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Abstract   Information flow modeling describes how information can be transferred 
between different locations within a software and/or hardware system.  In this chapter, 
we define a notion of information flow based on traces that is useful for describing 
flow relations for synchronous dataflow languages such as Simulink® [11] and 
SCADE™ [4] that are often used for hardware/software co-design.  We then define an 
automated method for analyzing information flow properties of Simulink models using 
model checking.  This method is based on creating a flow model that tracks informa-
tion flow throughout the model.  Often, information flow properties are defined in 
terms of some form of noninterference, which states informally that objects in one se-
curity domain cannot perceive the actions of objects within another domain.  We dem-
onstrate that this method preserves the GWV functional notion of noninterference.  
We then describe how this proof relates to the GWV theorem and provide some in-
sight into the relationship of the flow model and the flow graphs used in GWVr1.  Fi-
nally, we demonstrate our analysis technique by analyzing the architecture of the 
Turnstile high-assurance cross-domain guard platform using our Gryphon translation 
framework and the Prover™ model checker. 

1  Introduction 

In order to describe the secure operation of a computer system, it is useful to study 
how information propagates through that system.  For example, an unintended propa-
gation of information between different components may constitute a covert channel 
that can be used by an attacker to gain access to protected information.  We are there-
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fore interested in determining how and when information may be communicated 
throughout a system.  At Rockwell Collins, we have spent several years modeling in-
formation flow problems to support precise formal analyses of different kinds of soft-
ware and hardware models.     
    In this chapter, we describe an analysis procedure that can be used to check a varie-
ty of information flow properties of hardware and software systems.  One of the prop-
erties that can be checked is a form of noninterference [5, 20, 19, 21] that is defined 
over system traces.  Informally, it states that a system input does not interfere with a 
particular output if it is possible to vary the trace of that input without affecting the 
output in question.   

Although great strides have been made in the development of formal analysis tools 
over the last few years, there have been relatively few instances reported of their suc-
cessful application to industrial problems outside of the realm of hardware engineer-
ing. In fact, software and system engineers are often completely unaware of the oppor-
tunities these tools offer.  One of the goals of our analysis was that it could be 
completely automated and directly applicable to the tools and languages used by engi-
neers at Rockwell Collins, such as MATLAB Simulink® [11] and Esterel Technolo-
gies SCADE Suite™ [4].  These tools are achieving widespread use in the avionics 
and automotive industry, and can also be used to describe hardware designs. The 
graphical models produced by these tools have straightforward formal semantics and 
are amenable to formal analysis.  Furthermore, it is often the case that software and/or 
hardware implementations are generated directly from these models, so the analysis 
model is kept synchronized with the actual system artifact. 

Our analysis is based on annotations that can be added directly to a Simulink or 
SCADE model that describe specific sources and sinks of information.  After this an-
notation phase, the translation and model checking tools can be used to automatically 
demonstrate a variety of information flow properties.  In the case of non-interference, 
they will prove either that there is no information flow between the source and sinks, 
or demonstrate a source of information flow in the form of a counterexample. 

The result returned by the model checker must be justified by a general claim re-
garding the soundness of the analysis and the annotated model.  To justify our analys-
es, we first define a kind of trace equivalence.  This trace equivalence is just a form of 
the GWVr1 characterization defined earlier in Greve’s information flow chapter [6].  
We then define syntax and semantics for a synchronous dataflow language and pro-
vide an information flow semantics for the language.  Next, we demonstrate that this 
information flow semantics characterizes (i.e. enforces) the trace equivalence, and de-
fine non-interference as a dual-property of the information flow characterization.  The 
information flow semantics is then directly reflected into a “flow model” that is emit-
ted as part of the translation and conjoined with the original model.  We finally show 
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that model checking this conjoined model yields the same result as executing the flow 
model semantics.   

The organization of the rest of the chapter is as follows: Section 2 introduces the 
concepts involved through the use of a motivating shared buffer example.  Section 3 
describes an abstract formalization of information flow through trace equivalence, 
presents the syntax and semantics for a simplified dataflow language, and proves an 
interference theorem, i.e., that the information flow semantics preserves the trace 
equivalence.  Section 4 demonstrates how non-interference can be defined as a corol-
lary of the interference theorem.  Section 5 describes how this formalization is realized 
in the Gryphon tool suite.  Section 6 describes how the tools can be used to analyze in-
transitive interference.  Section 7 describes connections between the formalization in 
this chapter and the GWV formulation from Greve [6].  Section 8 describes applica-
tions of the analysis: the shared buffer model and also a large-scale model of the 
Rockwell Collins Turnstile high-assurance guard.  Section 9 presents future directions 
for the analysis and concludes. 

2 A Motivating Example 

To motivate our presentation, we use an example of a shared buffer model, shown in 
Fig. 1.  In this model, secret and unclassified information both pass through a shared 
buffer.  In order to prevent leakage of secret information, this buffer is coordinated by 
a scheduler (bottom of the figure) that mediates access to the buffer.  On the left, there 
are two input processes for secret and unclassified input.  On the right, there are two 
output processes for secret and unclassified output. 
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Fig. 1 Shared Buffer Architecture. 

When the scheduler is in the WAITING state, a write request from either input 
process will result in that process obtaining the buffer.  The process will continue to 
control the buffer until a corresponding read from the buffer is completed.  The con-
troller is designed to ensure that the secret data is only allowed to be consumed by the 
secret output, and symmetrically that the unclassified data is only consumed by the 
unclassified output. 

Given this system, we would like to determine whether or not there is information 
flow between the secret processes and the unclassified processes.  In other words, is it 
possible for the unclassified processes to glean information of any kind from the secret 
processes and vice versa?  This information sharing is usually called interference; non-
interference is the dual idea expressing that no information sharing occurs.  In this ex-
ample, the potential for interference exists via the scheduler.  Unclassified processes 
can perceive the state of the buffer (whether they are able to read and write from it) via 
the scheduler, which is affected by the secret processes.   

If we decide that this interference is allowable, we would like to be able to deter-
mine whether there are any other sources of interference between the secret and un-
classified processes.  An analysis which does not account for the current system state 
will probably decide that there is the potential for interference, since both kinds of 
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processes use a shared buffer.  We would like a more accurate analysis that accounts 
for the scheduler state in order to show that there is no interference through the shared 
buffer. 

This example demonstrates important features of the analysis that we will describe 
in the next sections:  

• Conditional Information Flow: We would like the analysis to account for enough 
of the system state to allow an accurate analysis (e.g., that no information flows 
from a secret input to unclassified output through the shared buffer) 

• “Covert” Information Flow:  The scheduler does not directly convey information 
from secret processes to unclassified processes, yet its state allows information 
about the secret processes to be perceived.  The analysis should detect this interfe-
rence. 

• Intransitive Information Flow:  If we are willing to allow information flow 
through the scheduler, there should be a mechanism to allow us to tag this informa-
tion path as “allowable” and determine if other sources of flow exist.  In the non-
interference literature, this is generally described as intransitive noninterference [5, 
19, 20].  The meaning of intransitive has to do with the nature of information flows.  
Since the scheduler depends on the secret input and the unclassified output depends 
on the scheduler, a transitive analysis would assert that the unclassified output de-
pends on the secret input.  However, we would like to be able to tag certain media-
tion points (e.g., downgraders or encryptors) as “allowed” sources of information 
flow.  

 

2.1  Shared Buffer Simulink Model 

A Simulink model of the shared buffer example is shown in Fig. 2.  The inputs to 
the model are shown on the left: we have the requests to use the buffer from the four 
processes (the secret input/output process and the unclassified input/output processes) 
as well as the input buffer data from the secret and unclassified input processes.  The 
scheduler subsystem determines access to the buffer, while the buffer subsystem uses 
the scheduler state to determine which process writes to the shared buffer. 
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Fig. 2 Shared Buffer Example in Simulink. 

The information flow analysis is performed in terms of a set of principal variables.  
These variables are the variables that we are interested in tracking through the model.  
We always track the input variables to the model, and we sometimes track computed 
variables internal to the model.  To perform the analysis, the Simulink model is anno-
tated to add the principal variables as shown in Fig. 3. 
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Fig. 3 Annotated Simulink Model. 

Once we have annotated the model, we use the Gryphon tool set [24] to automati-
cally construct an information flow model that can be model checked on a variety of 
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model checking tools including NuSMV [8], SAL [23], and Prover [16].   The analysis 
process extends the original model with a flow model that operates over sets of prin-
cipal variables.  Each computed variable in the original model has a flow variable in 
the flow model that tracks its dependencies in terms of the principal variables.  

For model checking, sets of principal variables are encoded as bit sets, and check-
ing whether information flow is possible is the same as determining whether it is poss-
ible that one of the principal bits is set.  For the model above, the translation generates 
the following bit set for the principals: 

 
Principal bit vector: { 
   si maps to bit: 0,  
   so maps to bit: 1,  
   ui maps to bit: 2,  
   uo maps to bit: 3 } 
 

Now we can write properties over output variables.  For example, suppose we want 
to show that the secret output data is unaffected by the unclassified input or output 
principal.  In this case, we could write: 

 
LTLSPEC G(!(gry_IF_so_data[ui_idx] | 
gry_IF_so_data[uo_idx])); 
 

gry_IF  is the prefix used for the flow variables, so the analysis checks whether there 
is flow to the so_data output from the ui principal or the uo principal. These principals 
correspond to flow from the ui_req, ui_data, and uo_req input variables.  

As described earlier, this property is violated, because there is information flow 
from the unclassified processes to the secret output through the scheduler.  NuSMV 
generates a counterexample that we can examine to determine how the information 
leak occurred.  

After analyzing the problem, we decide that the flow of information through the 
scheduler state is allowable.  We would now like to search for additional sources of 
flow.  By adding an additional principal for the scheduler state, as shown in Fig. 4, we 
can ignore the flows from the ui and uo principals that occur through the scheduler. 
After re-running the analysis, the model checker finds no other sources of information 
flow.  
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Fig. 4 Annotated Simulink Model with Intransitive Flow. 

3  Information Flow Modeling for Synchronous Dataflow 
Languages 

Languages such as Simulink [11] and SCADE [4] are examples of synchronous dataf-
low languages.  The languages are synchronous because computation proceeds in a 
sequence of discrete instants.  In each instant, inputs are perceived and states and out-
puts are computed.  From the perspective of the formal semantics, the computations 
are instantaneous. The languages are dataflow because they can be understood as a 
system of assignment equations, where an assignment can be computed as soon as the 
equations on which it is dependent are computed.  The equations can either be 
represented textually or graphically.  As an example, consider a system that computes 
the values of two variables, X and Y, based on 4 inputs: a, b, c, and d, shown in Fig. 2:  

 
Fig. 5 Graphical and textual presentation of a set of equations.  
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The variables (often referred to as signals) in a dataflow model are used to label a 
particular computation graph.  Therefore, it is incorrect to view the equations as a set 
of constraints on the model: a set of equations shown in Fig. 6 is not a valid model be-
cause X and Y mutually refer to one another. This is shown in Fig. 6, where the bold 
lines indicate the cyclic dependencies.  Such a system may have no solution or infi-
nitely many solutions, so cannot be directly used as a deterministic program.  If 
viewed as a graph, these sets of equations have data dependency cycles, and are consi-
dered incorrect. 

*  
2 

a 
X 

Y d 

X = 2a + Y 

Y = X + d 

+ 

+ 
 

Fig.  6 Cyclic set of equations.  

However, in order for the language to be useful, we must be able to have mutual 
reference between variables.  To allow benign cyclic dependencies, we create a step-
delay operator (i.e., a latch) using the comma operator.   For example: {X = 2a / Y;   Y 
= 1, (X + d))} defines a system where X is equal to 2a divided by the current value of 
Y, while Y is initially equal to 1, and thereafter equal to the previous value of X plus 
d. 

There are several examples of textual dataflow languages, including Lustre [7], Lu-
cid Synchrone [3], and Signal [9] that differ in terms of structuring mechanisms, com-
putational complexity (i.e., whether recursion is allowed), and in terms of clocks that 
define the rates of computation for variables.  Our analysis is defined over the Lustre 
language.  Lustre is the kernel language of the SCADE tool suite and also the internal 
language of the Rockwell Collins Gryphon tool suite.  Lustre is also sufficient to mod-
el the portions of the Simulink/Stateflow languages that are suitable for hard-
ware/software co-design. 

3.1 Modeling Information Flow 

When describing information flow, we are often attempting to define a non-
interference relation of some kind.  There have been several formulations of non-
interference [5, 20, 21, 19] involving transition systems and process algebras which 
have focused on non-interference in terms of a trace of actions (inputs) fed into some 
machine that generates outputs. The idea of non-interference is simple: a security do-
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main u does not interfere with domain v if no action performed by u can influence sub-
sequent outputs of v.   

In the formulation of [20], non-interference is demonstrated by removing actions 
from the trace T (call it T’) and showing that under certain conditions the final output 
of the machine is the same.  However, for synchronous dataflow languages such as 
Lustre or Simulink, characterizing the “removable” inputs is difficult, as each input 
variable is assigned a value in each step; one must define predicates over the cross 
product of the input variables.  Characterizing the “action” of a model with potentially 
tens or hundreds of outputs presents similar difficulties.   

Instead, following Greve in the earlier chapter [6], we would like to define a notion 
of non-interference on individual variables within a model in terms of correspon-
dences between two traces.  In our formulation, a trace is a sequence of model states, 
each state containing the assignments to all variables within the model.  We define a 
set of principal variables as a superset of the inputs, and then define an Interferes 
function for any variable c that describes the set of principals that could possibly affect 
the value of c.  We determine the correctness of the Interferes set in terms of trace cor-
respondence.  The Interferes set is correct if, given any variable c and traces π0 and π1, 
if the traces agree on all the variables of Interferes(c), then they will agree on c.  In 
other words, the variables in Interferes(c) are sufficient to determine the value of c at 
any step.  Equivalently, any principal variable outside the Interferes set cannot affect 
the value of c.   

Formalized in the PVS notation [22], the theorem that we are proving is as follows:  
  InterferenceTheorem: LEMMA 
   FORALL (p: Program, gt1:gtrace, st1,st2:strace): 
      FORALL (idx:index): 
        WFp(p) & St(p,st1) & St(p,st2) &  
        IFt(p,st1,gt1) & 
        vtraceEquivSet(DepSet(idx,gt1),st1,st2) => 
            liftv(idx,st1) = liftv(idx,st2) 

 
This theorem states that if two traces are equivalent (vtraceEquivSet) on the dependen-
cies computed for a variable idx by our Interferes set (DepSet(idx,gt1)), then two trac-
es agree on the value of idx.  The details of the theorem and steps in the proof will be 
explained in the following sections. 

How this is used in practice is that the user suggests what is believed to be a non-
interfering principal variable for some variable c and a model checker is used to de-
termine whether or not this variable interferes with (i.e., affects) c.   
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3.2 Using PVS 

PVS [22, 15] is a mechanized theorem prover based on classical, typed higher-
order-logic.  Specifications are organized into (potentially parameterized) theories, 
which are collections of type and function definitions, assumptions, axioms and theo-
rems.  The proof language of PVS is composed of a variety of primitive inference pro-
cedures that may be combined to construct more powerful proof strategies.   

Normally in PVS the proof process is performed interactively, and the proof script 
encoding the entire proof is not visible to the user.  In our development, we used the 
ProofLite [14] extension to PVS in order to embed the proofs as comments into the 
PVS theories.  To make the theories shorter and easier to understand, we omit the 
ProofLite scripts in this chapter.  However, the interested reader is encouraged to visit 
the Springer web site to view and run the scripts.  

3.3  Traces and Processes 

The semantics of synchronous dataflow languages are usually defined in terms of 
traces that describe the behavior of the system over time.  These traces are formalized 
in the language of the PVS theorem prover in Fig. 7.  We are interested in two kinds of 
traces. First, we are interested in the trace of values produced by the execution of the 
system.  We define the set of values that can be assigned to variables using the opaque 
type vtype1.  The execution traces are mappings from instants in time to states, where 
states map variables to values, and are defined by the strace and state types, respec-
tively.  The variables in our model correspond to indices in Greve’s formulation, and 
we use the term index to identify a variable in a trace.   

Second, we are interested in tracing the dependencies of a variable in terms of a set 
of other variables (in GWV terms, the information flow graph).  These traces map in-
stants in time to graph states, where each graph maps an index (i.e., variable) to sets of 
indices.  At each instant, for a given variable v the graph captures a  set of variables 
that are necessary for computing v.  These traces are defined by the gtrace and graph-
State types, respectively. 

Note that our states are defined over an infinite set of variables nat.  In a real sys-
tem, we would have a finite set, but this can be modeled by simply ignoring all va-
riables above some maximum index.  This change does not affect the formalization or 
the proofs. 

 

                                                           
1 Opaque types in PVS allow one to define a type as an unspecified set of values. 
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Traces: THEORY 
BEGIN 
 
  index: TYPE = nat 
  time: TYPE = nat 
  vtype: TYPE+ 
   
  state : TYPE = [ index -> vtype ] 
  strace: TYPE = [ time -> state ] 
 
  get(i: index, s: state): vtype = s(i) 
 
  graphState: TYPE = [ index -> set[index] ] 
  gtrace: TYPE = [ time -> graphState ] 
END Traces 

Fig. 7 Traces Theory. 

Next, we define processes that constrain the traces in Fig. 8.  The processes are 
built from expressions: an (unspecified) set of unary and binary operators, constant, 
variable, and conditional (if/then/else) expressions.   We next partition the indices into 
gates, latches, and inputs.  Gates are computed from the current values of other va-
riables, while latches are computed from the previous values of other variables.  
Latches also have an initial value which is their value in the first step of a trace.  In-
puts are not computed and assumed to be externally provided. 

The processes described in Fig. 8 define a simple synchronous dataflow language, 
such as Simulink or SCADE.  For the purposes of this discussion, the structuring me-
chanisms of these languages (nodes and subsystems) as well as the clocking mechan-
isms for variables can be thought of as syntactic sugar. 

 
ProcessExprTypes: THEORY 
BEGIN 
  IMPORTING Traces 
 
  BopType: TYPE+ 
  UopType: TYPE+ 
 
  BopEx(Bop: BopType, v1,v2: vtype): vtype 
  UopEx(Uop: UopType, v0: vtype): vtype 
  isTrue(v0: vtype): bool 
END ProcessExprTypes 
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ProcessExpr: DATATYPE 
BEGIN 
  IMPORTING ProcessExprTypes 
 
  Constant(value : vtype): Constant? 
  Variable(name  : index):  Variable? 
  ITE(test: ProcessExpr, thn: ProcessExpr,  
      els: ProcessExpr): ite? 
  Bop(OpB: BopType, a1: ProcessExpr,  
      a2: ProcessExpr): Bop? 
  Uop(OpU: UopType, a0: ProcessExpr): Uop? 
END ProcessExpr 
 
ProcessAssignment: DATATYPE 
BEGIN 
  IMPORTING ProcessExpr 
  Gate (gexpr: ProcessExpr): Gate? 
  Latch(v0: vtype, lexpr: ProcessExpr): Latch? 
  Input: Input? 
END ProcessAssignment 
 
Program: THEORY 
BEGIN 
  IMPORTING ProcessAssignment 
  IMPORTING IndexSet[index] 
 
  Program: TYPE = [ index -> ProcessAssignment ] 
 
  StatesP(p: Program): set[index] = 
    (LAMBDA (v: index): Latch?(p(v))) 
   
  InputsP(p: Program): set[index] = 
    (LAMBDA (v: index): Input?(p(v))) 
 
  GatesP(p: Program): set[index] = 
    (LAMBDA (v: index): Gate?(p(v))) 
 
  De(e: ProcessExpr): RECURSIVE set[index] = 
    CASES e OF 
      Constant(value): Empty, 
      Variable(name):  singleton(name), 
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      ITE(test,thn,els): De(test) + De(thn) +  
        De(els), 
      Bop(OpB,a1,a2):  De(a1) + De(a2), 
      Uop(OpU,a0): De(a0) 
    ENDCASES 
  MEASURE e by << 
 
  belowSet(n: nat, s: set[nat]): bool = 
    FORALL (i: nat): member(i,s) => (i < n) 
 
  Ae(v: index, a: ProcessAssignment): ProcessExpr = 
    CASES a OF 
      Gate (gexpr)   : gexpr, 
      Latch(v0,lexpr): lexpr, 
      Input          : Variable(v) 
    ENDCASES; 
  
  WFp(p: Program) : bool =  
    FORALL (v: index):   
      belowSet(v, De(Ae(v,p(v))) & GatesP(p)) 
 
  WFPrograms : TYPE = { p : Program | WFp(p) } 
 
END Program 

Fig. 8 Processes and Programs.  

In general, a set of simultaneous equations may yield zero or multiple solutions.  
We want a program to be functional, given a particular input trace.  In order to ensure 
that the assignments yield functional traces, we need a strict ordering on gate assign-
ments.  Since indices are defined as naturals, it suffices to define an ordering such that 
the assignment expression for a variable may only refer to gate indices that are strictly 
smaller than the index being assigned.  Note that only gate indices are restricted – it is 
possible to write benign cyclic dependencies involving latches. 

The Ae function returns the assignment expression associated with a particular in-
dex.  For inputs, Ae just returns a variable expression referring to the input. The De 
predicate defines the dependencies of an expression and WFp defines the functional 
well-formedness constraint on programs.   Note that this predicate also forms a basis 
for inducting over the gates within the program that we will use for several of the 
proofs. 
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3.4  Semantic Rule Conventions 

We define different kinds of semantics for the values produced by a program and 
also for information flow.  The semantic functions introduced follow a naming con-
vention to make them easier to follow and to relate to one another.  The form of the 
semantics functions is as follows: 
<TYPE><syntax><OPTIONAL RESTRICTION> 

For example, the Se function defines the value-semantic function for expressions, and 
the IFsG function defines the information-flow function for states with respect to 
gates. 
The <TYPE>s of semantics that will be used in the following discussion are as fol-
lows:  

S: value semantics for traces 
D: syntactic dependencies  
DS: dependencies based on syntax and current state 
IF: information flow dependencies 

The <syntax>es that will be discussed are the following: 
e: expressions 
i: indices (assignments) 
s: states 
t: traces 

The <OPTIONAL RESTRICTION>s restrict the semantic functions at a particular 
syntactic level to: 

I: Inputs 
G: Gates 
L: Latches 

3.5  Value Trace Semantics 

We next create semantic functions for the expressions and programs in Fig. 8.  Fol-
lowing [1] and [12] the semantics are defined in terms of trace conformance, as shown 
in Fig. 9.  We state that a trace conforms to a program if the values computed by the 
assignment expressions for the gates and latches correspond to the values in the trace.  
The Se function computes a value from a Process expression.  The SsG predicate 
checks conformance between the gate assignments and a state, and the SsL predicates 
check conformance between the latch assignments and the trace.  The St predicate de-
fines trace conformance over both gates and latches. 
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ProcessSemantics: THEORY 
BEGIN 
  IMPORTING Program 
 
  Se(e: ProcessExpr, s: state): RECURSIVE vtype = 
    CASES e OF 
      Constant(value): value, 
      Variable(name): s(name), 
      ITE(test,thn,els): 
        IF isTrue(Se(test,s)) THEN Se(thn,s) 
        ELSE Se(els,s) ENDIF, 
      Bop(OpB,a1,a2):  BopEx(OpB,Se(a1,s),Se(a2,s)), 
      Uop(OpU,a0): UopEx(OpU,Se(a0,s)) 
    ENDCASES 
  MEASURE e by << 
 
  Si(p: Program)(i: index, s0: state): vtype = 
    CASES p(i) OF 
      Gate (gexpr)    : s0(i), 
      Latch(v0,lexpr) : Se(lexpr,s0), 
      Input           : s0(i) 
    ENDCASES 
 
  SsG(p: Program, s0: state): bool = 
    FORALL (v: index): Gate?(p(v)) =>  
      (s0(v) = Se(Ae(v,p(v)),s0)) 
 
  SsL0(p: Program, s0: state): bool = 
    FORALL (v: index): Latch?(p(v)) =>  
      (s0(v) = v0(p(v))) 
 
  SsLn(p: Program, s0,s1: state): bool = 
    FORALL (v: index): Latch?(p(v)) =>  
      (get(v,s1) = Si(p)(v,s0)) 
 
  St(p: Program, st: strace): bool = 
    FORALL (n: nat):  
      IF (n = 0) THEN  
        SsL0(p,st(0)) & SsG(p,st(0)) 
      ELSE  
        SsLn(p,st(n-1),st(n)) & SsG(p,st(n)) 
      ENDIF 
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END ProcessSemantics 

  Fig. 9 Process Trace Semantics. 

3.6  Creating an Accurate Model of Information Flow 

Now we can create a semantics that tracks information flow through the model, shown 
in Fig. 10.  This semantics maps indices to the set of indices used when computing the 
value of the index.  For expressions, we create two different semantics; the first tracks 
the indices that are immediately used within the computation of the expression; the 
second traces the indices back to principal variables, which are the actual concern of 
the information flow analysis.  For the moment, we consider the inputs as the principal 
variables.  We expand this notion when we talk about intransitive interference in Sec-
tion 6. 
 
ProcessIndexSets: THEORY 
BEGIN 
  IMPORTING ProcessSemantics 
  IMPORTING MemberRules[index] 
 
  DSe(e: ProcessExpr, s0: state):  
      RECURSIVE set[index] = 
    CASES e OF 
      Constant(value): Empty, 
      Variable(name):  singleton(name), 
      ITE(test,thn,els): 
        IF isTrue(Se(test,s0)) THEN 
          SDe(test,s0) + SDe(thn,s0) 
        ELSE 
          SDe(test,s0) + SDe(els,s0) 
        ENDIF, 
      Bop(OpB,a1,a2):  SDe(a1,s0) + SDe(a2,s0), 
      Uop(OpU,a0): SDe(a0,s0) 
    ENDCASES 
  MEASURE e by << 
 
  IFe(e: ProcessExpr, principal: set[index],  
      s0: state, g0: graphState): RECURSIVE  
      set[index] = 
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    CASES e OF 
      Constant(value): Empty, 
      Variable(name):   
         IF principal(name) THEN  
            singleton(name)  
         ELSE  
            g0(name)  
         ENDIF, 
      ITE(test,thn,els): 
        IF isTrue(Se(test,s0)) THEN 
          IFe(test,principal,s0,g0) +  
          IFe(thn,principal,s0,g0) 
        ELSE 
          IFe(test,principal,s0,g0) +  
          IFe(els,principal,s0,g0) 
        ENDIF, 
      Bop(OpB,a1,a2):  IFe(a1,principal,s0,g0) +  
         IFe(a2,principal,s0,g0), 
      Uop(OpU,a0): IFe(a0,principal,s0,g0) 
    ENDCASES 
  MEASURE e by << 
 
  IFsI(p: Program, s0: state, g0: graphState): bool= 
    FORALL (v: index): Input?(p(v)) => 
      (g0(v) = IFe(Ae(v,p(v)),InputsP(p),s0,g0)) 
 
  IFtI(p: Program, st: strace, gt: gtrace): bool = 
    FORALL (t: time) : IFsI(p, st(t), gt(t)) 
 
  IFsG(p: Program, s: state, g: graphState): bool = 
    FORALL (v: index): Gate?(p(v)) => 
      (g(v) = IFe(Ae(v,p(v)),InputsP(p),s,g)) 
 
  IFtG(p: Program, st: strace, gt: gtrace): bool = 
    FORALL (t: time) : IFsG(p, st(t), gt(t)) 
 
  IFsL0(p: Program, g0: graphState): bool = 
    FORALL (v: index): 
      Latch?(p(v)) => g0(v) = Empty 
 
  IFsLn(p: Program, s0: state,  
        g0,g1: graphState): bool = 
    FORALL (v: index): Latch?(p(v)) =>  
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      (g1(v) = IFe(Ae(v,p(v)),InputsP(p),s0,g0)) 
 
  IFtL(p: Program, st: strace, gt: gtrace): bool = 
    FORALL (n: nat):  
      IF (n = 0) THEN  
        IFsL0(p,gt(0)) 
      ELSE  
        IFsLn(p,st(n-1),gt(n-1),gt(n)) 
      ENDIF 
 
  IFt(p: Program, st: strace, gt: gtrace): bool = 
    IFtG(p,st,gt) & IFtL(p,st,gt) & IFtI(p,st,gt) 
 
  tracePair : TYPE = [# s: strace, g: gtrace #]; 
 
  tp_ok(p: Program, tp: tracePair) : bool =  
     IFt(p, s(tp), g(tp)) AND St(p, s(tp)) ; 

Fig. 10 Process Index Semantics. 

The only difference between the DSe and IFe semantics in Fig. 10 is in the be-
havior of the Variable branch.  For the IFe semantics, a set of principal variables are 
provided.  If a referenced variable is a principal variable, then we return it as a depen-
dency; if it is not, then we return the dependencies of that variable.  The effect of this 
rule is to backchain through the intermediate variables so that dependencies are always 
a subset of the principal variables.  The DSe semantics, on the other hand, return the 
immediate dependencies (i.e., the indices of all variables referenced in the assignment 
expression).    

Note that both the DSe and IFe semantics are state-dependent: For if/then/else ex-
pressions, the set of dependencies depends on the if-test; only dependencies for the 
used branch are returned.  This feature allows conditional dependencies to be tracked 
within the model. 

After defining the expression semantics we define the IF semantics on states and 
programs, matching the structure of the S definitions in Fig. 9.  At the bottom of Fig. 
10, we define trace pairs as a type and define trace pair conformance to a program 
based on both semantics. 
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3.7  PVS Proof of Trace Equivalence (InterferenceTheorem) 

We can now state the interference theorem that should be proven over the trace pairs.  
Informally, we’d like to state that for a particular index idx, if the inputs referenced in 
an information flow trace for idx (DepSet) have the same values in two state traces 
(vtraceEquivSet), then the two traces will have the same values for idx.  Formally, this 
obligation is expressed in Fig. 11.  Note that there is an asymmetry in the interference 
theorem: we define two execution traces (st1 and st2) but only one graph trace (gt1).  
The graph trace (gt1) corresponding to an execution trace (st1) for a given index idx 
characterizes the signals that must match for any other execution trace (in this case 
st2) to match st1 for signal idx.  It is equivalent to use a graph trace based on st2. 

 
  vtrace: TYPE = [ time -> vtype ] 
 
  liftv(i: index, st: strace): vtrace =  
    (LAMBDA (t: time): st(t)(i)) 
   
  vtraceEquivSet(set: set[index],st1,st2: strace):  
    bool = 
    FORALL (i: index): member(i,set) => 
      liftv(i,st1) = liftv(i,st2) 
 
  DepSet(x: index, gt: gtrace): set[index] =  
    (lambda (i: index):  
      (EXISTS (t: time): member(i,gt(t)(x)))) 
 
  InterferenceTheorem: LEMMA 
   FORALL (p: Program, gt1:gtrace, st1,st2:strace): 
      FORALL (idx:index): 
        WFp(p) & St(p,st1) & St(p,st2) &  
        IFt(p,st1,gt1) & 
        vtraceEquivSet(DepSet(idx,gt1),st1,st2) => 
            liftv(idx,st1) = liftv(idx,st2) 

Fig. 11 Interference Theorem.  

To prove this theorem, we have to build a hierarchy of equivalences shown in Fig. 
12.  This graph does not show all of the connections between proofs (e.g., which theo-
rems are instantiated in the proofs of other theorems), but it provides a good overview 
of the structure of the proof.  Ultimately, we are interested in proving the final theo-
rem, which defines a relationship between traces as described by the information flow 
semantics IF and the value semantics S.  In order to prove this theorem, we define an 



21 

intermediate flow semantics based on state dependencies (DS).  Whereas the informa-
tion flow semantics unwinds the dependencies from outputs to inputs implicitly 
through the use of the graph state and graph trace, the DS flow semantics unwind the 
graph explicitly and therefore provide an easier basis for inductive proof.   

The “rows” of the proof graph correspond to a level in the evaluation hierarchy.  
Reading from top to bottom, we talk about equivalences in terms of expressions, then 
in terms of indices (assignments), then states, and finally, traces.  The “columns” cor-
respond to the different semantics.  On the left is the information flow (IF) semantics, 
in the middle is the DS semantics, and on the right is the value (S) semantics.  One se-
mantics bridges the IF and DS semantics (DSiIF). 

There are two different kinds of theorems that are proved between the semantics.  
The first are equivalences between the different flow semantics (e.g., that two flow 
semantics yield the same set of dependencies).  The second are GWV-style theorems, 
in the same style as [6].  These state that if the values of the dependent indices for a 
piece of syntax ∑ are equal within two states or traces s1 and s2, then the value pro-
duced by evaluating ∑ over s1 and s2 will be equal.   

In our analysis, we prove GWVr1-style theorems.  GWVr1 is less expressive than 
GWVr2 but it is simpler to formulate.  The additional expressive power in GWVr2 is 
necessary to describe dynamic memory, but the synchronous models that we analyze 
in this chapter do not use dynamic memory, so GWVr1 is sufficiently expressive for 
our purposes.  The connection between the formulation in this chapter and [6] is ex-
plored further in Section 7. 
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Fig. 12 Proof Graph for final theorem.  
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Expression Equivalence Theorems 

In Fig. 13, we begin the process of proving the final theorem by describing some 
lemmas over expressions.  These will form the basis of the later proofs over larger 
pieces of syntax. 
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DSe_subset_De: LEMMA 
    FORALL (e: ProcessExpr, s0: state): 
      subset?(DSe(e,s0),De(e)) 
 
 
  Compose(uset: set[index], g0: graphState):  
      set[index] = 
    (lambda (z: index):  
      (EXISTS (m: index):  
        member(m,uset) & member(z,g0(m)))) 
 
  member_Compose: LEMMA 
    FORALL (i: index, uset: set[index],  
            g0: graphState): 
      member(i,Compose(uset,g0)) = 
        (EXISTS (m: index):  
          member(m,uset) & member(i,g0(m))) 
 
  IFe_to_DSe_Property(e: ProcessExpr): bool = 
    FORALL (principal: set[index], s0: state,  
            g0: graphState): 
      IFe(e,principal,s0,g0) = 
        LET uset: set[index] = DSe(e,s0) IN 
          (uset & principal) +  
          Compose(uset & (not(principal)),g0) 
 
  IFe_to_DSe_proof: LEMMA 
    FORALL (e: ProcessExpr): IFe_to_DSe_Property(e) 
 
  IFe_to_DSe: LEMMA 
    FORALL (e: ProcessExpr, principal: set[index],  
            s0: state, g0: graphState): 
      IFe(e,principal,s0,g0) = 
        LET uset: set[index] = DSe(e,s0) IN 
          (uset & principal) +  
          Compose(uset & (not(principal)),g0) 
 

Fig.  13 Expression Equivalence Proofs.  

The DSe_subset_De lemma states that the state-aware dependency function (DSe) 
returns a subset of the indices referenced by the syntactic dependency function (De).  
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We appeal to this lemma (through another lemma: WFg_to_WFgDSe) to establish a 
basis for induction for some of the proofs involving equivalence of gate assignments.  

The Compose function is used to look up each of the entries in a set in the graph 
state.  It performs the same function as the Direct Interaction Allowed (DIA) function 
in Greve’s formulation [6].  It is used to map from a set of immediate dependencies to 
their dependencies. 

The IFe_to_DSe_Property lemma defines the first mapping between the state-based 
DS dependency semantics and the gtrace-based IF dependency semantics.  Remember 
from Section 3.4 that the IFe semantics are defined in terms of a set of principals: if a 
variable is principal, then we look up its dependencies in the graph state.  This proper-
ty creates an equivalence between these semantics by looking up (via Compose) the 
non-principal variables from the DSe semantics. 

Program Well-Formedness Theorems 

In Fig. 14, we define a bridge between the program well-formedness constraint 
WFp and state dependencies (DSe).  This bridge will allow us to use the WFp predi-
cate in reasoning about GWV equivalences involving state dependencies.  We define a 
WFgDSe predicate that defines well-formedness in terms of the DSe, and show that 
WFp implies the (more accurate) WFgDSe predicate.  

 
  Principals(p: Program): set[index] = 
    StatesP(p) + InputsP(p) 
 
  WFg(p: Program): bool = 
    FORALL (v: index):  
      belowSet(v,De(Ae(v,p(v))) - Principals(p)) 
 
  Principals_Gates_partition : LEMMA 
    FORALL (p: Program):  
       (GatesP(p) = complement(Principals(p))) 
 
  Principals_Gates_subset_equiv : LEMMA 
    (FORALL (s: set[index], p: Program) :  
      (s & GatesP(p)) = (s - Principals(p))) 
 
  WFp_to_WFg : LEMMA 
    FORALL (p: Program) :  (WFp(p) = WFg(p)) 
 
  WFgDSe(p: Program, s0: state): bool = 
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    FORALL (v: index):  
      belowSet(v,DSe(Ae(v,p(v)),s0) - Principals(p)) 
 
  WFg_to_WFgDSe: LEMMA 
    FORALL (p: Program, s0: state): 
      WFg(p) => WFgDSe(p,s0) 
 
END ProcessIndexSets 

Fig. 14 Well-Formedness Predicates for Programs.  

GWV Equivalence Theorems 

Now, we can start proving GWV-style equivalence properties.  These state that if 
the values of the dependent indices for a piece of syntax ∑ match within two states or 
traces s1 and s2, then the value produced by the evaluating ∑ over s1 and s2 will 
match.  The idea is that we will start from the immediate dependencies of an expres-
sion and progressively unwind the dependencies toward the inputs.  This unwinding 
occurs in two stages:  

• First we unwind to the principals, which (for the purposes of the proof) are the 
states and inputs.  Another way of looking at this first unwinding is unwinding back 
to the “beginning” of the step.  This is the definition of the DSiP dependencies 

• Next, we unwind the dependencies back to the inputs by examining the graph trace 
over time.  This is the definition of the DSt dependencies. 

We also map these state-based equivalences that are computed via explicit unwind-
ings of dependencies to the IF equivalences, which implicitly unwind the dependen-
cies using the graph states.  This is accomplished by using the DSiIF dependency rela-
tion.  This will be the key lemma to show the equivalence of the IF and DS 
formulations. 

 
Fig. 15 shows the dependency proof for the DSe dependencies.  There are two 

equivalences: the first over evaluation of expressions, and the second over evaluation 
of indices. 

 
ProcessInterference: THEORY 
BEGIN 
  IMPORTING ProcessIndexSets 
  IMPORTING GWV_EquivSetRules[index,state,vtype,get] 
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  StateEquivSet(s:set[index],s1,s2: state): bool =  
    equivSet(s,s1,s2) 
 
  GWVr1_Se_DSe: LEMMA 
    FORALL (e: ProcessExpr): 
      FORALL (in1, in2: state): 
        StateEquivSet(DSe(e, in1), in1, in2) => 
          (Se(e, in1) = Se(e, in2)) 
 
  GWVr1_Si_DSe: LEMMA 
    FORALL (p: Program): 
      FORALL (i: index, in1, in2: state): 
        SsG(p,in1) & SsG(p,in2) & 
          StateEquivSet(DSe(Ae(i,p(i)), in1),  
                        in1, in2) => 
            Si(p)(i,in1) = Si(p)(i,in2) 

Fig. 15 GWVr1 for DSe Dependencies.  

Figure 16 shows the proofs for the next level of unwinding: showing that if the 
principal variables are the same for two states, then the results produced for an index 
will be the same.  This step removes the gates from the dependency calculation. 

 
  DSiP(p: Program,s0: state)(x: index) :  
  RECURSIVE set[index] = 
    LET uset: set[index] = DSe(Ae(x,p(x)),s0) IN 
    LET pri : set[index] = Principals(p) IN 
      (uset & pri) +  
        (lambda (z: index):  
          (EXISTS (m: index):  
            m < x &  
            member(m,uset & not(pri)) &  
            member(z,DSiP(p,s0)(m)))) 
  MEASURE x 
 
  DSiP_contains_only_Principals: LEMMA 
    FORALL (x: index, p: Program, s0: state): 
      subset?(DSiP(p,s0)(x),Principals(p)) 
 
  DSiP_def: LEMMA 
    FORALL (p: Program,s0: state,x: index):  
      WFg(p) => 
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        DSiP(p,s0)(x) = 
          LET uset: set[index] = DSe(Ae(x,p(x)),s0)  
          IN 
          LET pri : set[index] = Principals(p)  
          IN 
            (uset & pri) +  
            Compose(uset & not(pri),DSiP(p,s0)) 
 
  GWVr1_Si_DSiP: LEMMA 
    FORALL (p: Program): 
      FORALL (i: index, s1,s2: state): 
        WFg(p) & SsG(p,s1) & SsG(p,s2) & 
          StateEquivSet(DSiP(p,s1)(i),s1,s2) => 
            Si(p)(i,s1) = Si(p)(i,s2)  

Fig. 16 GWVr1 for Principal dependencies.  

Fig. 17 shows the proofs of the next level of unwinding, to the dependencies of the 
states.  The definition of the DSiIF predicate is particularly important as it bridges be-
tween the graph-trace-based IF semantics and the state-based DS semantics.  Like the 
DSiP semantics, it backtraces through the gates to reach dependencies based on states 
and inputs.  The distinction is that it then looks up the state dependencies in the graph 
state.  This means that the dependencies computed by DSiIF will match the dependen-
cies computed by the IF relation, as demonstrated by the IFe_to_DSiIF lemma.  This 
is a key lemma in proving the unwinding theorem over state dependency traces DSt 
and information flow traces IFt. 
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  GProgram: TYPE = { p : Program | WFg(p) } 
 
  DSiIF(p: GProgram, s0: state, g0: graphState) 
      (x: index): RECURSIVE set[index] = 
    LET uset : set[index] = DSe(Ae(x,p(x)),s0) IN 
    LET ins  : set[index] = InputsP(p) IN 
    LET dff  : set[index] = StatesP(p) IN 
    LET gates : set[index] = GatesP(p)  IN 
      (uset & ins) +  
        Compose(uset & dff, g0) + 
          (lambda (z: index): 
    (EXISTS (m: index): 
          member(m,uset & gates) &  
          member(z,DSiIF(p,s0,g0)(m)))) 
  MEASURE x 
   
  DSiIF_to_DSiP: LEMMA 
    FORALL (p: Program, s0: state, g0: graphState): 
      WFg(p) => 
        FORALL (x: index): 
          DSiIF(p,s0,g0)(x) = 
            (InputsP(p) & DSiP(p,s0)(x)) + 
              Compose(StatesP(p) & DSiP(p,s0)(x),g0) 
 

Fig. 17 GWVr1 for State-Input dependencies.  

Finally, In Fig. 18, we map dependencies to inputs across a multistep trace.  First, 
we prove a lemma that is sufficient for the proof of latch assignment at step zero 
(GWVr1_Si_SsL0).  This lemma will be used to provide the base case for latches in the 
GWVr1_Si_DSt proof. 

   
  GWVr1_Si_SsL0: LEMMA 
    FORALL (p: Program): 
      FORALL (i: index, s1,s2: state): 
        WFg(p) & SsL0(p,s1) & SsL0(p,s2) &  
        SsG(p,s1) & SsG(p,s2) &  
        StateEquivSet(InputsP(p) &  
        DSiP(p,s1)(i),s1,s2) => 
            Si(p)(i,s1) = Si(p)(i,s2) 
 
  DSt(p: Program, st: strace, t: time)(i: index):    
  RECURSIVE set[index] = 



30  

    IF (t = 0) THEN  
      InputsP(p) & DSiP(p,st(t))(i)  
    ELSE 
      LET uset: set[index] = DSiP(p,st(t))(i) IN 
        (uset & InputsP(p)) +  
        Compose(not(InputsP(p)) & uset,  
                DSt(p,st,t - 1)) 
    ENDIF 
  MEASURE t 
 
  subset_Compose: LEMMA 
    FORALL (a: index, x: set[index], g: graphState): 
      member(a,x) => subset?(g(a),Compose(x,g)) 
 
  vtrace: TYPE = [ time -> vtype ] 
 
  vtrace_extensionality: LEMMA 
    FORALL (i: index, s1,s2: vtrace): 
      (s1 = s2) = 
        FORALL (t: time): s1(t) = s2(t) 
 
  AUTO_REWRITE+ vtrace_extensionality 
 
  liftv(i: index, st: strace): vtrace =  
   (LAMBDA (t: time): st(t)(i)) 
   
  vtraceEquivSet(set: set[index],st1,st2: strace):  
  bool = 
    FORALL (i: index): member(i,set) => 
      liftv(i,st1) = liftv(i,st2) 
 
  GWVr1_Si_DSt: LEMMA 
    FORALL (p: Program, st1,st2: strace): 
      FORALL (t: time, i:index): 
        WFg(p) & St(p,st1) & St(p,st2) & 
          vtraceEquivSet(DSt(p,st1,t)(i),st1,st2) => 
            Si(p)(i,st1(t)) = Si(p)(i,st2(t)) 

Fig. 18 GWVr1 theorems for trace dependencies. 

Next, in Fig. 19, we have to define a graph unwinding theorem, which maps be-
tween our state-dependency-based formulation DSt and our graph-dependency-based 
formulation IFt.  This is performed in two steps.  First, we show that the DSiIF formu-
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lation matches the result returned by IFe.  Next, we define the unwinding theorem 
which demonstrates that DSt and IFt yield the same dependencies.   

 
  IFe_to_DSiIF: LEMMA 
    FORALL (p: GProgram, s0: state, g0: graphState): 
      IFsG(p,s0,g0) & WFg(p) => 
        FORALL (x: index): 
          IFe(Ae(x,p(x)),InputsP(p),s0,g0) = 
            DSiIF(p,s0,g0)(x) 
 
  Graph_Unwinding: LEMMA 
    FORALL (p: Program, st: strace, gt: gtrace): 
      FORALL (t: time, v: index): 
        WFg(p) & IFt(p,st,gt) => 
          IFe(Ae(v,p(v)),InputsP(p),st(t),gt(t)) =  
          DSt(p,st,t)(v) 

Fig. 19 The Graph Unwinding Theorem demonstrating equivalence between IFt and DSt semantics.  

Proof of InterferenceTheorem 

Now we have finally assembled the pieces necessary to prove the trace theorem that 
was proposed in Fig. 8 in Section 3.7.  The proof is shown in Fig. 20.  We state that 
the information flow characterizes the execution of a model if it satisfies the Interfe-
renceTheorem. 

 
  DepSet(x: index, gt: gtrace): set[index] =  
    (lambda (i: index): (EXISTS (t: time):  
     member(i,gt(t)(x)))) 
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  InterferenceTheorem: LEMMA 
   FORALL (p: Program, gt: gtrace, st1,st2: strace): 
      FORALL (i:index): 
        WFp(p) & St(p,st1) & St(p,st2) &  
        IFt(p,st1,gt) & 
          vtraceEquivSet(DepSet(i,gt),st1,st2) => 
            liftv(i,st1) = liftv(i,st2) 

Fig. 20 Proof of the InterferenceTheorem.  

4  Interference to Noninterference 

A nearly immediate corollary of the interference theorem is a non-interference theo-
rem, shown in Fig. 21.  If a variable unclass does not depend on a variable secret in 
any legal trace of the system (as defined by tp_ok),  then we say that secret does not 
interfere with unclass.  This is demonstrated by the Non_Interference lemma; in this 
lemma, we state that any two traces whose inputs differ only by secret will yield the 
same values for unclass. 

 
ProcessNonInterference: THEORY 
BEGIN 
  IMPORTING ProcessInterference 
 
  Never_Interferes(p: Program, secret: index,  
                   unclass: index) : bool =  
    FORALL (x: tracePair):  
      tp_ok(p, x) =>  
        (FORALL (t: time):  
          not(member(secret, g(x)(t)(unclass)))) 
 
  Inputs_Match_Except_Secret(p: Program,  
           st1, st2: strace, secret: index) : bool = 
    FORALL (t: time, idx: index):  
      ((member(idx, InputsP(p)) AND  
       (idx /= secret)) =>  
         st1(t)(idx) = st2(t)(idx)) 
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  Non_Interference : LEMMA 
    FORALL (p: Program, secret: index,  
            unclass: index, st1,st2: strace):  
      (member(secret, InputsP(p)) &  
       WFg(p) & St(p, st1) & St(p, st2) &  
       Never_Interferes(p, secret, unclass)) &  
       Inputs_Match_Except_Secret(p, st1, st2,  
            secret) 
       =>  
         liftv(unclass, st1) = liftv(unclass, st2) 
           
END ProcessNonInterference 

Fig. 21 Process Non-Interference.  

5  Model Checking Information Flow 

Up to this point, we have defined formal notions of interference and non-interference 
over traces for a simple synchronous dataflow language, and shown that an informa-
tion flow semantics can be used to demonstrate noninterference.  However, we have 
not yet proposed a mechanism for computing non-interference relations using the 
model checker using a temporal logic such as LTL [2].   

In order to use a model checker to analyze the notion of non-interference proposed 
in Section 4, we must do two things.  First, we must formalize non-interference in a 
temporal logic such as LTL that is understood by model checkers.  Second, we must 
encode the model and information flow semantics into the notation of the model 
checker.  The syntax and execution semantics of our language (the Program theory in 
Fig. 7 and Process theory in Fig. 8), were chosen in part because they correspond to a 
subset of the syntax and semantics supported by several popular model checkers in-
cluding NuSMV [8], SAL [23], and Prover [16].  The translation of the execution 
model and semantics is therefore immediate. 

To support analysis of information flow, however, we have to encode the IF seman-
tics in the syntax of the model checker.  We call this encoding the information flow 
model.  Then we can analyze a hybrid model, containing both the original program and 
the information flow model in order to reason about flow properties.   
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5.1 Formalizing Noninterference in LTL 

We first assume Rushby’s formalization of LTL [2] in PVS presented in [6].  We 
now prove in Fig. 22 that a noninterference assertion over a graph state machine fol-
lows from a particular LTL assertion, in the same way as Greve [6]. 

 
ProcessLTL: THEORY 
BEGIN 
   
  IMPORTING ProcessInterference 
 
  GState : TYPE = [# g: graphState, s: state #] 
   
  IMPORTING ltl[GState] 
 
  P : Program 
  P_inputs : TYPE = {x: index | Input?(P(x)) } 
 
  split(x: sequence[GState]) : tracePair =  
   (# s := LAMBDA (t: time): s(x(t)), 
      g := LAMBDA (t: time): g(x(t)) #) 
  
  merge(x: tracePair) : sequence[GState] =  
   (LAMBDA (t: time):  
     (# s := s(x)(t), g := g(x)(t) #) )  
 
  GSTrace : TYPE =  
    { x : sequence[GState] | tp_ok(P, split(x)) } 
 
  Non_Interference(secret: P_inputs, unclass: index) 
    (gs: GState) : bool =  
      (not (member(secret, g(gs)(unclass)))) 
 
  % only consider well-formed models 
  reduction: LEMMA 
    WFg(P)  =>  
      FORALL (secret: P_inputs, unclass: index): 
        (FORALL (s: GSTrace):  
          (s |= 
            G(Holds( 
              Non_Interference(secret,unclass)))))  
      =>  
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        (FORALL (s: tracePair): 
          tp_ok(P,s) =>  
            (FORALL (t: time): 
              (not(member(secret,  
                          g(s)(t)(unclass)))))) 
 
END ProcessLTL 

Fig. 22 Connection to LTL.  

5.2  Creating the Information Flow Model 

Recall that the IF semantics correspond to graph traces (gtrace) that are composed 
of a sequence of graph states (gstate).  Each gstate maps program variables to a finite 
set of Principal variables.  The information flow semantics from the previous section 
are then encoded as set manipulations.  The information flow model is then the set of 
assignments to the information flow variables.  

The mechanism for creating the information flow variable assignments is a set of 
transformation rules that are applied to the syntax of ProcessExpr and ProcessAssign 
datatypes defined in Fig. 7.  The transformation rules generate a slightly richer expres-
sion syntax (shown in Fig. 23) that contains two additional variables.  The first expres-
sion, IF_Variable, allows reference variables in the information flow graph state.  The 
second, SingletonSet, takes an index and generates a singleton set containing that in-
dex. 
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ExprExt: DATATYPE 
BEGIN 
  IMPORTING ProcessTypes 
  Constant(value : vtype): Constant? 
  Variable(sname  : index):  Variable? 
  ITE(test: ExprExt, thn: ExprExt, els: ExprExt):  
      ite? 
  Bop(OpB: BopType, a1: ExprExt, a2: ExprExt): Bop? 
  Uop(OpU: UopType, a0: ExprExt): Uop? 
  IF_Variable(ifname  : index):  IF_Variable? 
  SingletonSet(varSet: set[index], prname : index) :  
     SingletonSet? 
END ExprExt 
 
AssignmentExt: DATATYPE 
BEGIN 
 IMPORTING ExprExt 
  Gate (gexpr: ExprExt): Gate? 
  Latch(v0: vtype, lexpr: ExprExt): Latch? 
  Input: Input? 
END AssignmentExt  

Fig. 23 Extended Process Syntax.  

We can now reflect the information flow semantics into an extended program Pro-
gramExt that contains assignments for both the state and graph traces, as shown in Fig. 
24.   

 
TransformIF : THEORY 
BEGIN 
  IMPORTING Program, AssignmentExt 
    
  Union : BopType  
  EMPTYSET : vtype  
  principal_index : [set[index], index -> vtype]  
 
  IDe(e: ProcessExpr): RECURSIVE ExprExt =  
  CASES e OF 
    Constant(value): Constant(value), 
    Variable(name):  Variable(name),  
    ITE(test,thn,els):  
      ITE(IDe(test), IDe(thn), IDe(els)), 
    Bop(OpB,a1,a2):  Bop(OpB, IDe(a1), IDe(a2)), 
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    Uop(OpU,a0): Uop(OpU, IDe(a0)) 
  ENDCASES 
  MEASURE e by <<  
 
  IDa(a: ProcessAssignment) : AssignmentExt =  
     CASES a OF 
       Gate(gexpr) : Gate(IDe(gexpr)), 
       Latch(v0, lexpr) : Latch(v0,IDe(lexpr)), 
       Input : Input 
     ENDCASES 
     
  TRe(e: ProcessExpr, Pr: set[index]):  
  RECURSIVE ExprExt = 
    CASES e OF 
      Constant(value): Constant(EMPTYSET), 
      Variable(name):   
        IF Pr(name) THEN  
          SingletonSet(Pr, name)  
        ELSE  
          IF_Variable(name)  
        ENDIF, 
      ITE(test,thn,els): 
        Bop(Union,  
          ITE(IDe(test),TRe(thn, Pr),TRe(els, Pr)),  
          TRe(test, Pr)),  
      Bop(OpB,a1,a2):   
        Bop(Union, TRe(a1, Pr), TRe(a2, Pr)), 
      Uop(OpU,a0): TRe(a0, Pr) 
    ENDCASES 
  MEASURE e by << 
    
  TRa(a: ProcessAssignment, Pr: set[index]) :  
  AssignmentExt =  
    CASES a OF  
      Gate(gexpr) : Gate(TRe(gexpr, Pr)), 
      Latch(v0, lexpr) :  
        Latch(EMPTYSET, TRe(lexpr, Pr)), 
      Input : Input 
    ENDCASES 
 
  AssignSet: TYPE = [index -> AssignmentExt ] 
  ProgramExt: TYPE =  
      [# st: AssignSet, gr: AssignSet #]   
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  TRp(p: Program) : ProgramExt =  
    (# st := (LAMBDA (idx: index) : IDa(p(idx))), 
       gr := (LAMBDA (idx: index) :  
               TRa(p(idx), InputsP(p))) #)  
 
END TransformIF 

Fig. 24 Hybrid Model Definitions.  

The hybrid model in Fig. 24 contains assignments both for the state variables (st) 
and the graph variables (gr).  The syntax of the state assignments does not change; 
however, the strong typing of PVS requires that we define a transformation to map 
from the ProcessExpr and ProcessAssignment datatypes into the ExprExt and Assig-
nExt datatypes, respectively.  This is performed by the IDe and IDa functions, respec-
tively.   

The mapping of the information flow IF semantics into syntax that can be inter-
preted is performed by the TR functions.  These functions create new syntax based on 
an original program that manipulates index sets.  It is instructive to compare the syntax 
created by the TRe function with the definition of the IFe semantics originally defined 
in Fig. 10 and shown again in Fig. 25 below.  Note the similarities between the seman-
tic definitions in IFe and the syntax generated by the TRe function. 

  
  IFe(e: ProcessExpr, principal: set[index],  
      s0: state, g0: graphState): RECURSIVE  
      set[index] = 
    CASES e OF 
      Constant(value): Empty, 
      Variable(name):   
         IF principal(name) THEN  
            singleton(name)  
         ELSE  
            g0(name)  
         ENDIF, 
      ITE(test,thn,els): 
        IF isTrue(Se(test,s0)) THEN 
          IFe(test,principal,s0,g0) +  
          IFe(thn,principal,s0,g0) 
        ELSE 
          IFe(test,principal,s0,g0) +  
          IFe(els,principal,s0,g0) 
        ENDIF, 
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      Bop(OpB,a1,a2):  IFe(a1,principal,s0,g0) +  
         IFe(a2,principal,s0,g0), 
      Uop(OpU,a0): IFe(a0,principal,s0,g0) 
    ENDCASES 
  MEASURE e by << 

Fig. 25 Another presentation of the IFe function.  

The compositional equivalence between the syntactic rule and the semantic rule can 
be proven, but we do not demonstrate it in this chapter.  To do so would require some 
further elucidation of sets-as-vtype elements as well as an algebraic formulation of the 
union binary operator over vtype elements to show its equivalence to the standard set-
union operator.  We plan to do this in future work.   

 
The model encoding tool in the Rockwell Collins Gryphon tool suite implements 

the transformation defined by the TR rules.  It operates over the Lustre language [7]. 
Lustre includes a superset of the expressions described in the TR rules, such as expres-
sions for creating and manipulating composite datatypes including arrays, records, and 
tuples.  It also accounts for Lustre’s notion of modularity, called the node, which cor-
responds to Simulink subsystems.  The complete rules for rewriting Lustre programs 
are described in a Rockwell Collins technical report that is available at the Springer 
web site accompanying this text.   

For encoding the set of principals for model checking tools, we use bitvectors.  The 
models that we attempt to analyze will always consist of a finite number of variables, 
and therefore the principal variables form a finite set.  We encode this set as a bitvec-
tor containing one bit per principal signal.  The Union and SingletonSet operations are 
encoded as bit_or operators and bitvector constants, respectively.   

5.3  From Principals to Domains 

Our implementation allows multiple variables to be mapped to the same principal 
identifier (id).  This identifier can be thought of as a security domain [5,20].  For the 
purposes of analysis, this can reduce the number of bits necessary for a model check-
ing analysis, which improves performance.  It also coarsens the analysis, as it is no 
longer clear from a counterexample which of the variables mapped to the principal id 
is responsible for information flow. 
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5.4  Adding Control Variables 

The implementation allows variables to be designated as control variables.  The intui-
tion is that an operand of an AND or OR gate sometimes acts as a mask for the other 
operand (towards FALSE and TRUE, respectively).  In this instance, we would like to 
consider the information flow from the other variable into the gate only if the control 
variable has the appropriate value.  This feature allows for slightly more accurate 
analysis in some models. It is a conservative extension because the semantics of AND 
and OR gates are semantically the same as the following if/then/else structure: 

 

Y = C and E ⇔ Y = if C then E else false;  
Y = C or E ⇔ Y = if C then true else E ;  
 

Y is semantically equivalent in both cases, and the soundness of the flow analysis 
follows from the existing proof of if/then/else expressions in Fig. 12.  Note that the 
condition variable for if/then/else (C) is always used for the information flow analysis, 
so if both variables in a Boolean expression are control variables, the following is gen-
erated: 

 

Y = C0 and C1 ⇔  
Y = if C0 then (if C1 then C0 else false) else  
   (if C1 then C0 else false) 

 
After applying the syntactic TRe transformation to the right hand side of the equiva-

lence and simplifying, this yields the “standard” information flow expression for the 
original binary expression: Bop(Union, TRe(a1, Pr), TRe(a2, Pr)). 

6  Intransitive Interference and Noninterference 

We have defined a considerable amount of infrastructure for determining which va-
riables can interfere with a particular computed variable within a model.  In the ap-
proach we have pursued in the previous sections of this chapter, all interference rela-
tions are transitive.  That is, if variable A interferes with variable B and B interferes 
with C, then A interferes with C.  However, there are several systems in which we are 
willing to allow certain kinds of interference across security domains, as long as it is 
mediated in some way.  The reasoning for allowing this interference is well explained 
by Roscoe and Goldsmith [19]:  
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It seems intuitively obvious that the relation � must be transitive: how can it make sense for A to 
have lower security level than B, and B to have lower level than C, without A having lower 
level than C? But this argument misses a crucial possibility, that some high-level users are 
trusted to downgrade material or otherwise influence low-level users. Indeed, it has been 
argued that no large-scale system for handling classified data would make sense without some 
mechanism for downgrading information after some review process, interval (e.g., the U.K. 
30-year rule) or defined event (the execution of some classified mission plan, for example). 
Largely to handle this important problem, a variety of extended theories proposing definitions 
of ‘‘intransitive noninterference’’ have appeared, though we observe that this term is not really 
accurate, as it is in fact the interference rather than the noninterference relation which is not 
transitive. Perhaps the best way to read the term is as an abbreviation for ‘‘noninterference 
under an intransitive security policy’’. 

 
There have been several formulations of intransitive interference based on state 

machines [20], process algebras [19], and event traces [10].  

6.1 Formulating Intransitive Interference  

Our model is entirely defined in terms of variables.  Operations such as encryption 
or downgrading are implemented as subsystems (sets of variables) within a larger 
model whose output is another variable within the model.  Therefore, it is natural to 
think of extending the set of principal variables P from only the inputs to include in-
ternal variables that define the mediation points of interest.  Since the definition of 
Noninterference requires only that the principal variables agree, these intermediaries 
are easily incorporated into our definition.   

For example, in the shared buffer model, we are willing to allow information to 
flow through the scheduler.  By adding the scheduler state to P, we restrict ourselves 
to reasoning over traces in which the scheduler states match.  From the perspective of 
reasoning, it is straightforward to parameterize the proofs over a superset of the inputs 
and reprove the InterferenceTheorem and NoninterferenceTheorem defined in Sections 
3 and 4.   

The Problem of Implicit Functional Dependencies 

Unfortunately, this formulation of “correctness” allows unintended covert informa-
tion flows around the mediation point as long as they can be functionally derived from 
an input variable.   
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Fig. 26 Simulink model containing a bypass.  

Figure 26 presents a Simulink model that illustrates the problem.  Output O is a 
record type that contains two fields B and C.  Field B is the output of a subsystem that 
encrypts the input variable (A); field C is a simple pass-through of A.  Suppose that the 
output of the encryptor B is functionally derived from input A.  That is, two traces on 
B agree only when the traces on A also agree.  In this case, according to the interfe-
rence theorem, we can adjudge output O to be dependent only on B, even though there 
is clearly a flow that bypasses B.  The problem is that the encryptor variable is func-
tionally derived from a single input A, so the equivalence on B forces a corresponding 
equivalence on the input A.  In other words, requiring a trace equivalence on a com-
puted principal variable may cause an implicit equivalence on another principal varia-
ble.  These implicit equivalences allow an attacker to bypass the desired mediation va-
riable. 

An Overly Conservative Formulation 

An approach that could be considered for intransitive interference reframes the 
problem: given a program P involving a computed principal variable c we construct a 
program P’ in which c is an input, and assert that all traces must agree on P’.  P’ has at 
least as many traces as P, as the value of c is unconstrained with respect to the other 
variables in P’.  The additional traces distinguish variables that bypass the computed 
principal as there is no longer a functional connection between the computed variable 
and the inputs.   

Unfortunately, treating states as inputs leads to overly conservative analyses involv-
ing traces that are impossible in the original program.  Consider the shared buffer 
model from Section 2.  If a new model is created in which the scheduler output is in-
stead a system input, then the scheduler can no longer correctly mediate access to the 
shared buffer and so information flow occurs through the buffer.  The flow analysis 
will (correctly) state that there is information flow through the buffer, but the flagged 
traces are not possible in the original model. 
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6.2 Modeling Intransitive Interference using Graph Cuts 

The analysis approach that is used in Gryphon is to model intransitive information 
flow through cuts in the information flow graph.  That is, we define a new principal 
variable in the information flow graph by cutting the edges that define the dependen-
cies of that computed variable.  To implement the change in the information flow (IF) 
semantics defined in Section 3, we add the internal variable indices to the set of inputs 
that are used in the IFe, IFi , IFs, and IFt relations.  The definition of the program P is 
left unchanged.   

This modified graph model is sufficient to correctly characterize both a program P 
and a modified program P’ in which a principal variable c is treated as an input.  In 
other words, this formulation is sensitive to the structure of the computation of the 
system execution traces as well as the functional result.  The original program P is 
analyzed, so there are no problems introduced by the additional traces of P’, but we 
(correctly) characterize models such as the one described by Fig. 26 as containing di-
rect information flows from input variable A to output O. 

Illustrations of a transitive flow model and an intransitive model using graph cuts 
are shown in Fig. 27.  Recall that the hybrid model that is generated for model check-
ing is composed of both a functional model (the original system) and an information 
flow model which is an encoding of the IF semantics as described in Section 5.  In Fig. 
27, the functional model is shown at the top of the figure.  In the middle is a transitive 
information flow model.  At the bottom is an intransitive information flow model2.  
Each model is presented both graphically on the left and in terms of equations on the 
right.  In this figure, the principal bitvector for a variable X is notated X.   

Suppose variable Y (the switch gate) acts as a downgrader for variable D.  We 
would like to state that the output (Z) depends on input D only when mediated through 
the downgrader.  Given the transitive formulation of information flow in the middle of 
Fig. 27, it is not possible to make this claim.  However, the intransitive graph at the 
bottom of Fig. 27 breaks the information flow graph for each use of variable Y, replac-
ing the input flows through the computed definition of Y with a new principal signal Y.  
Given this new graph, it is possible to prove that no information flows from D to Z that 
is not mediated by Y.  On the other hand, note that with this intransitive graph, a non-
interference proof would still not be possible for variable C as it has a flow to Z that 
bypasses Y.   

 

                                                           
2 For model-checking analysis only one of the two information flow models would be generated, de-
pending on the set of principal signals provided.  However, Fig. 24 is designed to illustrate the differ-
ences between the transitive and intransitive analysis. 
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Fig. 27 Transitive vs. Intransitive flow graphs.  

  
We currently do not have a strong theorem (such as the InterferenceTheorem) that 

we can prove about intransitive dependencies.  Further, we conjecture that it is not 
possible to functionally characterize such dependencies using trace semantics.  In-
stead, the structure of the computation function must be examined – the property is in-
trinsic to the structure. 

7  Connections to GWV 

In the current chapter and the previous chapter by Greve [6], we have presented two 
quite similar formulations of information flow modeling.  The formulation in Greve’s 
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chapter is more abstract and describes information flow over arbitrary functions using 
flow graphs.  It then describes how these functions can be composed and how multi-
step state transition systems can be encoded.  Two different formulations (GWVr1 and 
GWVr2) are presented.  The GWVr2 formulation is capable of modeling dynamic in-
formation flows, in which storage locations are created and released during the com-
putation of the function, but this additional capability comes at a cost of some addi-
tional complexity.   

In this chapter, we have modeled information flow specifically for synchronous da-
taflow languages.  The basis for this approach was modeling GWV-style equivalences 
using a model checker.  However, the approach was originally justified by manual 
proofs over trace equivalences due to the first author’s familiarity with this style of 
formalization for synchronous dataflow languages.  The mechanized proofs in this 
chapter reflect the manual proofs.   

As a basis for formalization, the trace equivalence allows a very natural style of 
presentation.  It provides a nice abstraction of the computation and information flow 
analysis in that a total computation order for the assignments of the semantic and flow 
analyses is not required.  Instead, we can talk about conformance to some existing 
trace.  Also, since the entire trace is provided, we can describe latch conformance by 
examining the previous state in the trace.   

7.1 From InterferenceTheorem to GWVr1 

From the InterferenceTheorem, it is straightforward to map directly into the 
GWVr1 theorem presented in Greve’s chapter [6], as shown in Figure 28. 

 
GWVr1_Connection[ 
    (importing ProcessInterference)  
    P: WFPrograms]: THEORY 
BEGIN 
  IMPORTING ProcessInterference 
   
  valid_tp : TYPE = {tp: tracePair | tp_ok(P, tp)} 
 
  st_liftv(i: index, tp: tracePair) : vtrace = 
    liftv (i, s(tp))  
 
  IMPORTING GWVr1[index, valid_tp, vtrace, st_liftv, 
                  index, valid_tp, vtrace, st_liftv] 
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  step_id(tp: valid_tp) : valid_tp = tp; 
 
  gtrace_graph(tp: valid_tp)(idx: index) :  
  GraphEdge[index] =  
     Compute(DepSet(idx, g(tp))) 
 
  precondition(tp: valid_tp) : bool = true ;  
 
  inputEquivSet_to_vtraceEquivSet : LEMMA 
    (FORALL (is: set[index], tp1, tp2: tracePair) :  
       Input.equivSet(is, tp1, tp2) =>  
       vtraceEquivSet(is, s(tp1), s(tp2))) 
 
  GraphIsGWVr1 : LEMMA 
     GWVr1(step_id)(precondition, gtrace_graph);  
 
END GWVr1_Connection 

Fig. 28 Connection to GWVr1 theorem.  

GWVr1 is defined as a proof obligation over a transition function from an input 
state to an output state.  The fragment of the GWVr1 theory required for the proof is 
shown in Fig. 29. 
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GWVr1 [INindex, INState, INvalue: TYPE, 
       getIN: [[INindex, INState] -> INvalue], 
       OUTindex, OUTState, OUTvalue: TYPE, 
       getOUT: [[OUTindex, OUTState] -> OUTvalue] 
 
GWVr1 [INindex, INState, INvalue: TYPE, 
       getIN: [[INindex, INState] -> INvalue], 
       OUTindex, OUTState, OUTvalue: TYPE, 
       getOUT: [[OUTindex, OUTState] -> OUTvalue] 
       ]: THEORY 
 
BEGIN 
 
  IMPORTING GWV_Graph[INindex,OUTindex] 
  IMPORTING GWV_Equiv[INindex,INState,INvalue,getIN]  
    AS Input 
  IMPORTING GWV_Equiv[OUTindex,OUTState,OUTvalue, 
                     getOUT] AS Output 
 
  StepFunction: TYPE = [ INState -> OUTState ] 
  GraphFunction: TYPE = [ INState -> graph ] 
  PreCondition: TYPE  = [ INState -> bool ] 
 
  GWVr1(Next: StepFunction) 
   (Hyps: PreCondition, Graph: GraphFunction): bool= 
    FORALL (x: OUTindex, in1,in2: INState): 
      Input.equivSet(DIA(x,Graph(in1)),in1,in2) & 
        Hyps(in1) & Hyps(in2) => 
          Output.equiv(x,Next(in1),Next(in2)) 

Fig. 29 Fragment of GWVr1 theory.  

The index, state, value, and get parameters to the theory define the indices of dis-
course, the state, the values that can be stored at indices, and the “getter” function to 
look up a value for the inputs and outputs of the transition function.  In our case, the 
types of inputs and outputs are the same: we are looking at traces.  To format our trace 
equivalences as a GWVr1 theorem, we create a theory parameterized by an arbitrary 
well-formed program.  The GWV index values are simply our index type, the state is 
the trace pair containing both the execution state and the information flow state, values 
map to our vtype, and the get function returns a variable trace from the state trace. 

The proof to GWVr1 merely involves re-shaping the InterferenceTheorem into the 
expected arguments for GWVr1.  Our StepFunction is simply the identity; we already 
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have the entire trace.  The GraphFunction returns the trace dependency set for a varia-
ble of interest; this is the same set used by the InterferenceTheorem.  No hypotheses 
are necessary, so we create a trivial precondition function.  We introduce a lemma in-
putEquivSet_to_vtraceEquivSet to map between the set equivalence functions used by 
InterferenceTheorem and GWVr1, then can establish the GraphIsGWVr1 lemma with 
very little difficulty using the InterferenceTheorem as a lemma. 

Although the trace formulation provides a nice level of abstraction for describing 
synchronous dataflow languages, in this chapter we have duplicated some of the infra-
structure that had already been established in [6] with respect to function composition, 
mapping from interference to noninterference, and justifying LTL theorems in terms 
of trace equivalence.  It would be possible to re-formalize the synchronous language 
semantics defined in Section 3 in order to better utilize the GWV infrastructure, but 
we leave this for future work.   

8  Using Gryphon For Information Flow Analysis 

We now demonstrate the information flow analysis in the Rockwell Collins Gryphon 
tool suite.  Gryphon is an analysis framework designed to support model-based devel-
opment tools such as Simulink/Stateflow and SCADE.  Model-based development 
(MBD) refers to the use of domain-specific, graphical modeling languages that can be 
executed and analyzed before the actual system is built.  The use of such modeling 
languages allows the developers to create a model of the system, execute it on their 
desktop, analyze it with automated tools, and use it to automatically generate code and 
test cases. 

As MBD established itself as a reliable technique for software development, an ef-
fort was made to develop a set of tools to enable the practitioners of MBD to formally 
reason about the models they created.  Fig. 30 illustrates MBD development process 
flow. 
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Fig. 30 Model-Based Developmment Process Flow. 

8.1 Model-Based Development Toolchain 

The following sections briefly describe each component of the MBD tool-chain. 

Simulink, Stateflow, MATLAB 
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Simulink, Stateflow, and MATLAB are products of The MathWorks, Inc. [11] Simu-
link is an interactive graphical environment for use in the design, simulation, imple-
mentation, and testing of dynamic systems.  The environment provides a customizable 
set of block libraries from which the user assembles a system model by selecting and 
connecting blocks.  Blocks may be hierarchically composed from predefined blocks. 

Reactis 

Reactis® [17], a product of Reactive Systems, Inc., is an automated test generation tool 
that uses a Simulink/Stateflow model as input and auto-generates test code for the ve-
rification of the model.  The generated test suites target specific levels of coverage, in-
cluding state, condition, branch, boundary, and modified condition/decision coverage 
(MC/DC).  Each test case in the generated test suite consists of a sequence of inputs to 
the model and the generated outputs from the model.  Hence, the test suites may be 
used in testing of the implementation for behavioral conformance to the model, as well 
as for model testing and debugging. 

Gryphon 

Gryphon [24] refers to the Rockwell Collins tool suite that automatically translates 
from two popular commercial modeling languages, Simulink/Stateflow and SCADE 
[4], into several back-end analysis tools, including model-checkers and theorem prov-
ers.  Gryphon also supports code generation into Spark/Ada and C. An overview of the 
Gryphon framework is shown in Fig. 31.  Gryphon uses the Lustre [7] formal specifi-
cation language (the kernel language of SCADE) as its internal representation.  This 
allows for the reuse of many of the RCI proprietary optimizations. 
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Fig. 
31 Gryphon Translator Framework.  

Prover 

Prover [16] is a best-of-breed commercial model checking tool for analysis of the be-
havior of software and hardware models.  Prover can analyze both finite state models 
and infinite-state models, that is, models with unbounded integers and real numbers, 
through the use of integrated decision procedures for real and integer arithmetic.  
Prover supports several proof strategies that offer high performance for a number of 
different analysis tasks including functional verification, test-case generation, and 
bounded model checking (exhaustive verification to a certain maximum number of ex-
ecution steps). 

Custom Code Generation 

By leveraging its existing Gryphon translator framework, Rockwell Collins designed 
and implemented a tool-chain capable of autotomatically generating SPARK-compliant 
Ada95 source code from Simulink/Stateflow models.   
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8.2  Modeling and Analyzing the Turnstile High-Assurance Guard 
Architecture 

A large scale use of the Gryphon analysis was performed on the Rockwell Collins 
Turnstile high-assurance cross-domain guard [18].  A high-level view of the architec-
ture is shown in Fig. 32.  The offload engines (OEs) provide the external interface to 
Turnstile.  The Guard Engine (GE) is responsible for enforcing the desired security 
policy for message transport.  The Guard Data Movers (GDMs) provide a high-speed 
mechanism to transfer messages under the direction of the GE.  The GE is imple-
mented on the EAL-7 AAMP7 microprocessor [25] and uses the partitioning guaran-
tees provided by the AAMP to ensure secure operation. 

 
In its initial implementation, Turnstile provides a “one way” guard.  It has a high 

side OE (OE1 in Fig. 32) that submits messages (generates input) for the guard, a low 
side OE (OE3 in Fig. 32) that emits messages if they are allowed to pass through the 
guard, and an audit OE (OE2 in Fig. 32) that provides audit functionality for the sys-
tem. 
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Fig. 32 Turnstile System Architecture. 

The architectural analysis focused on the interaction between the GDMs, GE, and 
OEs.  The OEs, GDMs and GE do not share a common clock and both execute and 
communicate asynchronously.  In the model, we clock each of the subsystems using a 
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system input.  This input is allowed to vary non-deterministically, allowing us to mod-
el all possible interleavings of system execution.   

Representing the Turnstile Architecture in Simulink 

The Simulink model of the Turnstile system architecture is shown in Fig. 33.  The 
components were modeled at various levels of fidelity, depending on their relevance to 
the information flow problem:  

• The GDMs are responsible for most of the data routing and were modeled to a high 
level of fidelity.  All of the GDM channels (transmit, receive, audit, control, and 
health monitor) are modeled as well as the GDM-to-GDM and GDM-to-GE trans-
fer protocols. 

• The data routing portions of the GE were accurately modeled.  The policy enforce-
ment portions (the guard evaluator) were modeled non-deterministically: the GE 
component randomly chooses whether messages are dropped or propagated. 

• The OEs were modeled at a fairly low level of fidelity.  As the OEs are not trusted 
by the Turnstile architecture, we allow them to non-deterministically submit re-
quests on all of the interfaces between OE and GDM.  This approach allows us to 
model situations in which the OE violates the Turnstile communications protocols 
(which should cause the system to enter a fail-safe mode).   

The principals of interest are those processes on the Offload Engines that interact 
with the outside world (the low and high networks): the reading and writing processes 
on OE1 and the reading and writing processes on OE3.  To represent the arbitrary in-
terleavings of the Turnstile processes, we used enabled (clocked) subsystems in Simu-
link.  The GDMs run in synchrony at the basic rate of the model while the OEs and 
GE run at arbitrary intervals of the basic rate. 
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Fig. 33 Simulink Turnstile Model.  

The model in Fig. 33 was translated via Gryphon into the model checkers NuSMV 
[8] and Prover [16].  With these tools we analyzed several of the information flows 
through the model.  Since the OE has multiple inputs in our model (and in real life) we 
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analyzed every input into the OEs for the possible presence of information from an 
unwanted source.  In a one-way guard configuration, we are interested in determining 
whether there is backflow of information to the high-side network, that is, whether any 
GDM input into OE1 is influenced by the low-side (OE3) reading or writing princip-
als.  These properties can be encoded as shown in Fig. 34.  

 
Fig. 34  Backflow Properties from “Low Side” OE3 to “High Side” OE1. 

One of the back flow properties (shown in bold font) was violated in the architec-
tural model.  However, this was already a known source of back flow because of the 
implementation of the GDM transfer protocol that resulted from a quality of service 
requirement levied on the Turnstile implementation.  This requirement stated that a 
new message cannot be accepted until the previous message had been delivered.  In 
the Turnstile architecture, the high-side writer is unable to transmit to the GDM until 
the low side reader has finished consuming the last message.  The low-side reader 
could potentially use this mechanism to transmit information (interfere) with the high 
side network.  The verification of the other properties demonstrates that the high-side 
OE is not, for example, influenced by the low-side writer.   

Also, because the Audit OE may also be connected to the high network we wanted 
to verify that no information from OE3 leaks out to the Audit network from any of the 
GDM inputs to OE2.  These properties, which are all proven correct by the Prover 
model checker are shown in Fig. 35. 
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Fig. 35 Backflow Properties from “Low Side” OE3 to Audit OE2. 

Though much more complex, the Turnstile architectural model is conceptually sim-
ilar to the shared buffer example. The GE acts as the scheduler between the GDMs, 
which are physically connected together and can be thought of as defining a “shared” 
resource.  It is crucial to note that accurate conditional information flow is necessary 
to successfully analyze the Turnstile system architecture and many other industrial 
systems of interest.  Since the GDMs are directly connected, an unconditional analysis 
of the architecture would not be able to demonstrate non-interference properties be-
tween the high and low side OEs.  Only by considering the state of the system (espe-
cially the GE) can one demonstrate the security of the architecture.   

9  Conclusion and Future Work 

    In this chapter, we have described an analysis procedure that can be used to check a 
variety of information flow properties of hardware and software systems, including 
noninterference over system traces.  This procedure is an instantiation of the GWV-
style flow analysis specialized for synchronous dataflow languages such as SCADE 
[4] and Simulink [11].  Our analysis is based on annotations that can be added directly 
to a Simulink or SCADE model that describe specific sources and sinks of informa-
tion.  After this annotation phase, the translation and model checking tools can be used 
to automatically demonstrate a variety of information flow properties.  In the case of 
non-interference, they will prove either that there is no information flow between the 
source and a variable of interest, or demonstrate a source of information flow in the 
form of a counterexample. 

In order to justify the model checking analysis, we have presented a formalization 
of our approach in PVS and demonstrated a NoninterferenceTheorem.  This theorem 
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states that if our model-checking analysis determines a system input does not interfere 
with a particular output, then it is possible to vary the trace of that input without af-
fecting the output in question.   The analysis is both scalable and accurate, and can be 
used to describe: 

• Conditional Information Flow: The analysis is sensitive to the state of the model, 
and can be used in situations in which multiple domains “share” a resource, such as 
the shared buffer model. 

• “Covert” Information Flow:  The analysis can detect flows due to (for example) 
contention for resources.  These flows are ultimately manifest in the test expres-
sions for conditionals, which are propagated to the output of the conditional. 

• Intransitive Information Flow:   The analysis can be used to define intransitive in-
formation flows, in which we are willing to allow information flows between do-
mains as long as they occur through well-defined mediation points. 

Our analysis is implemented in the Gryphon tool suite that supports several kinds of 
formal analysis of Simulink and Stateflow models.  Gryphon has been used in several 
large-scale formal verification efforts [24], including a flow analysis of the Turnstile 
high-assurance cross-domain guard.   

9.1 Future Work 

There are several directions for future work given the framework that has been 
created.  First, there are a variety of interesting properties beyond non-interference that 
can be formalized using temporal logic.  For example, it is possible to begin talking 
about rates of information flow through a system by creating more interesting tempor-
al logic formulations of flow properties.  For example, one can state that flow occurs 
at most every ten cycles of evaluation (say), with the following Real-Time CTL 
(RTCTL) [2] property:  

 
SPEC AG(gry_IF_output[P1] -> ABF[1,10] (!gry_IF_output[P1]));  

 
where ‘ABF’ is the bounded future operator of RTCTL.  This formula states that if 

flow occurs from principal P1 to variable output in the current steps, that no flow oc-
curs from P1 to output over the next 10 steps.  In order to be informative, this obliga-
tion would have to be paired with some notion of how much information was being 
transmitted by a particular flow in an instant when flow occurs.  It should be possible 
to annotate (manually or automatically) an information flow model with the flow rates 
along particular edges within the graph.  Such an annotation could be used to over-
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approximate “acceptable” levels of information loss when strict non-interference is not 
possible (such as with the scheduler in the shared buffer example from Section 2.2).   

Similarly, we may want to describe modal information flow properties. For exam-
ple: as long as the system is not in the self-test mode, then no information flows from A 
to B.  These properties are straightforward to specify in temporal logic, but precisely 
defining the meaning of these kinds of properties in a more general InterferenceTheo-
rem would be a useful exercise.  

It should be possible to partition the model checking analyses using compositional 
reasoning techniques such as those described in [12, 13] for very large models.   De-
termining the obligations over both the functional state and also the information flow 
graph should be an interesting exercise, and may yield further insights into the rela-
tionship between a functional model and information flow graph.   

There are several directions in which to extend the full formalization of the ap-
proach in PVS.  First, we should formalize the proof of equivalence between the IFe 
semantics and the information flow model that is generated by the translation rules in 
Section 5.  A more ambitious step would be to formalize the entire Lustre language in 
PVS including the clock operators and modularity constructs and demonstrate the cor-
rectness of the complete translation provided in the Gryphon toolsuite. 

Finally, we would like to be able to compose the model checking results with re-
sults from theorem proving GWV-style theorems using a theorem prover such as PVS 
or ACL2.  This would allow partitioning of very large problems into portions that can 
be analyzed with “the right tool for the job”, using theorem proving where required 
(e.g., when complex dynamic data structures are involved) but using automated analy-
sis using model checking where possible. 
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