES
 MEASURE e by <<

 IFe(e: ProcessExpr, principal: set[index],
 s0: state, g0: graphState): RECURSIVE
 set[index] =

18

 CASES e OF
 Constant(value): Empty,
 Variable(name):
 IF principal(name) THEN
 singleton(name)
 ELSE
 g0(name)
 ENDIF,
 ITE(test,thn,els):
 IF isTrue(Se(test,s0)) THEN
 IFe(test,principal,s0,g0) +
 IFe(thn,principal,s0,g0)
 ELSE
 IFe(test,principal,s0,g0) +
 IFe(els,principal,s0,g0)
 ENDIF,
 Bop(OpB,a1,a2): IFe(a1,principal,s0,g0) +
 IFe(a2,principal,s0,g0),
 Uop(OpU,a0): IFe(a0,principal,s0,g0)
 ENDCASES
 MEASURE e by <<

 IFsI(p: Program, s0: state, g0: graphState): bool=
 FORALL (v: index): Input?(p(v)) =>
 (g0(v) = IFe(Ae(v,p(v)),InputsP(p),s0,g0))

 IFtI(p: Program, st: strace, gt: gtrace): bool =
 FORALL (t: time) : IFsI(p, st(t), gt(t))

 IFsG(p: Program, s: state, g: graphState): bool =
 FORALL (v: index): Gate?(p(v)) =>
 (g(v) = IFe(Ae(v,p(v)),InputsP(p),s,g))

 IFtG(p: Program, st: strace, gt: gtrace): bool =
 FORALL (t: time) : IFsG(p, st(t), gt(t))

 IFsL0(p: Program, g0: graphState): bool =
 FORALL (v: index):
 Latch?(p(v)) => g0(v) = Empty

 IFsLn(p: Program, s0: state,
 g0,g1: graphState): bool =
 FORALL (v: index): Latch?(p(v)) =>

19

 (g1(v) = IFe(Ae(v,p(v)),InputsP(p),s0,g0))

 IFtL(p: Program, st: strace, gt: gtrace): bool =
 FORALL (n: nat):
 IF (n = 0) THEN
 IFsL0(p,gt(0))
 ELSE
 IFsLn(p,st(n-1),gt(n-1),gt(n))
 ENDIF

 IFt(p: Program, st: strace, gt: gtrace): bool =
 IFtG(p,st,gt) & IFtL(p,st,gt) & IFtI(p,st,gt)

 tracePair : TYPE = [# s: strace, g: gtrace #];

 tp_ok(p: Program, tp: tracePair) : bool =
 IFt(p, s(tp), g(tp)) AND St(p, s(tp)) ;

Fig. 10 Process Index Semantics.

The only difference between the DSe and IFe semantics in Fig. 10 is in the be-
havior of the Variable branch. For the IFe semantics, a set of principal variables are
provided. If a referenced variable is a principal variable, then we return it as a depen-
dency; if it is not, then we return the dependencies of that variable. The effect of this
rule is to backchain through the intermediate variables so that dependencies are always
a subset of the principal variables. The DSe semantics, on the other hand, return the
immediate dependencies (i.e., the indices of all variables referenced in the assignment
expression).

Note that both the DSe and IFe semantics are state-dependent: For if/then/else ex-
pressions, the set of dependencies depends on the if-test; only dependencies for the
used branch are returned. This feature allows conditional dependencies to be tracked
within the model.

After defining the expression semantics we define the IF semantics on states and
programs, matching the structure of the S definitions in Fig. 9. At the bottom of Fig.
10, we define trace pairs as a type and define trace pair conformance to a program
based on both semantics.

20

3.7 PVS Proof of Trace Equivalence (InterferenceTheorem)

We can now state the interference theorem that should be proven over the trace pairs.
Informally, we’d like to state that for a particular index idx, if the inputs referenced in
an information flow trace for idx (DepSet) have the same values in two state traces
(vtraceEquivSet), then the two traces will have the same values for idx. Formally, this
obligation is expressed in Fig. 11. Note that there is an asymmetry in the interference
theorem: we define two execution traces (st1 and st2) but only one graph trace (gt1).
The graph trace (gt1) corresponding to an execution trace (st1) for a given index idx
characterizes the signals that must match for any other execution trace (in this case
st2) to match st1 for signal idx. It is equivalent to use a graph trace based on st2.

 vtrace: TYPE = [time -> vtype]

 liftv(i: index, st: strace): vtrace =
 (LAMBDA (t: time): st(t)(i))

 vtraceEquivSet(set: set[index],st1,st2: strace):
 bool =
 FORALL (i: index): member(i,set) =>
 liftv(i,st1) = liftv(i,st2)

 DepSet(x: index, gt: gtrace): set[index] =
 (lambda (i: index):
 (EXISTS (t: time): member(i,gt(t)(x))))

 InterferenceTheorem: LEMMA
 FORALL (p: Program, gt1:gtrace, st1,st2:strace):
 FORALL (idx:index):
 WFp(p) & St(p,st1) & St(p,st2) &
 IFt(p,st1,gt1) &
 vtraceEquivSet(DepSet(idx,gt1),st1,st2) =>
 liftv(idx,st1) = liftv(idx,st2)

Fig. 11 Interference Theorem.

To prove this theorem, we have to build a hierarchy of equivalences shown in Fig.
12. This graph does not show all of the connections between proofs (e.g., which theo-
rems are instantiated in the proofs of other theorems), but it provides a good overview
of the structure of the proof. Ultimately, we are interested in proving the final theo-
rem, which defines a relationship between traces as described by the information flow
semantics IF and the value semantics S. In order to prove this theorem, we define an

21

intermediate flow semantics based on state dependencies (DS). Whereas the informa-
tion flow semantics unwinds the dependencies from outputs to inputs implicitly
through the use of the graph state and graph trace, the DS flow semantics unwind the
graph explicitly and therefore provide an easier basis for inductive proof.

The “rows” of the proof graph correspond to a level in the evaluation hierarchy.
Reading from top to bottom, we talk about equivalences in terms of expressions, then
in terms of indices (assignments), then states, and finally, traces. The “columns” cor-
respond to the different semantics. On the left is the information flow (IF) semantics,
in the middle is the DS semantics, and on the right is the value (S) semantics. One se-
mantics bridges the IF and DS semantics (DSiIF).

There are two different kinds of theorems that are proved between the semantics.
The first are equivalences between the different flow semantics (e.g., that two flow
semantics yield the same set of dependencies). The second are GWV-style theorems,
in the same style as [6]. These state that if the values of the dependent indices for a
piece of syntax ∑ are equal within two states or traces s1 and s2, then the value pro-
duced by evaluating ∑ over s1 and s2 will be equal.

In our analysis, we prove GWVr1-style theorems. GWVr1 is less expressive than
GWVr2 but it is simpler to formulate. The additional expressive power in GWVr2 is
necessary to describe dynamic memory, but the synchronous models that we analyze
in this chapter do not use dynamic memory, so GWVr1 is sufficiently expressive for
our purposes. The connection between the formulation in this chapter and [6] is ex-
plored further in Section 7.

22

Fig. 12 Proof Graph for final theorem.

23

Expression Equivalence Theorems

In Fig. 13, we begin the process of proving the final theorem by describing some
lemmas over expressions. These will form the basis of the later proofs over larger
pieces of syntax.

24

DSe_subset_De: LEMMA
 FORALL (e: ProcessExpr, s0: state):
 subset?(DSe(e,s0),De(e))

 Compose(uset: set[index], g0: graphState):
 set[index] =
 (lambda (z: index):
 (EXISTS (m: index):
 member(m,uset) & member(z,g0(m))))

 member_Compose: LEMMA
 FORALL (i: index, uset: set[index],
 g0: graphState):
 member(i,Compose(uset,g0)) =
 (EXISTS (m: index):
 member(m,uset) & member(i,g0(m)))

 IFe_to_DSe_Property(e: ProcessExpr): bool =
 FORALL (principal: set[index], s0: state,
 g0: graphState):
 IFe(e,principal,s0,g0) =
 LET uset: set[index] = DSe(e,s0) IN
 (uset & principal) +
 Compose(uset & (not(principal)),g0)

 IFe_to_DSe_proof: LEMMA
 FORALL (e: ProcessExpr): IFe_to_DSe_Property(e)

 IFe_to_DSe: LEMMA
 FORALL (e: ProcessExpr, principal: set[index],
 s0: state, g0: graphState):
 IFe(e,principal,s0,g0) =
 LET uset: set[index] = DSe(e,s0) IN
 (uset & principal) +
 Compose(uset & (not(principal)),g0)

Fig. 13 Expression Equivalence Proofs.

The DSe_subset_De lemma states that the state-aware dependency function (DSe)
returns a subset of the indices referenced by the syntactic dependency function (De).

25

We appeal to this lemma (through another lemma: WFg_to_WFgDSe) to establish a
basis for induction for some of the proofs involving equivalence of gate assignments.

The Compose function is used to look up each of the entries in a set in the graph
state. It performs the same function as the Direct Interaction Allowed (DIA) function
in Greve’s formulation [6]. It is used to map from a set of immediate dependencies to
their dependencies.

The IFe_to_DSe_Property lemma defines the first mapping between the state-based
DS dependency semantics and the gtrace-based IF dependency semantics. Remember
from Section 3.4 that the IFe semantics are defined in terms of a set of principals: if a
variable is principal, then we look up its dependencies in the graph state. This proper-
ty creates an equivalence between these semantics by looking up (via Compose) the
non-principal variables from the DSe semantics.

Program Well-Formedness Theorems

In Fig. 14, we define a bridge between the program well-formedness constraint
WFp and state dependencies (DSe). This bridge will allow us to use the WFp predi-
cate in reasoning about GWV equivalences involving state dependencies. We define a
WFgDSe predicate that defines well-formedness in terms of the DSe, and show that
WFp implies the (more accurate) WFgDSe predicate.

 Principals(p: Program): set[index] =
 StatesP(p) + InputsP(p)

 WFg(p: Program): bool =
 FORALL (v: index):
 belowSet(v,De(Ae(v,p(v))) - Principals(p))

 Principals_Gates_partition : LEMMA
 FORALL (p: Program):
 (GatesP(p) = complement(Principals(p)))

 Principals_Gates_subset_equiv : LEMMA
 (FORALL (s: set[index], p: Program) :
 (s & GatesP(p)) = (s - Principals(p)))

 WFp_to_WFg : LEMMA
 FORALL (p: Program) : (WFp(p) = WFg(p))

 WFgDSe(p: Program, s0: state): bool =

26

 FORALL (v: index):
 belowSet(v,DSe(Ae(v,p(v)),s0) - Principals(p))

 WFg_to_WFgDSe: LEMMA
 FORALL (p: Program, s0: state):
 WFg(p) => WFgDSe(p,s0)

END ProcessIndexSets

Fig. 14 Well-Formedness Predicates for Programs.

GWV Equivalence Theorems

Now, we can start proving GWV-style equivalence properties. These state that if
the values of the dependent indices for a piece of syntax ∑ match within two states or
traces s1 and s2, then the value produced by the evaluating ∑ over s1 and s2 will
match. The idea is that we will start from the immediate dependencies of an expres-
sion and progressively unwind the dependencies toward the inputs. This unwinding
occurs in two stages:

• First we unwind to the principals, which (for the purposes of the proof) are the
states and inputs. Another way of looking at this first unwinding is unwinding back
to the “beginning” of the step. This is the definition of the DSiP dependencies

• Next, we unwind the dependencies back to the inputs by examining the graph trace
over time. This is the definition of the DSt dependencies.

We also map these state-based equivalences that are computed via explicit unwind-
ings of dependencies to the IF equivalences, which implicitly unwind the dependen-
cies using the graph states. This is accomplished by using the DSiIF dependency rela-
tion. This will be the key lemma to show the equivalence of the IF and DS
formulations.

Fig. 15 shows the dependency proof for the DSe dependencies. There are two

equivalences: the first over evaluation of expressions, and the second over evaluation
of indices.

ProcessInterference: THEORY
BEGIN
 IMPORTING ProcessIndexSets
 IMPORTING GWV_EquivSetRules[index,state,vtype,get]

27

 StateEquivSet(s:set[index],s1,s2: state): bool =
 equivSet(s,s1,s2)

 GWVr1_Se_DSe: LEMMA
 FORALL (e: ProcessExpr):
 FORALL (in1, in2: state):
 StateEquivSet(DSe(e, in1), in1, in2) =>
 (Se(e, in1) = Se(e, in2))

 GWVr1_Si_DSe: LEMMA
 FORALL (p: Program):
 FORALL (i: index, in1, in2: state):
 SsG(p,in1) & SsG(p,in2) &
 StateEquivSet(DSe(Ae(i,p(i)), in1),
 in1, in2) =>
 Si(p)(i,in1) = Si(p)(i,in2)

Fig. 15 GWVr1 for DSe Dependencies.

Figure 16 shows the proofs for the next level of unwinding: showing that if the
principal variables are the same for two states, then the results produced for an index
will be the same. This step removes the gates from the dependency calculation.

 DSiP(p: Program,s0: state)(x: index) :
 RECURSIVE set[index] =
 LET uset: set[index] = DSe(Ae(x,p(x)),s0) IN
 LET pri : set[index] = Principals(p) IN
 (uset & pri) +
 (lambda (z: index):
 (EXISTS (m: index):
 m < x &
 member(m,uset & not(pri)) &
 member(z,DSiP(p,s0)(m))))
 MEASURE x

 DSiP_contains_only_Principals: LEMMA
 FORALL (x: index, p: Program, s0: state):
 subset?(DSiP(p,s0)(x),Principals(p))

 DSiP_def: LEMMA
 FORALL (p: Program,s0: state,x: index):
 WFg(p) =>

28

 DSiP(p,s0)(x) =
 LET uset: set[index] = DSe(Ae(x,p(x)),s0)
 IN
 LET pri : set[index] = Principals(p)
 IN
 (uset & pri) +
 Compose(uset & not(pri),DSiP(p,s0))

 GWVr1_Si_DSiP: LEMMA
 FORALL (p: Program):
 FORALL (i: index, s1,s2: state):
 WFg(p) & SsG(p,s1) & SsG(p,s2) &
 StateEquivSet(DSiP(p,s1)(i),s1,s2) =>
 Si(p)(i,s1) = Si(p)(i,s2)

Fig. 16 GWVr1 for Principal dependencies.

Fig. 17 shows the proofs of the next level of unwinding, to the dependencies of the
states. The definition of the DSiIF predicate is particularly important as it bridges be-
tween the graph-trace-based IF semantics and the state-based DS semantics. Like the
DSiP semantics, it backtraces through the gates to reach dependencies based on states
and inputs. The distinction is that it then looks up the state dependencies in the graph
state. This means that the dependencies computed by DSiIF will match the dependen-
cies computed by the IF relation, as demonstrated by the IFe_to_DSiIF lemma. This
is a key lemma in proving the unwinding theorem over state dependency traces DSt
and information flow traces IFt.

29

 GProgram: TYPE = { p : Program | WFg(p) }

 DSiIF(p: GProgram, s0: state, g0: graphState)
 (x: index): RECURSIVE set[index] =
 LET uset : set[index] = DSe(Ae(x,p(x)),s0) IN
 LET ins : set[index] = InputsP(p) IN
 LET dff : set[index] = StatesP(p) IN
 LET gates : set[index] = GatesP(p) IN
 (uset & ins) +
 Compose(uset & dff, g0) +
 (lambda (z: index):
 (EXISTS (m: index):
 member(m,uset & gates) &
 member(z,DSiIF(p,s0,g0)(m))))
 MEASURE x

 DSiIF_to_DSiP: LEMMA
 FORALL (p: Program, s0: state, g0: graphState):
 WFg(p) =>
 FORALL (x: index):
 DSiIF(p,s0,g0)(x) =
 (InputsP(p) & DSiP(p,s0)(x)) +
 Compose(StatesP(p) & DSiP(p,s0)(x),g0)

Fig. 17 GWVr1 for State-Input dependencies.

Finally, In Fig. 18, we map dependencies to inputs across a multistep trace. First,
we prove a lemma that is sufficient for the proof of latch assignment at step zero
(GWVr1_Si_SsL0). This lemma will be used to provide the base case for latches in the
GWVr1_Si_DSt proof.

 GWVr1_Si_SsL0: LEMMA
 FORALL (p: Program):
 FORALL (i: index, s1,s2: state):
 WFg(p) & SsL0(p,s1) & SsL0(p,s2) &
 SsG(p,s1) & SsG(p,s2) &
 StateEquivSet(InputsP(p) &
 DSiP(p,s1)(i),s1,s2) =>
 Si(p)(i,s1) = Si(p)(i,s2)

 DSt(p: Program, st: strace, t: time)(i: index):
 RECURSIVE set[index] =

30

 IF (t = 0) THEN
 InputsP(p) & DSiP(p,st(t))(i)
 ELSE
 LET uset: set[index] = DSiP(p,st(t))(i) IN
 (uset & InputsP(p)) +
 Compose(not(InputsP(p)) & uset,
 DSt(p,st,t - 1))
 ENDIF
 MEASURE t

 subset_Compose: LEMMA
 FORALL (a: index, x: set[index], g: graphState):
 member(a,x) => subset?(g(a),Compose(x,g))

 vtrace: TYPE = [time -> vtype]

 vtrace_extensionality: LEMMA
 FORALL (i: index, s1,s2: vtrace):
 (s1 = s2) =
 FORALL (t: time): s1(t) = s2(t)

 AUTO_REWRITE+ vtrace_extensionality

 liftv(i: index, st: strace): vtrace =
 (LAMBDA (t: time): st(t)(i))

 vtraceEquivSet(set: set[index],st1,st2: strace):
 bool =
 FORALL (i: index): member(i,set) =>
 liftv(i,st1) = liftv(i,st2)

 GWVr1_Si_DSt: LEMMA
 FORALL (p: Program, st1,st2: strace):
 FORALL (t: time, i:index):
 WFg(p) & St(p,st1) & St(p,st2) &
 vtraceEquivSet(DSt(p,st1,t)(i),st1,st2) =>
 Si(p)(i,st1(t)) = Si(p)(i,st2(t))

Fig. 18 GWVr1 theorems for trace dependencies.

Next, in Fig. 19, we have to define a graph unwinding theorem, which maps be-
tween our state-dependency-based formulation DSt and our graph-dependency-based
formulation IFt. This is performed in two steps. First, we show that the DSiIF formu-

31

lation matches the result returned by IFe. Next, we define the unwinding theorem
which demonstrates that DSt and IFt yield the same dependencies.

 IFe_to_DSiIF: LEMMA
 FORALL (p: GProgram, s0: state, g0: graphState):
 IFsG(p,s0,g0) & WFg(p) =>
 FORALL (x: index):
 IFe(Ae(x,p(x)),InputsP(p),s0,g0) =
 DSiIF(p,s0,g0)(x)

 Graph_Unwinding: LEMMA
 FORALL (p: Program, st: strace, gt: gtrace):
 FORALL (t: time, v: index):
 WFg(p) & IFt(p,st,gt) =>
 IFe(Ae(v,p(v)),InputsP(p),st(t),gt(t)) =
 DSt(p,st,t)(v)

Fig. 19 The Graph Unwinding Theorem demonstrating equivalence between IFt and DSt semantics.

Proof of InterferenceTheorem

Now we have finally assembled the pieces necessary to prove the trace theorem that
was proposed in Fig. 8 in Section 3.7. The proof is shown in Fig. 20. We state that
the information flow characterizes the execution of a model if it satisfies the Interfe-
renceTheorem.

 DepSet(x: index, gt: gtrace): set[index] =
 (lambda (i: index): (EXISTS (t: time):
 member(i,gt(t)(x))))

32

 InterferenceTheorem: LEMMA
 FORALL (p: Program, gt: gtrace, st1,st2: strace):
 FORALL (i:index):
 WFp(p) & St(p,st1) & St(p,st2) &
 IFt(p,st1,gt) &
 vtraceEquivSet(DepSet(i,gt),st1,st2) =>
 liftv(i,st1) = liftv(i,st2)

Fig. 20 Proof of the InterferenceTheorem.

4 Interference to Noninterference

A nearly immediate corollary of the interference theorem is a non-interference theo-
rem, shown in Fig. 21. If a variable unclass does not depend on a variable secret in
any legal trace of the system (as defined by tp_ok), then we say that secret does not
interfere with unclass. This is demonstrated by the Non_Interference lemma; in this
lemma, we state that any two traces whose inputs differ only by secret will yield the
same values for unclass.

ProcessNonInterference: THEORY
BEGIN
 IMPORTING ProcessInterference

 Never_Interferes(p: Program, secret: index,
 unclass: index) : bool =
 FORALL (x: tracePair):
 tp_ok(p, x) =>
 (FORALL (t: time):
 not(member(secret, g(x)(t)(unclass))))

 Inputs_Match_Except_Secret(p: Program,
 st1, st2: strace, secret: index) : bool =
 FORALL (t: time, idx: index):
 ((member(idx, InputsP(p)) AND
 (idx /= secret)) =>
 st1(t)(idx) = st2(t)(idx))

33

 Non_Interference : LEMMA
 FORALL (p: Program, secret: index,
 unclass: index, st1,st2: strace):
 (member(secret, InputsP(p)) &
 WFg(p) & St(p, st1) & St(p, st2) &
 Never_Interferes(p, secret, unclass)) &
 Inputs_Match_Except_Secret(p, st1, st2,
 secret)
 =>
 liftv(unclass, st1) = liftv(unclass, st2)

END ProcessNonInterference

Fig. 21 Process Non-Interference.

5 Model Checking Information Flow

Up to this point, we have defined formal notions of interference and non-interference
over traces for a simple synchronous dataflow language, and shown that an informa-
tion flow semantics can be used to demonstrate noninterference. However, we have
not yet proposed a mechanism for computing non-interference relations using the
model checker using a temporal logic such as LTL [2].

In order to use a model checker to analyze the notion of non-interference proposed
in Section 4, we must do two things. First, we must formalize non-interference in a
temporal logic such as LTL that is understood by model checkers. Second, we must
encode the model and information flow semantics into the notation of the model
checker. The syntax and execution semantics of our language (the Program theory in
Fig. 7 and Process theory in Fig. 8), were chosen in part because they correspond to a
subset of the syntax and semantics supported by several popular model checkers in-
cluding NuSMV [8], SAL [23], and Prover [16]. The translation of the execution
model and semantics is therefore immediate.

To support analysis of information flow, however, we have to encode the IF seman-
tics in the syntax of the model checker. We call this encoding the information flow
model. Then we can analyze a hybrid model, containing both the original program and
the information flow model in order to reason about flow properties.

34

5.1 Formalizing Noninterference in LTL

We first assume Rushby’s formalization of LTL [2] in PVS presented in [6]. We
now prove in Fig. 22 that a noninterference assertion over a graph state machine fol-
lows from a particular LTL assertion, in the same way as Greve [6].

ProcessLTL: THEORY
BEGIN

 IMPORTING ProcessInterference

 GState : TYPE = [# g: graphState, s: state #]

 IMPORTING ltl[GState]

 P : Program
 P_inputs : TYPE = {x: index | Input?(P(x)) }

 split(x: sequence[GState]) : tracePair =
 (# s := LAMBDA (t: time): s(x(t)),
 g := LAMBDA (t: time): g(x(t)) #)

 merge(x: tracePair) : sequence[GState] =
 (LAMBDA (t: time):
 (# s := s(x)(t), g := g(x)(t) #))

 GSTrace : TYPE =
 { x : sequence[GState] | tp_ok(P, split(x)) }

 Non_Interference(secret: P_inputs, unclass: index)
 (gs: GState) : bool =
 (not (member(secret, g(gs)(unclass))))

 % only consider well-formed models
 reduction: LEMMA
 WFg(P) =>
 FORALL (secret: P_inputs, unclass: index):
 (FORALL (s: GSTrace):
 (s |=
 G(Holds(
 Non_Interference(secret,unclass)))))
 =>

35

 (FORALL (s: tracePair):
 tp_ok(P,s) =>
 (FORALL (t: time):
 (not(member(secret,
 g(s)(t)(unclass))))))

END ProcessLTL

Fig. 22 Connection to LTL.

5.2 Creating the Information Flow Model

Recall that the IF semantics correspond to graph traces (gtrace) that are composed
of a sequence of graph states (gstate). Each gstate maps program variables to a finite
set of Principal variables. The information flow semantics from the previous section
are then encoded as set manipulations. The information flow model is then the set of
assignments to the information flow variables.

The mechanism for creating the information flow variable assignments is a set of
transformation rules that are applied to the syntax of ProcessExpr and ProcessAssign
datatypes defined in Fig. 7. The transformation rules generate a slightly richer expres-
sion syntax (shown in Fig. 23) that contains two additional variables. The first expres-
sion, IF_Variable, allows reference variables in the information flow graph state. The
second, SingletonSet, takes an index and generates a singleton set containing that in-
dex.

36

ExprExt: DATATYPE
BEGIN
 IMPORTING ProcessTypes
 Constant(value : vtype): Constant?
 Variable(sname : index): Variable?
 ITE(test: ExprExt, thn: ExprExt, els: ExprExt):
 ite?
 Bop(OpB: BopType, a1: ExprExt, a2: ExprExt): Bop?
 Uop(OpU: UopType, a0: ExprExt): Uop?
 IF_Variable(ifname : index): IF_Variable?
 SingletonSet(varSet: set[index], prname : index) :
 SingletonSet?
END ExprExt

AssignmentExt: DATATYPE
BEGIN
 IMPORTING ExprExt
 Gate (gexpr: ExprExt): Gate?
 Latch(v0: vtype, lexpr: ExprExt): Latch?
 Input: Input?
END AssignmentExt

Fig. 23 Extended Process Syntax.

We can now reflect the information flow semantics into an extended program Pro-
gramExt that contains assignments for both the state and graph traces, as shown in Fig.
24.

TransformIF : THEORY
BEGIN
 IMPORTING Program, AssignmentExt

 Union : BopType
 EMPTYSET : vtype
 principal_index : [set[index], index -> vtype]

 IDe(e: ProcessExpr): RECURSIVE ExprExt =
 CASES e OF
 Constant(value): Constant(value),
 Variable(name): Variable(name),
 ITE(test,thn,els):
 ITE(IDe(test), IDe(thn), IDe(els)),
 Bop(OpB,a1,a2): Bop(OpB, IDe(a1), IDe(a2)),

37

 Uop(OpU,a0): Uop(OpU, IDe(a0))
 ENDCASES
 MEASURE e by <<

 IDa(a: ProcessAssignment) : AssignmentExt =
 CASES a OF
 Gate(gexpr) : Gate(IDe(gexpr)),
 Latch(v0, lexpr) : Latch(v0,IDe(lexpr)),
 Input : Input
 ENDCASES

 TRe(e: ProcessExpr, Pr: set[index]):
 RECURSIVE ExprExt =
 CASES e OF
 Constant(value): Constant(EMPTYSET),
 Variable(name):
 IF Pr(name) THEN
 SingletonSet(Pr, name)
 ELSE
 IF_Variable(name)
 ENDIF,
 ITE(test,thn,els):
 Bop(Union,
 ITE(IDe(test),TRe(thn, Pr),TRe(els, Pr)),
 TRe(test, Pr)),
 Bop(OpB,a1,a2):
 Bop(Union, TRe(a1, Pr), TRe(a2, Pr)),
 Uop(OpU,a0): TRe(a0, Pr)
 ENDCASES
 MEASURE e by <<

 TRa(a: ProcessAssignment, Pr: set[index]) :
 AssignmentExt =
 CASES a OF
 Gate(gexpr) : Gate(TRe(gexpr, Pr)),
 Latch(v0, lexpr) :
 Latch(EMPTYSET, TRe(lexpr, Pr)),
 Input : Input
 ENDCASES

 AssignSet: TYPE = [index -> AssignmentExt]
 ProgramExt: TYPE =
 [# st: AssignSet, gr: AssignSet #]

38

 TRp(p: Program) : ProgramExt =
 (# st := (LAMBDA (idx: index) : IDa(p(idx))),
 gr := (LAMBDA (idx: index) :
 TRa(p(idx), InputsP(p))) #)

END TransformIF

Fig. 24 Hybrid Model Definitions.

The hybrid model in Fig. 24 contains assignments both for the state variables (st)
and the graph variables (gr). The syntax of the state assignments does not change;
however, the strong typing of PVS requires that we define a transformation to map
from the ProcessExpr and ProcessAssignment datatypes into the ExprExt and Assig-
nExt datatypes, respectively. This is performed by the IDe and IDa functions, respec-
tively.

The mapping of the information flow IF semantics into syntax that can be inter-
preted is performed by the TR functions. These functions create new syntax based on
an original program that manipulates index sets. It is instructive to compare the syntax
created by the TRe function with the definition of the IFe semantics originally defined
in Fig. 10 and shown again in Fig. 25 below. Note the similarities between the seman-
tic definitions in IFe and the syntax generated by the TRe function.

 IFe(e: ProcessExpr, principal: set[index],
 s0: state, g0: graphState): RECURSIVE
 set[index] =
 CASES e OF
 Constant(value): Empty,
 Variable(name):
 IF principal(name) THEN
 singleton(name)
 ELSE
 g0(name)
 ENDIF,
 ITE(test,thn,els):
 IF isTrue(Se(test,s0)) THEN
 IFe(test,principal,s0,g0) +
 IFe(thn,principal,s0,g0)
 ELSE
 IFe(test,principal,s0,g0) +
 IFe(els,principal,s0,g0)
 ENDIF,

39

 Bop(OpB,a1,a2): IFe(a1,principal,s0,g0) +
 IFe(a2,principal,s0,g0),
 Uop(OpU,a0): IFe(a0,principal,s0,g0)
 ENDCASES
 MEASURE e by <<

Fig. 25 Another presentation of the IFe function.

The compositional equivalence between the syntactic rule and the semantic rule can
be proven, but we do not demonstrate it in this chapter. To do so would require some
further elucidation of sets-as-vtype elements as well as an algebraic formulation of the
union binary operator over vtype elements to show its equivalence to the standard set-
union operator. We plan to do this in future work.

The model encoding tool in the Rockwell Collins Gryphon tool suite implements

the transformation defined by the TR rules. It operates over the Lustre language [7].
Lustre includes a superset of the expressions described in the TR rules, such as expres-
sions for creating and manipulating composite datatypes including arrays, records, and
tuples. It also accounts for Lustre’s notion of modularity, called the node, which cor-
responds to Simulink subsystems. The complete rules for rewriting Lustre programs
are described in a Rockwell Collins technical report that is available at the Springer
web site accompanying this text.

For encoding the set of principals for model checking tools, we use bitvectors. The
models that we attempt to analyze will always consist of a finite number of variables,
and therefore the principal variables form a finite set. We encode this set as a bitvec-
tor containing one bit per principal signal. The Union and SingletonSet operations are
encoded as bit_or operators and bitvector constants, respectively.

5.3 From Principals to Domains

Our implementation allows multiple variables to be mapped to the same principal
identifier (id). This identifier can be thought of as a security domain [5,20]. For the
purposes of analysis, this can reduce the number of bits necessary for a model check-
ing analysis, which improves performance. It also coarsens the analysis, as it is no
longer clear from a counterexample which of the variables mapped to the principal id
is responsible for information flow.

40

5.4 Adding Control Variables

The implementation allows variables to be designated as control variables. The intui-
tion is that an operand of an AND or OR gate sometimes acts as a mask for the other
operand (towards FALSE and TRUE, respectively). In this instance, we would like to
consider the information flow from the other variable into the gate only if the control
variable has the appropriate value. This feature allows for slightly more accurate
analysis in some models. It is a conservative extension because the semantics of AND
and OR gates are semantically the same as the following if/then/else structure:

Y = C and E ⇔ Y = if C then E else false;
Y = C or E ⇔ Y = if C then true else E ;

Y is semantically equivalent in both cases, and the soundness of the flow analysis
follows from the existing proof of if/then/else expressions in Fig. 12. Note that the
condition variable for if/then/else (C) is always used for the information flow analysis,
so if both variables in a Boolean expression are control variables, the following is gen-
erated:

Y = C0 and C1 ⇔
Y = if C0 then (if C1 then C0 else false) else
 (if C1 then C0 else false)

After applying the syntactic TRe transformation to the right hand side of the equiva-

lence and simplifying, this yields the “standard” information flow expression for the
original binary expression: Bop(Union, TRe(a1, Pr), TRe(a2, Pr)).

6 Intransitive Interference and Noninterference

We have defined a considerable amount of infrastructure for determining which va-
riables can interfere with a particular computed variable within a model. In the ap-
proach we have pursued in the previous sections of this chapter, all interference rela-
tions are transitive. That is, if variable A interferes with variable B and B interferes
with C, then A interferes with C. However, there are several systems in which we are
willing to allow certain kinds of interference across security domains, as long as it is
mediated in some way. The reasoning for allowing this interference is well explained
by Roscoe and Goldsmith [19]:

41

It seems intuitively obvious that the relation � must be transitive: how can it make sense for A to
have lower security level than B, and B to have lower level than C, without A having lower
level than C? But this argument misses a crucial possibility, that some high-level users are
trusted to downgrade material or otherwise influence low-level users. Indeed, it has been
argued that no large-scale system for handling classified data would make sense without some
mechanism for downgrading information after some review process, interval (e.g., the U.K.
30-year rule) or defined event (the execution of some classified mission plan, for example).
Largely to handle this important problem, a variety of extended theories proposing definitions
of ‘‘intransitive noninterference’’ have appeared, though we observe that this term is not really
accurate, as it is in fact the interference rather than the noninterference relation which is not
transitive. Perhaps the best way to read the term is as an abbreviation for ‘‘noninterference
under an intransitive security policy’’.

There have been several formulations of intransitive interference based on state

machines [20], process algebras [19], and event traces [10].

6.1 Formulating Intransitive Interference

Our model is entirely defined in terms of variables. Operations such as encryption
or downgrading are implemented as subsystems (sets of variables) within a larger
model whose output is another variable within the model. Therefore, it is natural to
think of extending the set of principal variables P from only the inputs to include in-
ternal variables that define the mediation points of interest. Since the definition of
Noninterference requires only that the principal variables agree, these intermediaries
are easily incorporated into our definition.

For example, in the shared buffer model, we are willing to allow information to
flow through the scheduler. By adding the scheduler state to P, we restrict ourselves
to reasoning over traces in which the scheduler states match. From the perspective of
reasoning, it is straightforward to parameterize the proofs over a superset of the inputs
and reprove the InterferenceTheorem and NoninterferenceTheorem defined in Sections
3 and 4.

The Problem of Implicit Functional Dependencies

Unfortunately, this formulation of “correctness” allows unintended covert informa-
tion flows around the mediation point as long as they can be functionally derived from
an input variable.

42

O

1Encryptor

In1 Out1

A

1

C

B

Fig. 26 Simulink model containing a bypass.

Figure 26 presents a Simulink model that illustrates the problem. Output O is a
record type that contains two fields B and C. Field B is the output of a subsystem that
encrypts the input variable (A); field C is a simple pass-through of A. Suppose that the
output of the encryptor B is functionally derived from input A. That is, two traces on
B agree only when the traces on A also agree. In this case, according to the interfe-
rence theorem, we can adjudge output O to be dependent only on B, even though there
is clearly a flow that bypasses B. The problem is that the encryptor variable is func-
tionally derived from a single input A, so the equivalence on B forces a corresponding
equivalence on the input A. In other words, requiring a trace equivalence on a com-
puted principal variable may cause an implicit equivalence on another principal varia-
ble. These implicit equivalences allow an attacker to bypass the desired mediation va-
riable.

An Overly Conservative Formulation

An approach that could be considered for intransitive interference reframes the
problem: given a program P involving a computed principal variable c we construct a
program P’ in which c is an input, and assert that all traces must agree on P’. P’ has at
least as many traces as P, as the value of c is unconstrained with respect to the other
variables in P’. The additional traces distinguish variables that bypass the computed
principal as there is no longer a functional connection between the computed variable
and the inputs.

Unfortunately, treating states as inputs leads to overly conservative analyses involv-
ing traces that are impossible in the original program. Consider the shared buffer
model from Section 2. If a new model is created in which the scheduler output is in-
stead a system input, then the scheduler can no longer correctly mediate access to the
shared buffer and so information flow occurs through the buffer. The flow analysis
will (correctly) state that there is information flow through the buffer, but the flagged
traces are not possible in the original model.

43

6.2 Modeling Intransitive Interference using Graph Cuts

The analysis approach that is used in Gryphon is to model intransitive information
flow through cuts in the information flow graph. That is, we define a new principal
variable in the information flow graph by cutting the edges that define the dependen-
cies of that computed variable. To implement the change in the information flow (IF)
semantics defined in Section 3, we add the internal variable indices to the set of inputs
that are used in the IFe, IFi , IFs, and IFt relations. The definition of the program P is
left unchanged.

This modified graph model is sufficient to correctly characterize both a program P
and a modified program P’ in which a principal variable c is treated as an input. In
other words, this formulation is sensitive to the structure of the computation of the
system execution traces as well as the functional result. The original program P is
analyzed, so there are no problems introduced by the additional traces of P’, but we
(correctly) characterize models such as the one described by Fig. 26 as containing di-
rect information flows from input variable A to output O.

Illustrations of a transitive flow model and an intransitive model using graph cuts
are shown in Fig. 27. Recall that the hybrid model that is generated for model check-
ing is composed of both a functional model (the original system) and an information
flow model which is an encoding of the IF semantics as described in Section 5. In Fig.
27, the functional model is shown at the top of the figure. In the middle is a transitive
information flow model. At the bottom is an intransitive information flow model2.
Each model is presented both graphically on the left and in terms of equations on the
right. In this figure, the principal bitvector for a variable X is notated X.

Suppose variable Y (the switch gate) acts as a downgrader for variable D. We
would like to state that the output (Z) depends on input D only when mediated through
the downgrader. Given the transitive formulation of information flow in the middle of
Fig. 27, it is not possible to make this claim. However, the intransitive graph at the
bottom of Fig. 27 breaks the information flow graph for each use of variable Y, replac-
ing the input flows through the computed definition of Y with a new principal signal Y.
Given this new graph, it is possible to prove that no information flows from D to Z that
is not mediated by Y. On the other hand, note that with this intransitive graph, a non-
interference proof would still not be possible for variable C as it has a flow to Z that
bypasses Y.

2 For model-checking analysis only one of the two information flow models would be generated, de-
pending on the set of principal signals provided. However, Fig. 24 is designed to illustrate the differ-
ences between the transitive and intransitive analysis.

44

A

B

C

X_Graph = A B
Y_Graph = X_Graph
 (X C D)
Z_Graph = C Y_Graph

D

X = A B
Y = X C D
Z = C Y

B

A

D

C

X_Graph = A B
Y_Graph = X_Graph
 (X C D)
Z_Graph = C Y

B

A

D

C

Y

Y

Downgrader

Fig. 27 Transitive vs. Intransitive flow graphs.

We currently do not have a strong theorem (such as the InterferenceTheorem) that

we can prove about intransitive dependencies. Further, we conjecture that it is not
possible to functionally characterize such dependencies using trace semantics. In-
stead, the structure of the computation function must be examined – the property is in-
trinsic to the structure.

7 Connections to GWV

In the current chapter and the previous chapter by Greve [6], we have presented two
quite similar formulations of information flow modeling. The formulation in Greve’s

45

chapter is more abstract and describes information flow over arbitrary functions using
flow graphs. It then describes how these functions can be composed and how multi-
step state transition systems can be encoded. Two different formulations (GWVr1 and
GWVr2) are presented. The GWVr2 formulation is capable of modeling dynamic in-
formation flows, in which storage locations are created and released during the com-
putation of the function, but this additional capability comes at a cost of some addi-
tional complexity.

In this chapter, we have modeled information flow specifically for synchronous da-
taflow languages. The basis for this approach was modeling GWV-style equivalences
using a model checker. However, the approach was originally justified by manual
proofs over trace equivalences due to the first author’s familiarity with this style of
formalization for synchronous dataflow languages. The mechanized proofs in this
chapter reflect the manual proofs.

As a basis for formalization, the trace equivalence allows a very natural style of
presentation. It provides a nice abstraction of the computation and information flow
analysis in that a total computation order for the assignments of the semantic and flow
analyses is not required. Instead, we can talk about conformance to some existing
trace. Also, since the entire trace is provided, we can describe latch conformance by
examining the previous state in the trace.

7.1 From InterferenceTheorem to GWVr1

From the InterferenceTheorem, it is straightforward to map directly into the
GWVr1 theorem presented in Greve’s chapter [6], as shown in Figure 28.

GWVr1_Connection[
 (importing ProcessInterference)
 P: WFPrograms]: THEORY
BEGIN
 IMPORTING ProcessInterference

 valid_tp : TYPE = {tp: tracePair | tp_ok(P, tp)}

 st_liftv(i: index, tp: tracePair) : vtrace =
 liftv (i, s(tp))

 IMPORTING GWVr1[index, valid_tp, vtrace, st_liftv,
 index, valid_tp, vtrace, st_liftv]

46

 step_id(tp: valid_tp) : valid_tp = tp;

 gtrace_graph(tp: valid_tp)(idx: index) :
 GraphEdge[index] =
 Compute(DepSet(idx, g(tp)))

 precondition(tp: valid_tp) : bool = true ;

 inputEquivSet_to_vtraceEquivSet : LEMMA
 (FORALL (is: set[index], tp1, tp2: tracePair) :
 Input.equivSet(is, tp1, tp2) =>
 vtraceEquivSet(is, s(tp1), s(tp2)))

 GraphIsGWVr1 : LEMMA
 GWVr1(step_id)(precondition, gtrace_graph);

END GWVr1_Connection

Fig. 28 Connection to GWVr1 theorem.

GWVr1 is defined as a proof obligation over a transition function from an input
state to an output state. The fragment of the GWVr1 theory required for the proof is
shown in Fig. 29.

47

GWVr1 [INindex, INState, INvalue: TYPE,
 getIN: [[INindex, INState] -> INvalue],
 OUTindex, OUTState, OUTvalue: TYPE,
 getOUT: [[OUTindex, OUTState] -> OUTvalue]

GWVr1 [INindex, INState, INvalue: TYPE,
 getIN: [[INindex, INState] -> INvalue],
 OUTindex, OUTState, OUTvalue: TYPE,
 getOUT: [[OUTindex, OUTState] -> OUTvalue]
]: THEORY

BEGIN

 IMPORTING GWV_Graph[INindex,OUTindex]
 IMPORTING GWV_Equiv[INindex,INState,INvalue,getIN]
 AS Input
 IMPORTING GWV_Equiv[OUTindex,OUTState,OUTvalue,
 getOUT] AS Output

 StepFunction: TYPE = [INState -> OUTState]
 GraphFunction: TYPE = [INState -> graph]
 PreCondition: TYPE = [INState -> bool]

 GWVr1(Next: StepFunction)
 (Hyps: PreCondition, Graph: GraphFunction): bool=
 FORALL (x: OUTindex, in1,in2: INState):
 Input.equivSet(DIA(x,Graph(in1)),in1,in2) &
 Hyps(in1) & Hyps(in2) =>
 Output.equiv(x,Next(in1),Next(in2))

Fig. 29 Fragment of GWVr1 theory.

The index, state, value, and get parameters to the theory define the indices of dis-
course, the state, the values that can be stored at indices, and the “getter” function to
look up a value for the inputs and outputs of the transition function. In our case, the
types of inputs and outputs are the same: we are looking at traces. To format our trace
equivalences as a GWVr1 theorem, we create a theory parameterized by an arbitrary
well-formed program. The GWV index values are simply our index type, the state is
the trace pair containing both the execution state and the information flow state, values
map to our vtype, and the get function returns a variable trace from the state trace.

The proof to GWVr1 merely involves re-shaping the InterferenceTheorem into the
expected arguments for GWVr1. Our StepFunction is simply the identity; we already

48

have the entire trace. The GraphFunction returns the trace dependency set for a varia-
ble of interest; this is the same set used by the InterferenceTheorem. No hypotheses
are necessary, so we create a trivial precondition function. We introduce a lemma in-
putEquivSet_to_vtraceEquivSet to map between the set equivalence functions used by
InterferenceTheorem and GWVr1, then can establish the GraphIsGWVr1 lemma with
very little difficulty using the InterferenceTheorem as a lemma.

Although the trace formulation provides a nice level of abstraction for describing
synchronous dataflow languages, in this chapter we have duplicated some of the infra-
structure that had already been established in [6] with respect to function composition,
mapping from interference to noninterference, and justifying LTL theorems in terms
of trace equivalence. It would be possible to re-formalize the synchronous language
semantics defined in Section 3 in order to better utilize the GWV infrastructure, but
we leave this for future work.

8 Using Gryphon For Information Flow Analysis

We now demonstrate the information flow analysis in the Rockwell Collins Gryphon
tool suite. Gryphon is an analysis framework designed to support model-based devel-
opment tools such as Simulink/Stateflow and SCADE. Model-based development
(MBD) refers to the use of domain-specific, graphical modeling languages that can be
executed and analyzed before the actual system is built. The use of such modeling
languages allows the developers to create a model of the system, execute it on their
desktop, analyze it with automated tools, and use it to automatically generate code and
test cases.

As MBD established itself as a reliable technique for software development, an ef-
fort was made to develop a set of tools to enable the practitioners of MBD to formally
reason about the models they created. Fig. 30 illustrates MBD development process
flow.

49

executable
graphical
system
model

output

coverage
metrics

and
test cases

output

formal
specification

of
model

output

formally
verified
model

output

implementations may be tested using

the Reactis- generated test suites

model verification

implementation

output

autogenerated

(via COTS translator)

Various model checkers

and / or theorem provers

may be used. .

Fig. 30 Model-Based Developmment Process Flow.

8.1 Model-Based Development Toolchain

The following sections briefly describe each component of the MBD tool-chain.

Simulink, Stateflow, MATLAB

50

Simulink, Stateflow, and MATLAB are products of The MathWorks, Inc. [11] Simu-
link is an interactive graphical environment for use in the design, simulation, imple-
mentation, and testing of dynamic systems. The environment provides a customizable
set of block libraries from which the user assembles a system model by selecting and
connecting blocks. Blocks may be hierarchically composed from predefined blocks.

Reactis

Reactis® [17], a product of Reactive Systems, Inc., is an automated test generation tool
that uses a Simulink/Stateflow model as input and auto-generates test code for the ve-
rification of the model. The generated test suites target specific levels of coverage, in-
cluding state, condition, branch, boundary, and modified condition/decision coverage
(MC/DC). Each test case in the generated test suite consists of a sequence of inputs to
the model and the generated outputs from the model. Hence, the test suites may be
used in testing of the implementation for behavioral conformance to the model, as well
as for model testing and debugging.

Gryphon

Gryphon [24] refers to the Rockwell Collins tool suite that automatically translates
from two popular commercial modeling languages, Simulink/Stateflow and SCADE
[4], into several back-end analysis tools, including model-checkers and theorem prov-
ers. Gryphon also supports code generation into Spark/Ada and C. An overview of the
Gryphon framework is shown in Fig. 31. Gryphon uses the Lustre [7] formal specifi-
cation language (the kernel language of SCADE) as its internal representation. This
allows for the reuse of many of the RCI proprietary optimizations.

51

SCADE

Lustre

Safe State
Machines

Simulink
SimulinkSimulinkSimulinkSimulink

GatewayGatewayGatewayGateway

StateFlow

Reactis

SimulinkSimulinkSimulinkSimulink

GatewayGatewayGatewayGateway

Design

Verifier

Rockwell Collins/U of Minnesota

Reactive Systems

Esterel Technologies

Model CheckersModel CheckersModel CheckersModel Checkers::::

NuSMV, Prover,
BAT, Kind, SAL

Theorem ProversTheorem ProversTheorem ProversTheorem Provers::::
ACL2, PVS

Programming Programming Programming Programming

LanguagesLanguagesLanguagesLanguages::::

SPARK (Ada), C

Fig.
31 Gryphon Translator Framework.

Prover

Prover [16] is a best-of-breed commercial model checking tool for analysis of the be-
havior of software and hardware models. Prover can analyze both finite state models
and infinite-state models, that is, models with unbounded integers and real numbers,
through the use of integrated decision procedures for real and integer arithmetic.
Prover supports several proof strategies that offer high performance for a number of
different analysis tasks including functional verification, test-case generation, and
bounded model checking (exhaustive verification to a certain maximum number of ex-
ecution steps).

Custom Code Generation

By leveraging its existing Gryphon translator framework, Rockwell Collins designed
and implemented a tool-chain capable of autotomatically generating SPARK-compliant
Ada95 source code from Simulink/Stateflow models.

52

8.2 Modeling and Analyzing the Turnstile High-Assurance Guard
Architecture

A large scale use of the Gryphon analysis was performed on the Rockwell Collins
Turnstile high-assurance cross-domain guard [18]. A high-level view of the architec-
ture is shown in Fig. 32. The offload engines (OEs) provide the external interface to
Turnstile. The Guard Engine (GE) is responsible for enforcing the desired security
policy for message transport. The Guard Data Movers (GDMs) provide a high-speed
mechanism to transfer messages under the direction of the GE. The GE is imple-
mented on the EAL-7 AAMP7 microprocessor [25] and uses the partitioning guaran-
tees provided by the AAMP to ensure secure operation.

In its initial implementation, Turnstile provides a “one way” guard. It has a high

side OE (OE1 in Fig. 32) that submits messages (generates input) for the guard, a low
side OE (OE3 in Fig. 32) that emits messages if they are allowed to pass through the
guard, and an audit OE (OE2 in Fig. 32) that provides audit functionality for the sys-
tem.

53

Fig. 32 Turnstile System Architecture.

The architectural analysis focused on the interaction between the GDMs, GE, and
OEs. The OEs, GDMs and GE do not share a common clock and both execute and
communicate asynchronously. In the model, we clock each of the subsystems using a

54

system input. This input is allowed to vary non-deterministically, allowing us to mod-
el all possible interleavings of system execution.

Representing the Turnstile Architecture in Simulink

The Simulink model of the Turnstile system architecture is shown in Fig. 33. The
components were modeled at various levels of fidelity, depending on their relevance to
the information flow problem:

• The GDMs are responsible for most of the data routing and were modeled to a high
level of fidelity. All of the GDM channels (transmit, receive, audit, control, and
health monitor) are modeled as well as the GDM-to-GDM and GDM-to-GE trans-
fer protocols.

• The data routing portions of the GE were accurately modeled. The policy enforce-
ment portions (the guard evaluator) were modeled non-deterministically: the GE
component randomly chooses whether messages are dropped or propagated.

• The OEs were modeled at a fairly low level of fidelity. As the OEs are not trusted
by the Turnstile architecture, we allow them to non-deterministically submit re-
quests on all of the interfaces between OE and GDM. This approach allows us to
model situations in which the OE violates the Turnstile communications protocols
(which should cause the system to enter a fail-safe mode).

The principals of interest are those processes on the Offload Engines that interact
with the outside world (the low and high networks): the reading and writing processes
on OE1 and the reading and writing processes on OE3. To represent the arbitrary in-
terleavings of the Turnstile processes, we used enabled (clocked) subsystems in Simu-
link. The GDMs run in synchrony at the basic rate of the model while the OEs and
GE run at arbitrary intervals of the basic rate.

55

OE1

GE

OE3

GDM1 GDM3GDM2

OE1 OE2

21

OE2_Audit_Data

20

GE_Read_GDM3_Data

19

OE2_Audit_Access

18

OE2_HLST_Access

17

OE2_CTRL_Data

16

OE2_CTRL_Access

15

OE3_Audit_Access

14

OE3_HLST_Access

13

OE3_CTRL_Data

12

OE3_CTRL_Access

11

OE3_RX_Read_Data

10

OE3_RX_Access

9

OE3_TX_Access

8

GE_Read_GDM1_Data

7

OE1_Audit_Access

6

OE1_HLST_Access

5

OE1_CTRL_Data

4

OE1_CTRL_Access

3

OE1_RX_Read_Data

2

OE1_RX_Access

1

OE1_TX_Access
OEx_Ac cess_GDMx_TX

OEx_TX_Data_GDMx

OEx_Ac cess_GDMx_RX

OEx_RX_Data_GDMx

OE_Read_Process

OEx_Ac cess_GDMx_CTRL

OEx_CTRL_Data_GDMx

OE_Read_CTRL

OEx_Ac cess_GDMx_HLST

OEx_HLST_Data_GDMx

OEx_Ac cess_GDMx_Audit

OEx_Audit_Data_GDMx

OE_Read_Audit

OEx_Writ ing_GDMx_TX_Data

TX_Data_From_OEx

OEx_Writing_GDMx_TX_Size

TX_Size_From_OEx

RX_Data_From_GDMx

Writing_RX_Status_From_OEx

RX_Status_From_OEx

CTRL_Data_From_GDMx

Writing_CTRL_Status_From_OEx

CTRL_Status_From_OEx

OEx _Writ ing_GDMx_HLST_Data

HLST_Data_From_OEx

OEx_Writing_GDMx_HLST_Size

HLST_Size_From_OEx

Audit_Data_From_GDMx

Writ ing_Audit_Status_From_OEx

Audit_Status_From_OEx

OE3

OEx_Acces s_GDMx_TX

OEx_TX_Data_GDMx

OEx_Acces s_GDMx_RX

OEx_RX_Data_GDMx

OE_Read_Process

OEx_Acces s_GDMx_CTRL

OEx_CTRL_Data_GDMx

OE_Read_CTRL

OEx_Acces s_GDMx_HLST

OEx_HLST_Data_GDMx

OEx_Acces s_GDMx_Audit

OEx_Audit_Data_GDMx

OE_Read_Audit

OEx_Writing_GDMx_TX_Data

TX_Data_From_OEx

OEx_Writ ing_GDMx_TX_Size

TX_Size_From_OEx

RX_Data_From_GDMx

Writing_RX_Status _From_OEx

RX_Status _From_OEx

CTRL_Data_From_GDMx

Writing_CTRL_Status _From_OEx

CTRL_Status _From_OEx

OEx_Writing_GDMx_HLST_Data

HLST_Data_From_OEx

OEx_Writ ing_GDMx _HLST_Size

HLST_Size_From_OEx

Audit_Data_From_GDMx

Writ ing_Audit_Status _From_OEx

Audit_Status _From_OEx

OE2

OEx_Acces s_GDMx_TX

OEx_TX_Data_GDMx

OEx_Acces s_GDMx_RX

OEx_RX_Data_GDMx

OE_Read_Process

OEx_Acces s_GDMx_CTRL

OEx_CTRL_Data_GDMx

OE_Read_CTRL

OEx_Acces s_GDMx_HLST

OEx_HLST_Data_GDMx

OEx_Acces s_GDMx_Audit

OEx_Audit_Data_GDMx

OE_Read_Audit

OEx_Writing_GDMx_TX_Data

TX_Data_From_OEx

OEx_Writ ing_GDMx_TX_Size

TX_Size_From_OEx

RX_Data_From_GDMx

Writing_RX_Status _From_OEx

RX_Status _From_OEx

CTRL_Data_From_GDMx

Writing_CTRL_Status _From_OEx

CTRL_Status _From_OEx

OEx_Writing_GDMx_HLST_Data

HLST_Data_From_OEx

OEx _Writ ing_GDMx _HLST_Size

HLST_Size_From_OEx

Audit_Data_From_GDMx

Writing_Audit_Status _From_OEx

Audit_Status _From_OEx

OE1

In1 Out1

Gryphon i f_pri nci pal OE3_Write_Process

In1 Out1

Gryphon i f_princi pal OE3_Read_Process

In1 Out1

Gryphon i f_princi pal OE1_Wri te_Process

In1 Out1

Gryphon i f_princi pal OE1_Read_Process

[OE2_CTRL_Access]

[GDM2_HLST_Data]

[GDM2_Audit_Data]

[GDM2_CTRL_Data]

[GE_GDM2_Audit_Access]

[TX_Data_From_OE3]

[GE_GDM2_HLST_Access]

[GE_GDM2_CTRL_Access]

[OE2_Audi t_Access]

[GE_GDM3_CTRL_Size]

[GE_Writ ing_GDM3_CTRL_Si ze]

[GE_GDM3_HLST_Status]

[GE_Writ ing_GDM3_HLST_Status]

[GE_GDM3_TX_Size]

[GE_Writ ing_GDM3_TX_Si ze]

[OE3_Writ ing_GDM3_TX_Data]

[GE_GDM3_CTRL_Data]

[GE_Writ ing_GDM3_CTRL_Data]

[CTRL_Status_From_OE2]

[OE3_RX_Access]

[OE3_TX_Access]

[OE3_HLST_Access]

[OE3_CTRL_Access]

[OE1_RX_Access]

[GDM3_HLST_Data]

[GDM3_CTRL_Data]

[GE_GDM3_HLST_Access]

[GE_GDM3_CTRL_Access]

[OE1_TX_Access]

[OE3_Audit_Access]

[GDM3_RX_Data]

[GDM3_TX_Data]

[GE_GDM3_TX_Access]

[OE2_Wri ti ng_GDM2_CTRL_Status]

[HLST_Si ze_From_OE2]

[CTRL_Status_From_OE3]

[OE3_Wri ti ng_GDM3_CTRL_Status]

[HLST_Size_From_OE3]

[OE3_Writ ing_GDM3_HLST_Size]

[OE1_HLST_Access]

[HLST_Data_From_OE3]

[OE3_Writ ing_GDM3_HLST_Data]

[OE2_Wri ti ng_GDM2_HLST_Size]

[HLST_Data_From_OE2]

[CTRL_Status_From_OE1]

[OE1_Writ ing_GDM1_CTRL_Status]

[RX_Status_From_OE1]

[OE1_Writ ing_GDM1_RX_Status]

[HLST_Si ze_From_OE1]

[OE1_Wri ti ng_GDM1_HLST_Size]

[OE1_CTRL_Access]

[HLST_Data_From_OE1]

[OE1_Wri ti ng_GDM1_HLST_Data]

[GDM1_HLST_Data]

[GDM1_CTRL_Data]

[TX_Si ze_From_OE1]

[GE_GDM1_HLST_Access]

[GE_GDM1_CTRL_Access]

[OE1_Audi t_Access]

[OE2_Wri ti ng_GDM2_HLST_Data]

[GDM1_RX_Data]

[GE_GDM1_CTRL_Size]

[GDM1_TX_Data]

[GE_Writ ing_GDM1_CTRL_Si ze]

[GE_GDM1_TX_Access]

[OE1_Wri ti ng_GDM1_TX_Size]

[GE_GDM1_HLST_Status]

[GE_Writ ing_GDM1_HLST_Status]

[GE_GDM1_TX_Size]

[GE_Writ ing_GDM1_TX_Si ze]

[GE_GDM1_CTRL_Data]

[GE_Writ ing_GDM1_CTRL_Data]

[RX_Status_From_OE3]

[OE3_Wri ti ng_GDM3_RX_Status]

[Audi t_Status_From_OE2]

[OE2_Writ ing_GDM2_Audit_Status]

[GE_GDM2_Audit_Size]

[GE_Writ ing_GDM2_Audit_Size]

[GE_GDM2_Audi t_Data]

[TX_Size_From_OE3]

[GE_Writ ing_GDM2_Audit_Data]

[GE_GDM2_HLST_Status]

[GE_Writ ing_GDM2_HLST_Status]

[GE_GDM2_CTRL_Size]

[GE_Writ ing_GDM2_CTRL_Si ze]

[GE_GDM2_CTRL_Data]

[GE_Writ ing_GDM2_CTRL_Data]

[OE2_HLST_Access]

[OE3_Wri ti ng_GDM3_TX_Si ze]

[TX_Data_From_OE1]

[OE1_Wri ti ng_GDM1_TX_Data]

GE_Access _TX_GDM1

GDM1_TX_Data

GE_Access _GDM1_CTRL

GE_GDM1_CTRL_Data

GE_Access _GDM1_HLST

GDM1_HLST_Data

GE_GDM1_HLST_Read_Complete

GE_Access _GDM2_CTRL

GE_GDM2_CTRL_Data

GE_Access _GDM2_HLST

GDM2_HLST_Data

GE_GDM2_HLST_Read_Complete

GE_Access _GDM2_Audit

GE_Access _TX_GDM3

GDM3_TX_Data

GE_Access _GDM3_CTRL

GE_GDM3_CTRL_Data

GE_Access _GDM3_HLST

GDM3_HLST_Data

GE_GDM3_HLST_Read_Complete

GE_GDM1_TX_Data

GE_GDM1_Writ ing_TX_Size

GE_GDM1_TX_Size

Writing_GDM1_CTRL_Data

GDM1_CTRL_Data

Writ ing_GDM1_CTRL_Size

GDM1_CTRL_Size

GE_GDM1_HLST_Data

Writing_GDM1_HLST_Status

GDM1_HLST_Status

Writing_GDM2_CTRL_Data

GDM2_CTRL_Data

Writ ing_GDM2_CTRL_Size

GDM2_CTRL_Size

GE_GDM2_HLST_Data

Writing_GDM2_HLST_Status

GDM2_HLST_Status

Writ ing_GDM2_Audit_Data

GDM2_Audit_Data

Writing_GDM2_Audit_Size

GDM2_Audit_Size

GE_GDM3_TX_Data

GE_GDM3_Writ ing_TX_Size

GE_GDM3_TX_Size

Writing_GDM3_CTRL_Data

GDM3_CTRL_Data

Writ ing_GDM3_CTRL_Size

GDM3_CTRL_Size

GE_GDM3_HLST_Data

Writing_GDM3_HLST_Status

GDM3_HLST_Status

GE

GE_TX_Writ ing_Data

GE_TX_Data

GE_TX_Writ ing_Size

GE_TX_Size

GE_CTRL_Writing_Data

GE_CTRL_Data

GE_CTRL_Writing_Size

GE_CTRL_Size

GE_HLST_Writ ing_Status

GE_HLST_Status

GE_Audit_Writ ing_Data

GE_Audit_Data

GE_Audit_Writ ing_Size

GE_Audit_Size

OE_TX_Writ ing_Data

OE_TX_Data

OE_TX_Writ ing_Size

OE_TX_Size

OE_RX_Writ ing_Status

OE_RX_Status

OE_CTRL_Writing_Status

OE_CTRL_Status

OE_HLST_Writ ing_Data

OE_HLST_Data

OE_HLST_Writ ing_Size

OE_HLST_Size

OE_Audit_Writ ing_Status

OE_Audit_Status

RX_GDM_Ready

TX_GDM_Data

TX_Data

TX_SIZE

RX_Data

RX_SIZE

CTRL_Data

CTRL_SIZE

Audit_Data

Audit_Size

HLST_Data

HLST_SIZE

OE_TX_Access

OE_RX_Access

OE_CTRL_Access

OE_HLST_Access

OE_Audit_Access

GE_TX_Access

GE_CTRL_Access

GE_HLST_Access

GE_Audit_Access

RX_Ready

TX_Data_To_GDM

GDM3

GE_TX_Writing_Data

GE_TX_Data

GE_TX_Writing_Size

GE_TX_Size

GE_CTRL_Writing_Data

GE_CTRL_Data

GE_CTRL_Writing_Size

GE_CTRL_Size

GE_HLST_Writing_Status

GE_HLST_Status

GE_Audit_Writ ing_Data

GE_Audit_Data

GE_Audit_Writ ing_Size

GE_Audit_Size

OE_TX_Writing_Data

OE_TX_Data

OE_TX_Writing_Size

OE_TX_Size

OE_RX_Writing_Status

OE_RX_Status

OE_CTRL_Writing_Status

OE_CTRL_Status

OE_HLST_Writing_Data

OE_HLST_Data

OE_HLST_Writing_Size

OE_HLST_Size

OE_Audit_Writ ing_Status

OE_Audit_Status

RX_GDM_Ready

TX_GDM_Data

TX_Data

TX_SIZE

RX_Data

RX_SIZE

CTRL_Data

CTRL_SIZE

Audit_Data

Audit_Size

HLST_Data

HLST_SIZE

OE_TX_Acc ess

OE_RX_Acc ess

OE_CTRL_Acc ess

OE_HLST_Acc ess

OE_Audit_Acc ess

GE_TX_Acc ess

GE_CTRL_Acc ess

GE_HLST_Acc ess

GE_Audit_Acc ess

RX_Ready

TX_Data_To_GDM

GDM2

GE_TX_Writing_Data

GE_TX_Data

GE_TX_Writing_Size

GE_TX_Size

GE_CTRL_Writing_Data

GE_CTRL_Data

GE_CTRL_Writing_Size

GE_CTRL_Size

GE_HLST_Writing_Status

GE_HLST_Status

GE_Audit_Writ ing_Data

GE_Audit_Data

GE_Audit_Writ ing_Size

GE_Audit_Size

OE_TX_Writing_Data

OE_TX_Data

OE_TX_Writing_Size

OE_TX_Size

OE_RX_Writing_Status

OE_RX_Status

OE_CTRL_Writing_Status

OE_CTRL_Status

OE_HLST_Writing_Data

OE_HLST_Data

OE_HLST_Writing_Size

OE_HLST_Size

OE_Audit_Writ ing_Status

OE_Audit_Status

RX_GDM_Ready

TX_GDM_Data

TX_Data

TX_SIZE

RX_Data

RX_SIZE

CTRL_Data

CTRL_SIZE

Audit_Data

Audit_Size

HLST_Data

HLST_SIZE

OE_TX_Acc ess

OE_RX_Acc ess

OE_CTRL_Acc ess

OE_HLST_Acc ess

OE_Audit_Acc ess

GE_TX_Acc ess

GE_CTRL_Acc ess

GE_HLST_Acc ess

GE_Audit_Acc ess

RX_Ready

TX_Data_To_GDM

GDM1

[GE_Wri ti ng_GDM2_CTRL_Si ze]

[GE_GDM2_CTRL_Data]

[GE_Wri ti ng_GDM2_CTRL_Data]

[Audit_Status_From_OE2]

[OE2_Wri ti ng_GDM2_Audi t_Status]

[HLST_Data_From_OE2]

[OE2_Writ ing_GDM2_HLST_Data]

[HLST_Si ze_From_OE2]

[TX_Data_From_OE3]

[OE2_Writ ing_GDM2_HLST_Size]

[CTRL_Status_From_OE2]

[OE2_Wri ti ng_GDM2_CTRL_Status]

[GE_GDM2_Audi t_Access]

[GDM2_HLST_Data]

[GE_GDM2_HLST_Access]

[GE_GDM3_HLST_Status]

[GE_Writ ing_GDM3_HLST_Status]

[OE3_Wri ti ng_GDM3_TX_Data]

[GE_GDM3_CTRL_Size]

[GE_Writ ing_GDM3_CTRL_Si ze]

[GE_GDM3_CTRL_Data]

[GE_Writ ing_GDM3_CTRL_Data]

[GE_GDM2_CTRL_Access]

[OE2_Audit_Access]

[OE1_RX_Access]

[GE_GDM1_HLST_Status]

[GE_Writ ing_GDM1_HLST_Status]

[GE_GDM1_CTRL_Size]

[GE_Wri ti ng_GDM1_CTRL_Size]

[GE_GDM1_CTRL_Data]

[GE_Wri ti ng_GDM1_CTRL_Data]

[OE1_TX_Access]

[GDM1_HLST_Data]

[GDM3_HLST_Data]

[OE2_HLST_Access]

[HLST_Data_From_OE3]

[OE3_Wri ti ng_GDM3_HLST_Data]

[GE_GDM3_HLST_Access]

[HLST_Si ze_From_OE3]

[OE3_Wri ti ng_GDM3_HLST_Size]

[RX_Status_From_OE1]

[CTRL_Status_From_OE3]

[OE3_Wri ti ng_GDM3_CTRL_Status]

[GE_GDM3_CTRL_Access]

[GE_GDM3_TX_Access]

[GE_GDM1_HLST_Access]

[GE_GDM1_CTRL_Access]

[HLST_Data_From_OE1]

[OE1_Writ ing_GDM1_HLST_Data]

[OE1_Wri ti ng_GDM1_RX_Status]

[HLST_Size_From_OE1]

[OE1_Writ ing_GDM1_HLST_Si ze]

[CTRL_Status_From_OE1]

[OE1_Wri ti ng_GDM1_CTRL_Status]

[GDM2_CTRL_Data]

[OE3_Audi t_Access]

[OE3_HLST_Access]

[GDM3_CTRL_Data]

[OE3_CTRL_Access][OE2_CTRL_Access]

[TX_Size_From_OE1]

[OE1_Audit_Access]

[OE1_HLST_Access]

[GDM1_CTRL_Data]

[OE1_CTRL_Access]

[GDM1_RX_Data] [GDM3_RX_Data]

[GE_GDM3_TX_Size]

[GE_Writ ing_GDM3_TX_Si ze]

[GE_GDM1_TX_Size]

[GE_Writ ing_GDM1_TX_Size]

[OE1_Wri ti ng_GDM1_TX_Si ze]

[GDM3_TX_Data]

[GE_GDM1_TX_Access]

[GDM1_TX_Data]

[GDM2_Audi t_Data]

[OE3_RX_Access]

[OE3_TX_Access]

[RX_Status_From_OE3]

[OE3_Writ ing_GDM3_RX_Status]

[TX_Size_From_OE3]

[GE_GDM2_HLST_Status]

[GE_Writ ing_GDM2_HLST_Status]

[GE_GDM2_Audi t_Size]

[GE_Writ ing_GDM2_Audit_Size]

[GE_GDM2_Audi t_Data]

[GE_Writ ing_GDM2_Audit_Data]

[GE_GDM2_CTRL_Size]

[OE3_Wri ti ng_GDM3_TX_Size]

[TX_Data_From_OE1]

[OE1_Writ ing_GDM1_TX_Data]

24
OE2_Clock

23

OE2_Read_Audi t

22

OE2_HLST_Audit

21

OE2_HLST_Heartbeat

20

OE2_Read_CTRL

19

GE_GDM3_HLST_Read_Compl ete

18

GE_GDM3_CTRL_Data

17

GE_GDM2_HLST_Read_Compl ete

16

GE_GDM2_CTRL_Data

15

GE_GDM1_HLST_Read_Compl ete

14

GE_GDM1_CTRL_Data

13

GE_Clock

12

OE3_HLST_Audit

11

OE3_HLST_Heartbeat

10

OE3_Read_CTRL

9

OE3_Read_TX

8

OE3_TX_Data

7

OE3_Cl ock

6

OE1_HLST_Audit

5

OE1_HLST_Heartbeat

4

OE1_Read_CTRL

3

OE1_Read_TX

2

OE1_TX_Data

1
OE1_Clock

Audit Inf ormat ion

Heartbeat Heartbeat

Audit Inf ormat ionAudit Inf ormat ion

Heartbeat

Fig. 33 Simulink Turnstile Model.

The model in Fig. 33 was translated via Gryphon into the model checkers NuSMV
[8] and Prover [16]. With these tools we analyzed several of the information flows
through the model. Since the OE has multiple inputs in our model (and in real life) we

56

analyzed every input into the OEs for the possible presence of information from an
unwanted source. In a one-way guard configuration, we are interested in determining
whether there is backflow of information to the high-side network, that is, whether any
GDM input into OE1 is influenced by the low-side (OE3) reading or writing princip-
als. These properties can be encoded as shown in Fig. 34.

Fig. 34 Backflow Properties from “Low Side” OE3 to “High Side” OE1.

One of the back flow properties (shown in bold font) was violated in the architec-
tural model. However, this was already a known source of back flow because of the
implementation of the GDM transfer protocol that resulted from a quality of service
requirement levied on the Turnstile implementation. This requirement stated that a
new message cannot be accepted until the previous message had been delivered. In
the Turnstile architecture, the high-side writer is unable to transmit to the GDM until
the low side reader has finished consuming the last message. The low-side reader
could potentially use this mechanism to transmit information (interfere) with the high
side network. The verification of the other properties demonstrates that the high-side
OE is not, for example, influenced by the low-side writer.

Also, because the Audit OE may also be connected to the high network we wanted
to verify that no information from OE3 leaks out to the Audit network from any of the
GDM inputs to OE2. These properties, which are all proven correct by the Prover
model checker are shown in Fig. 35.

57

Fig. 35 Backflow Properties from “Low Side” OE3 to Audit OE2.

Though much more complex, the Turnstile architectural model is conceptually sim-
ilar to the shared buffer example. The GE acts as the scheduler between the GDMs,
which are physically connected together and can be thought of as defining a “shared”
resource. It is crucial to note that accurate conditional information flow is necessary
to successfully analyze the Turnstile system architecture and many other industrial
systems of interest. Since the GDMs are directly connected, an unconditional analysis
of the architecture would not be able to demonstrate non-interference properties be-
tween the high and low side OEs. Only by considering the state of the system (espe-
cially the GE) can one demonstrate the security of the architecture.

9 Conclusion and Future Work

 In this chapter, we have described an analysis procedure that can be used to check a
variety of information flow properties of hardware and software systems, including
noninterference over system traces. This procedure is an instantiation of the GWV-
style flow analysis specialized for synchronous dataflow languages such as SCADE
[4] and Simulink [11]. Our analysis is based on annotations that can be added directly
to a Simulink or SCADE model that describe specific sources and sinks of informa-
tion. After this annotation phase, the translation and model checking tools can be used
to automatically demonstrate a variety of information flow properties. In the case of
non-interference, they will prove either that there is no information flow between the
source and a variable of interest, or demonstrate a source of information flow in the
form of a counterexample.

In order to justify the model checking analysis, we have presented a formalization
of our approach in PVS and demonstrated a NoninterferenceTheorem. This theorem

58

states that if our model-checking analysis determines a system input does not interfere
with a particular output, then it is possible to vary the trace of that input without af-
fecting the output in question. The analysis is both scalable and accurate, and can be
used to describe:

• Conditional Information Flow: The analysis is sensitive to the state of the model,
and can be used in situations in which multiple domains “share” a resource, such as
the shared buffer model.

• “Covert” Information Flow: The analysis can detect flows due to (for example)
contention for resources. These flows are ultimately manifest in the test expres-
sions for conditionals, which are propagated to the output of the conditional.

• Intransitive Information Flow: The analysis can be used to define intransitive in-
formation flows, in which we are willing to allow information flows between do-
mains as long as they occur through well-defined mediation points.

Our analysis is implemented in the Gryphon tool suite that supports several kinds of
formal analysis of Simulink and Stateflow models. Gryphon has been used in several
large-scale formal verification efforts [24], including a flow analysis of the Turnstile
high-assurance cross-domain guard.

9.1 Future Work

There are several directions for future work given the framework that has been
created. First, there are a variety of interesting properties beyond non-interference that
can be formalized using temporal logic. For example, it is possible to begin talking
about rates of information flow through a system by creating more interesting tempor-
al logic formulations of flow properties. For example, one can state that flow occurs
at most every ten cycles of evaluation (say), with the following Real-Time CTL
(RTCTL) [2] property:

SPEC AG(gry_IF_output[P1] -> ABF[1,10] (!gry_IF_output[P1]));

where ‘ABF’ is the bounded future operator of RTCTL. This formula states that if

flow occurs from principal P1 to variable output in the current steps, that no flow oc-
curs from P1 to output over the next 10 steps. In order to be informative, this obliga-
tion would have to be paired with some notion of how much information was being
transmitted by a particular flow in an instant when flow occurs. It should be possible
to annotate (manually or automatically) an information flow model with the flow rates
along particular edges within the graph. Such an annotation could be used to over-

59

approximate “acceptable” levels of information loss when strict non-interference is not
possible (such as with the scheduler in the shared buffer example from Section 2.2).

Similarly, we may want to describe modal information flow properties. For exam-
ple: as long as the system is not in the self-test mode, then no information flows from A
to B. These properties are straightforward to specify in temporal logic, but precisely
defining the meaning of these kinds of properties in a more general InterferenceTheo-
rem would be a useful exercise.

It should be possible to partition the model checking analyses using compositional
reasoning techniques such as those described in [12, 13] for very large models. De-
termining the obligations over both the functional state and also the information flow
graph should be an interesting exercise, and may yield further insights into the rela-
tionship between a functional model and information flow graph.

There are several directions in which to extend the full formalization of the ap-
proach in PVS. First, we should formalize the proof of equivalence between the IFe
semantics and the information flow model that is generated by the translation rules in
Section 5. A more ambitious step would be to formalize the entire Lustre language in
PVS including the clock operators and modularity constructs and demonstrate the cor-
rectness of the complete translation provided in the Gryphon toolsuite.

Finally, we would like to be able to compose the model checking results with re-
sults from theorem proving GWV-style theorems using a theorem prover such as PVS
or ACL2. This would allow partitioning of very large problems into portions that can
be analyzed with “the right tool for the job”, using theorem proving where required
(e.g., when complex dynamic data structures are involved) but using automated analy-
sis using model checking where possible.

Acknowledgments
We would like to thank the reviewers of early drafts of this paper, especially Matt

Staats, Andrew Gacek, and Kimberly Whalen, for their many helpful comments and
suggestions.

References

[1] S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas. A methodology for proving
control systems with Lustre and PVS. In Proceedings of the Seventh Working Conference on
Dependable Computing for Critical Applications (DCCA 7), San Jose, January 1999.

[2] E.M Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
Massachusetts, 1999.

[3] J.L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a Higher-order Synchronous
Data-flow Language. In ACM Fourth International Conference on Embedded Software
(EMSOFT'04), Pisa, Italy, September 2004.

60

[4] Esterel Technologies, Inc., SCADE Suite product description.
http://www.esterel-technologies.com/products/scade-suite

[5] J. A. Goguen and J. Meseguer. Security policies and security models, Proceedings of the
1982 IEEE Symposium on Security and Privacy, pp 1 1-20. IEEE Computer Society Press,
1982.

[6] D. Greve. Information Security Modeling and Analysis. In Design and Verification of Mi-
croprocessor Systems for High-Assurance Applications. D. Hardin, ed. Springer, 2010.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow Program-
ming Language Lustre. In Proceedings of the IEEE, Volume 79, #9, pp. 1305-20, September
1991.

[8] IRST: http://nusmv.irst.itc.it/ The NuSMV Model Checker, IRST, Trento Italy
[9] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, Claude Le Maire. Programming real-

time applications with Signal. Proceedings of the IEEE, v. 79, pp. 1321-1336, Sept 1991.
[10] J. MacLean Proving noninterference and functional correctness using traces, Journal of

Computer Security 1: 37-57 (1992).
[11] The Mathworks, Inc., Simulink and Stateflow product description.

http://www.mathworks.com/Simulink,
http://www.mathworks.com/products/stateflow/

[12] K. McMillan, Verification of an Implementation of Tomasulo’s Algorithm by Composi-
tional Model Checking, Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), Vancouver, Canada, June, 1998.

[13] K. McMillan. Circular Compositional Reasoning about Liveness. Advances in Hardware
Design and Verification: IFIP WG10.5 International Conference on Correct Hardware De-
sign and Verification Methods (CHARME ’99), pp. 342-45, 1999.

[14] Cesar Munoz. ProofLite product description
http://research.nianet.org/~munoz/ProofLite

[15] S. Owre, J. M. Rushby, and N. Shankar, PVS: A Prototype Verification System, 11th Inter-
national Conference on Automated Deduction (CADE), v. 607 pp. 748-752, Saratoga, NY,
June 1992.

[16] Prover Technologies, Inc. Prover SL/DE plug-in product description.
http://www.prover.com/products/prover_plugin

[17] Reactive Systems, Inc. Reactis product description.
http://www.reactive-systems.com

[18] Rockwell Collins Turnstile Product Page.
http://www.rockwellcollins.com/products/gov/airborne/cross-platform/information-
assurance/cross-domain-solutions/index.html

[19] A.W. Roscoe and M.H. Goldsmith. What is intransitive noninterference? In Proceedings
of the 12th IEEE Computer Security Foundations Workshop, pp. 228-38, 1999.

[20] J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical
Report csl-92-2, SRI, 1992.

[21] P.Y.A. Ryan, A CSP formulation of non-interference, Cipher, pp 19-27.IEEE Computer
Society Press, 1991.

[22] SRI, Incorporated. PVS Specification and Verification System,
http://pvs.csl.sri.com

[23] SRI, SAL Home Page, http://www.csl.sri.com/projects/sal/.

61

[24] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm. Integration of Formal Analysis
into a Model-Based Software Development Process. 12th International Workshop on Indus-
trial Critical Systems (FMICS 2007), Berlin, Germany, July, 2007.

[25] M. Wilding, D. Greve, R. Richards, and D. Hardin. Formal Verification of Partition Man-
agement for the AAMP7G Microprocessor. In Design and Verification of Microprocessor
Systems for High-Assurance Applications. D. Hardin, ed. Springer, 2010.

