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Abstract Information flow modeling describes how informatioan be transferred
between different locations within a software andvardware system. In this chapter,
we define a notion of information flow based oncés that is useful for describing
flow relations for synchronous dataflow languageshs as Simulink [11] and
SCADE™ [4] that are often used for hardware/sofevar-design. We then define an
automated method for analyzing information flowpgeedies of Simulink models using
model checking. This method is based on creatifigwa modelthat tracks informa-
tion flow throughout the model. Often, informatiflow properties are defined in
terms of some form afoninterferencewhich states informallythat objects in one se-
curity domain cannot perceive the actions of olsjedthin another domain. We dem-
onstrate that this method preserves the GWV funatimotion of noninterference.
We then describe how this proof relates to the Gidbrem and provide some in-
sight into the relationship of the flow model ahe flow graphs used in GWVrl. Fi-
nally, we demonstrate our analysis technique bylyaimay the architecture of the
Turnstile high-assurance cross-domain guard platfesing our Gryphon translation
framework and the Prover™ model checker.

1 Introduction

In order to describe the secure operation of a chenpsystem, it is useful to study
how information propagates through that systemr eéxample, an unintended propa-
gation of information between different componemi@y constitute @overt channel

that can be used by an attacker to gain acces®mtecped information. We are there-

Michael W. Whalen, David A. Greve, Lucas G. Wagner
Rockwell Collins, Inc., Cedar Rapids, lowa, USA



2

fore interested in determining how and when infdioxa may be communicated
throughout a system. At Rockwell Collins, we hapent several years modeliing
formation flowproblems to support precise formal analyses otdéfit kinds of soft-
ware and hardware models.

In this chapter, we describe an analysis pnoeethat can be used to check a varie-
ty of information flow properties of hardware araftasare systems. One of the prop-
erties that can be checked is a forrmohinterferencd5, 20, 19, 21}that is defined
over system traces. Informally, it states thaystesn input does not interfere with a
particular output if it is possible to vary thedeaof that input without affecting the
output in question.

Although great strides have been made in the dpwetat of formal analysis tools
over the last few years, there have been relatifelyinstances reported of their suc-
cessful application to industrial problems outsidehe realm of hardware engineer-
ing. In fact, software and system engineers aenatompletely unaware of the oppor-
tunities these tools offer. One of the goals of analysis was that it could be
completely automated and directly applicable totduts and languages used by engi-
neers at Rockwell Collins, such as MATLAB SimufthKl1] and Esterel Technolo-
gies SCADE Suite™ [4]. These tools are achievindespread use in the avionics
and automotive industry, and can also be used soritbe hardware designs. The
graphical models produced by these tools havegsifarward formal semantics and
are amenable to formal analysis. Furthermorsa, dften the case that software and/or
hardware implementations are generated directlyn ftbese models, so the analysis
model is kept synchronized with the actual systetifaat.

Our analysis is based on annotations that can bedadirectly to a Simulink or
SCADE model that describe specific sources andssifikinformation. After this an-
notation phase, the translation and model chectanty can be used to automatically
demonstrate a variety of information flow propestieln the case of non-interference,
they will prove either that there is no informatiffow between the source and sinks,
or demonstrate a source of information flow infitven of a counterexample.

The result returned by the model checker must béfigd by a general claim re-
garding the soundness of the analysis and the atetiotmodel. To justify our analys-
es, we first define a kind of trace equivalencéisTrace equivalence is just a form of
the GWVrl characterization defined earlier in Grevieformation flow chapter [6].
We then define syntax and semantics for a syncluomataflow language and pro-
vide an information flow semantics for the languadéext, we demonstrate that this
information flow semantics characterizes (i.e. etds) the trace equivalence, and de-
fine non-interference as a dual-property of thermfation flow characterization. The
information flow semantics is then directly refledtinto a “flow model” that is emit-
ted as part of the translation and conjoined whth driginal model. We finally show
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that model checking this conjoined model yieldsshme result as executing the flow
model semantics.

The organization of the rest of the chapter isalews: Section 2 introduces the
concepts involved through the use of a motivatingred buffer example. Section 3
describes an abstract formalization of informatftow through trace equivalence,
presents the syntax and semantics for a simpldi@@flow language, and proves an
interference theoremi,e., that the information flow semantics preserves taeed
equivalence. Section 4 demonstrates Iman-interferencecan be defined as a corol-
lary of the interference theoren$ection 5 describes how this formalization is zli
in the Gryphon tool suite. Section 6 describes Hmwwools can be used to analyze
transitive interference.Section 7 describes connections between the faratain in
this chapter and the GWV formulation from Greve. [@ection 8 describes applica-
tions of the analysis: the shared buffer model alsb a large-scale model of the
Rockwell Collins Turnstile high-assurance guarckcthn 9 presents future directions
for the analysis and concludes.

2 A Motivating Example

To motivate our presentation, we use an exampke sifared buffer model, shown in

Fig. 1. In this model, secret and unclassifiesinfation both pass through a shared
buffer. In order to prevent leakage of secretrimiation, this buffer is coordinated by

a scheduler (bottom of the figure) that mediate®ss to the buffer. On the left, there
are two input processes for secret and unclasdifiggt. On the right, there are two

output processes for secret and unclassified output
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Fig. 1 Shared Buffer Architecture.

When the scheduler is in the WAITING state, a wrigguest from either input
process will result in that process obtaining tiéfdy. The process will continue to
control the buffer until a corresponding read frtire buffer is completed. The con-
troller is designed to ensure that the secret idadaly allowed to be consumed by the
secret output, and symmetrically that the unclassiflata is only consumed by the
unclassified output.

Given this system, we would like to determine wieetbr not there is information
flow between the secret processes and the undétmbsgpifocesses. In other words, is it
possible for the unclassified processes to glefmmrimation of any kind from the secret
processes and vice versa? This information shasingually callednterferencenon-
interferencds the dual idea expressing that no informatiorrialgaoccurs In this ex-
ample, the potential for interference exists via itheduler. Unclassified processes
can perceive the state of the buffer (whether Hreyable to read and write from it) via
the scheduler, which is affected by the secretgsses.

If we decide that this interference is allowables would like to be able to deter-
mine whether there are any other sources of imenfe between the secret and un-
classified processes. An analysis which does occbunt for the current system state
will probably decide that there is the potential foterference, since both kinds of
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processes use a shared buffer. We would like & mocurate analysis that accounts
for the scheduler state in order to show that tieer® interference through the shared
buffer.

This example demonstrates important features oattadysis that we will describe

in the next sections:

Conditional Information Flow: We would like the analysis to account for enough
of the system state to allow an accurate analgsig,(that no information flows
from a secret input to unclassified output throtlgh shared buffer)

“Covert” Information Flow: The scheduler does not directly convey information
from secret processes to unclassified processésitsystate allows information
about the secret processes to be perceived. Tdigsanshould detect this interfe-
rence.

Intransitive Information Flow: If we are willing to allow information flow
through the scheduler, there should be a mechawisihow us to tag this informa-
tion path as “allowable” and determine if other m@s of flow exist. In the non-
interference literature, this is generally desdatibsintransitive noninterferenckb,

19, 20] The meaning ointransitivehas to do with the nature of information flows.
Since the scheduler depends on the secret inpuhanghclassified output depends
on the scheduler, @ansitive analysis would assert that the unclassified outiedt
pends on the secret input. However, we wouldtiikbe able to tag certain media-
tion points (e.g., downgraders or encryptors) devieed” sources of information
flow.

2.1 Shared Buffer Simulink Mode

A Simulink model of the shared buffer example iswh in Fig. 2. The inputs to

the model are shown on the left: we have the rdquesuse the buffer from the four

processes (the secret input/output process andnitiassified input/output processes)
as well as the input buffer data from the secrelt amclassified input processes. The
scheduler subsystem determines access to the bwfide the buffer subsystem uses
the scheduler state to determine which procesgsvtit the shared buffer.
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Fig. 2 Shared Buffer Example in Simulink.

The information flow analysis is performed in terofsa set ofprincipal variables
These variables are the variables that we areestied in tracking through the model.
We always track the input variables to the modet] e sometimes track computed
variables internal to the model. To perform thalgsis, the Simulink model is anno-
tated to add the principal variables as shown ¢n i

I oredl]

si_req Gryphon if_principal si

si_data  Gryphon if_principal s 1

ui_req Gryphon if_principal ui

T

scheduler —
@] >
ui_data  Gryphon if_principal ui 1
. (s> [z} o] (D
lStetep> sute 0 data
— From1
S0_red  Gryphon if_principal so L
T data]> si_data  buffer_data —1
CO——>[pimsp | —»-<ored - - N
uo_req  Gryphon if_principal uo #\
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Fig. 3 Annotated Simulink Model.

Once we have annotated the model, we usé&tlyphontool set [24] to automati-
cally construct an information flow model that da@ model checked on a variety of
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model checking tools including NuSMV [8], SAL [23]nd Prover [16]. The analysis
process extends the original model witficav modelthat operates over sets of prin-
cipal variables. Each computed variable in thginal model has fow variablein
the flow model that tracks its dependencies in seofrthe principal variables.

For model checking, sets of principal variables emeoded as bit sets, and check-
ing whether information flow is possible is the saas determining whether it is poss-
ible that one of the principal bits is set. Fag thodel above, the translation generates
the following bit set for the principals:

Principal bit vector: {
si maps to bit: O,
so maps to bit: 1,
ui maps to bit: 2,
uo maps to bit: 3

}

Now we can write properties over output variablEsr example, suppose we want
to show that the secret output data is unaffectethb unclassified input or output
principal. In this case, we could write:

LTLSPEC (! (gry_I F_so_data[ui _idx] |
gry |F so data[uo_idx]));

gry_IF is the prefix used for the flow variables, so timalgisis checks whether there
is flow to theso_dataoutput from theui principal or theuo principal. These principals
correspond to flow from thei_req, ui_data anduo_reqinput variables.

As described earlier, this property is violated¢cdaese there is information flow
from the unclassified processes to the secret odkpaugh the scheduler. NuSMV
generates a counterexample that we can examinetéoniine how the information
leak occurred.

After analyzing the problem, we decide that thenflof information through the
scheduler state is allowable. We would now likeséarch for additional sources of
flow. By adding an additional principal for theheduler state, as shown in Fig. 4, we
can ignore the flows from the anduo principals that occur through the scheduler.
After re-running the analysis, the model checkeddino other sources of information
flow.



si_req Gryphon if_principal si

_| ui_req
( : y———| principal <[s_data]| _—
n — : state principal
S_data  Giyphon i_principal i 1 %[ principal] <ftate]

soreq
G —{principal |
[uo_reql>

ui_req  Gryphon if_principal ui

Gryphon if_principal scheduler

scheduler

|

b {prnapal | — (e daa] >
ui_data  Gryphon if_principal ui 1
s e e A )
rom
©_red  Gryphon if_principal so [
data]> si_data  buffer_data t—¢
CoO——[pinana] - - o
uo_req  Gryphon if_principal uo F\
[vi_data)> ui_data [[State}>pp{ is_mode_unclassified —’ —»(D)
uo_data
buffer [

Fig. 4 Annotated Simulink Model with Intransitive Flow.

3 Information Flow Modeling for Synchronous Dataflow
Languages

Languages such as Simulink [11] and SCADE [4] aan®les ofsynchronous dataf-
low languages. The languages argynchronousecause computation proceeds in a
sequence of discrete instants. In each instapatsnare perceived and states and out-
puts are computed. From the perspective of thedbsemantics, the computations
are instantaneou3 he languages ardataflow because they can be understood as a
system of assignment equations, where an assigrsaarite computeds soon as the
equations on which it is dependent are computeche &quations can either be
represented textually or graphically. As an examnpbnsider a system that computes
the values of two variables, X and Y, based onpditist a, b, ¢, and d, shown in Fig. 2:

=

X X=2a/(b-c)

Qa 0 T o N

Y=X+d

1 Y

Fig. 5 Graphical and textual presentation of a set of éguost
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The variables (often referred to signalg in a dataflow model are used to label a
particular computation graph. Therefore, it isamect to view the equations as a set
of constraints on the model: a set of equationsveha Fig. 6 is not a valid model be-
cause X and Y mutually refer to one another. Thishown in Fig. 6, where the bold
lines indicate the cyclic dependencies. Such #esysnay have no solution or infi-
nitely many solutions, so cannot be directly usedaadeterministic program. If
viewed as a graph, these sets of equations tiaeedependency cycleend are consi-

dered incorrect.
2
>@ X X=2a+Y
a

AR =
d \t/ Y Y=X+d

Fig. 6Cyclic set of equations.

However, in order for the language to be useful,mest be able to have mutual
reference between variables. To allow benign cygépendencies, we create a step-
delay operator (i.e., a latch) using the commaatper For example: {X=2a/Y; Y
=1, (X + d))} defines a system where X is equaRéodivided by the current value of
Y, while Y is initially equal to 1, and thereaftequal to thepreviousvalue of X plus
d.

There are several examples of textual dataflowdaggs, including Lustre [7], Lu-
cid Synchrone [3], and Signal [9] that differ imrtes of structuring mechanisms, com-
putational complexity (i.e., whether recursion lisweed), and in terms oflocksthat
define the rates of computation for variables. @ualysis is defined over the Lustre
language. Lustre is the kernel language of the BE£ool suite and also the internal
language of the Rockwell Collins Gryphon tool suitaustre is also sufficient to mod-
el the portions of the Simulink/Stateflow languagist are suitable for hard-
ware/software co-design.

3.1 Modeling I nformation Flow

When describing information flow, we are often atfging to define anon-
interferencerelation of some kind. There have been severahidtations of non-
interference [5, 20, 21, 19] involving transitiopsgeems and process algebras which
have focused on non-interference in terms of aetdcactions (inputs) fed into some
machine that generates outputs. The idea of nenfé@rence is simple: a security do-
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mainu does not interfere with domainif no action performed by can influence sub-
sequent outputs of

In the formulation of [20], non-interference is demstrated by removing actions
from the trace T (call it T') and showing that undertain conditions the final output
of the machine is the same. However, for synchusniataflow languages such as
Lustre or Simulink, characterizing the “removableputs is difficult, as each input
variable is assigned a value in each step; one defste predicates over the cross
product of the input variables. Characterizing‘thetion” of a model with potentially
tens or hundreds of outputs presents similar diffies.

Instead, following Greve in the earlier chapter, [§¢ would like to define a notion
of non-interference on individual variables withinmodel in terms of correspon-
dences between two traces. In our formulatiomaeetis a sequence of model states,
each state containing the assignments to all Vesabithin the model. We define a
set of principal variablesas a superset of the inputs, and then definéntarferes
function for any variable that describes the set of principals that couldibg affect
the value ot. We determine the correctness of theerferesset in terms of trace cor-
respondence. Thaterferesset is correct if, given any varialdeand traces, andn;,
if the traces agree on all the variabledrierferes(c),then they will agree os. In
other words, the variables Interferes(c)are sufficient to determine the valueét
any step. Equivalently, any principal variablesidé thelnterferesset cannot affect
the value ot.

Formalized in the PVS notation [22], the theoreat thie are proving is as follows:
I nterferenceTheorem LEMVA
FORALL (p: Program gtl:gtrace, stl,st2:strace):
FORALL (i dx:index):
WFp(p) & St(p,stl) & St(p,st2) &
IFt(p,stl,gtl) &
vt raceEqui vSet (DepSet (i dx, gt1),st1,st2) =>
liftv(idx,stl) = liftv(idx,st2)

This theorem states that if two traces are equintdleraceEquivSéton the dependen-
cies computed for a variabigx by ourInterferesset DepSetidx,gtl)), then two trac-
es agree on the value idik. The details of the theorem and steps in the prabbe
explained in the following sections.

How this is used in practice is that the user satgyehat is believed to be a non-
interfering principal variable for some varialdeand a model checker is used to de-
termine whether or not this variable interfereshw(ite., affectsy.
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3.2Using PVS

PVS [22, 15] is a mechanized theorem prover basedlassical, typed higher-
order-logic. Specifications are organized intot@ntially parameterized) theories,
which are collections of type and function defioits, assumptions, axioms and theo-
rems. The proof language of PVS is composed afreety of primitive inference pro-
cedures that may be combined to construct more ifolygoof strategies.

Normally in PVS the proof process is performed riatéively, and the proof script
encoding the entire proof is not visible to theruskn our development, we used the
ProofLite [14] extension to PVS in order to embed the praasfsomments into the
PVS theories. To make the theories shorter antbrets understand, we omit the
ProoflLite scripts in this chapter. However, theerested reader is encouraged to visit
the Springer web site to view and run the scripts.

3.3 Traces and Processes

The semantics of synchronous dataflow languagesuswelly defined in terms of
tracesthat describe the behavior of the system over tiffieese traces are formalized
in the language of the PVS theorem prover in FigWe are interested in two kinds of
traces. First, we are interested in the trace bfegaproduced by the execution of the
system. We define the set of values that can sigraed to variables using the opaque
typevtypé. The execution traces are mappings from instantisne to states, where
states map variables to values, and are definetthdstraceand statetypes, respec-
tively. The variables in our model correspondrtdices in Greve's formulation, and
we use the terrimdexto identify a variable in a trace.

Second, we are interested in tracing the depeneemntia variable in terms of a set
of other variables (in GWYV terms, the informatidowf graph). These traces map in-
stants in time tgraph states, where each graph maps an indexv@réaple) to sets of
indices. At each instant, for a given variablthe graph captures a set of variables
that are necessary for computing These traces are defined by iteaceandgraph-
Statetypes, respectively.

Note that our states are defined over an infingteo§ variablesnat In a real sys-
tem, we would have a finite set, but this can belehed by simply ignoring all va-
riables above some maximum index. This change doeaffect the formalization or
the proofs.

1 Opaque types in PVS allow one to define a typarasnspecified set of values.
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Traces: THEORY
BEG N

i ndex: TYPE = nat
time: TYPE = nat
vtype: TYPE+

state : TYPE
strace: TYPE

[ index -> vtype ]
[ time -> state ]

get (i: index, s: state): vtype = s(i)

graphState: TYPE = [ index -> set[index] ]
gtrace: TYPE = [ time -> graphState ]
END Traces

Fig. 7 Traces Theory.

Next, we defineprocesseghat constrain the traces in Fig. 8. The processe
built from expressions: an (unspecified) set ofryrend binary operators, constant,
variable, and conditional (if/then/else) expressiorWe next partition the indices into
gates, latches, and inputs. Gates are computed the current values of other va-
riables, while latches are computed from the previwalues of other variables.
Latches also have an initial value which is theilue in the first step of a trace. In-
puts are not computed and assumed to be exteprayded.

The processes described in Fig. 8 define a sisyalehronous dataflow language
such as Simulink or SCADE. For the purposes o tliscussion, the structuring me-
chanisms of these languages (nodes and subsystsm#&)ll as the clocking mechan-
isms for variables can be thought of as syntactias

ProcessExpr Types: THEORY
BEG N
| MPORTI NG Tr aces

BopType: TYPE+
UopType: TYPE+

BopEx(Bop: BopType, v1,v2: vtype): vtype
UopEx( Uop: UopType, vO: vtype): vtype
i sTrue(v0: vtype): bool

END ProcessExpr Types
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ProcessExpr: DATATYPE
BEG N
| MPORTI NG Pr ocessExpr Types

Const ant (val ue : vtype): Constant?
Vari abl e(nane : index): Variable?
| TE(test: ProcessExpr, thn: ProcessExpr,
el s: ProcessExpr): ite?
Bop( OpB: BopType, al: ProcessExpr,
a2: ProcessExpr): Bop?
Uop( OpU:. UopType, a0: ProcessExpr): Uop?
END ProcessExpr

ProcessAssi gnnent : DATATYPE
BEG N
| MPORTI NG Pr ocessExpr
Gate (gexpr: ProcessExpr): Gate?
Latch(vO: vtype, lexpr: ProcessExpr): Latch?
I nput: | nput?
END ProcessAssi gnment

Program THECRY

BEG N
| MPORTI NG Pr ocessAssi gnment
| MPORTI NG | ndexSet [ i ndex]

Program TYPE = [ index -> ProcessAssignnent ]

StatesP(p: Progran): set[index] =
(LAMBDA (v: index): Latch?(p(v)))

| nput sP(p: Program: set[index] =
(LAMBDA (v: index): Input?(p(v)))

GatesP(p: Progran): set[index] =
(LAMBDA (v: index): Gate?(p(v)))

De(e: ProcessExpr): RECURSIVE set[index] =
CASES e OF
Const ant (val ue): Enpty,
Vari abl e(nane): singl eton(nane),
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END Program

| TE(test,thn, els):

De(test) + De(thn) +

De(el s),
Bop(OpB, al,a2): De(al) + De(a2),
Uop( OpU, a0): De(al)
ENDCASES
MEASURE e by <<
bel owSet (n: nat, s: set[nat]): bool =
FORALL (i: nat): menmber(i,s) => (i < n)
Ae(v: index, a: ProcessAssignnent): ProcessExpr
CASES a OF
Gate (gexpr) gexpr,
Latch(vO, |l expr): 1expr,
I nput Vari abl e(v)
ENDCASES;
WEp(p: Program bool =
FORALL (v: index):
bel owSet (v, De(Ae(v,p(v))) & GatesP(p))
WFPrograns : TYPE = { p : Program| Wp(p) }

Fig. 8 Processes and Programs.

In general, a set of simultaneous equations malg yiero or multiple solutions.
We want a program to danctional given a particular input trace. In order to emsu
that the assignments yield functional traces, wedre strict ordering on gate assign-
ments. Since indices are defined as naturalsffices to define an ordering such that
the assignment expression for a variable may aflyr to gate indices that are strictly
smaller than the index being assigned. Notedhgtgate indices are restricted — it is

possible to write benign cyclic dependencies invm\atches.

The Ae function returns the assignment expression assatiaith a particular in-
dex. For inputsAe just returns a variable expression referring ® itiput. TheDe
predicate defines the dependencies of an expressioiVFp defines the functional
well-formedness constraint on programs.
for inducting over the gates within the programtthe will use for several of the
proofs.

Note thiat predicate also forms a basis
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3.4 Semantic Rule Conventions

We define different kinds of semantics for the eslproduced by a program and
also for information flow. The semantic functioimroduced follow a naming con-
vention to make them easier to follow and to retatene another. The form of the
semantics functions is as follows:

<TYPE><synt ax><OPT| ONAL RESTRI CTI ON>
For example, th&efunction defines the value-semantic function fepressions, and
the IFsG function defines the information-flow function fatates with respect to
gates.

The <TYPE>s of semantics that will be used in the followinigcdission are as fol-
lows:

S: value semantics for traces

D: syntactic dependencies

DS: dependencies based on syntax and current state

IF: information flow dependencies
The<synt ax>es that will be discussed are the following:

e: expressions

i: indices (assignments)

S: states

t: traces
The <OPTI ONAL RESTRI CTI ON>s restrict the semantic functions at a particular
syntactic level to:

I: Inputs

G: Gates

L: Latches

3.5 Value Trace Semantics

We next create semantic functions for the expressemd programs in Fig. 8. Fol-
lowing [1] and [12] the semantics are defined e oftrace conformanceas shown
in Fig. 9 We state that a trace conforms to a programeifviddues computed by the
assignment expressions for the gates and latchiesspond to the values in the trace.
The Se function computes a value from a Process expmessidhe SsG predicate
checks conformance between the gate assignments stade, and th&sLpredicates
check conformance between the latch assignmentshentlace. Th&tpredicate de-
fines trace conformance over both gates and latches
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ProcessSemanti cs: THEORY
BEG N
I MPORTI NG Pr ogr am

Se(e: ProcessExpr, s: state): RECURSI VE vtype =
CASES e OF
Const ant (val ue) : val ue,
Vari abl e(nane): s(nane),
| TE(test,thn, els):
I F isTrue(Se(test,s)) THEN Se(thn,s)
ELSE Se(els,s) ENDIF,
Bop( OpB, al, a2): BopEx(OpB, Se(al, s), Se(a2,s)),
Uop( OpU, a0) : UopEx( OpU, Se( a0, s))
ENDCASES
MEASURE e by <<

Si(p: Program) (i: index, sO: state): vtype =
CASES p(i) OF

Gate (gexpr) :s0(i),

Latch(vO, l expr) : Se(lexpr, s0),

I nput : s0(i)
ENDCASES

Ss@E p: Program sO: state): bool =
FORALL (v: index): Gate?(p(v)) =>
(sO(v) = Se(Ae(v,p(v)),s0))

SsLO(p: Program sO: state): bool =
FORALL (v: index): Latch?(p(v)) =>
(sO(v) = vO(p(Vv)))

SsLn(p: Program s0,sl: state): bool =
FORALL (v: index): Latch?(p(v)) =>
(get(v,sl) = Si(p)(v,s0))

St(p: Program st: strace): bool =
FORALL (n: nat):
IF (n = 0) THEN
SsLO(p,st(0)) & SsE p,st(0))
ELSE
SsLn(p,st(n-1),st(n)) & Ss@E p,st(n))
ENDI F
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END ProcessSemantics

Fig. 9 Process Trace Semantics.

3.6 Creating an Accurate Model of Information Flow

Now we can create a semantics that tracks infoondtow through the model, shown
in Fig. 10. This semantics maps indices to thetatdices used when computing the
value of the index. For expressions, we createdifferent semantics; the first tracks
the indices that are immediately used within thengotation of the expression; the
second traces the indices backptmcipal variables which are the actual concern of
the information flow analysis. For the moment, ee@sider the inputs as the principal
variables. We expand this notion when we talk al@ansitive interferencén Sec-

tion 6.

Processl ndexSets: THEORY
BEG N
| MPORTI NG ProcessSemanti cs
| MPORTI NG Menber Rul es[ i ndex]

DSe(e: ProcessExpr, s0O: state):
RECURSI VE set[index] =
CASES e OF
Const ant (val ue): Enpty,
Vari abl e(nane): singl eton(nane),
| TE(test,thn, els):
| F isTrue(Se(test,s0)) THEN
SDe(test,s0) + SDe(thn, s0)
ELSE
SDe(test,s0) + SDe(els,s0)
ENDI F,
Bop(OpB, al, a2): Sbhe(al,s0) + SDhe(aZ2,s0),
Uop( OpU, a0): SDe( a0, s0)
ENDCASES
MEASURE e by <<

| Fe(e: ProcessExpr, principal: set[index],
s0: state, g0: graphState): RECURSIVE
set[index] =
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CASES e OF
Const ant (val ue): Enpty,
Vari abl e( nane) :
I F principal (name) THEN
si ngl et on( nane)
ELSE
gO0( nane)
ENDI F,
| TE(test,thn, els):
I F isTrue(Se(test,s0)) THEN
| Fe(test, principal,s0,g0) +
| Fe(t hn, principal, s0, g0)
ELSE
| Fe(test, principal,s0,g0) +
| Fe(el s, principal, s0, g0)
ENDI F,
Bop( OpB, al,a2): |Fe(al, principal,s0,g0) +
| Fe(az2, princi pal , s0, g0),
Uop(OpU, a0) : | Fe(ao, princi pal , s0, g0)
ENDCASES
MEASURE e by <<

| Fsl (p: Program s0O: state, g0: graphState): bool =
FORALL (v: index): Input?(p(v)) =>
(g0(v) = I Fe(Ae(v, p(Vv)),InputsP(p), s0, g0))

I Ft1(p: Program st: strace, gt: gtrace): bool =
FORALL (t: tine) : IFsl(p, st(t), gt(t))

| Fs@ p: Program s: state, g: graphState): bool =
FORALL (v: index): Gate?(p(v)) =>
(g(v) = 1Fe(Ae(v,p(v)),InputsP(p),s, g))

| Ft (p: Program st: strace, gt: gtrace): bool =
FORALL (t: tine) : IFs@Ep, st(t), gt(t))

| FsLO(p: Program g0: graphState): bool =
FORALL (v: index):
Latch?(p(v)) => gO(v) = Enpty

| FsLn(p: Program sO0: state,
g0, gl: graphState): bool =
FORALL (v: index): Latch?(p(v)) =>
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(gl(v) = I Fe(Ae(v,p(Vv)),IlnputsP(p),s0,g0))

| FtL(p: Program st: strace, gt: gtrace): bool =
FORALL (n: nat):
IF (n = 0) THEN
| FsLO(p, gt (0))
ELSE
| FsLn(p,st(n-1),gt(n-1),gt(n))
ENDI F

| Ft (p: Program st: strace, gt: gtrace): bool =
IFtQ(p,st,gt) & IFtL(p,st,gt) & IFtI(p,st,gt)

tracePair : TYPE = [# s: strace, Qg: gtrace #];

tp_ok(p: Program tp: tracePair) : bool =
IFt(p, s(tp), g(tp)) AND St(p, s(tp)) ;

Fig. 10Process Index Semantics.

The only difference between tigSe and IFe semantics in Fig. 10 is in the be-
havior of the Variable branch. For thée semantics, a set gfrincipal variablesare
provided. If a referenced variable is a princigaliable, then we return it as a depen-
dency; if it is not, then we return the dependenciethat variable. The effect of this
rule is to backchain through the intermediate \deis so that dependencies are always
a subset of the principal variables. Th8esemantics, on the other hand, return the
immediate dependencies (i.e., the indices of aibbes referenced in the assignment
expression).

Note that both th®SeandIFe semantics are state-dependent: For if/then/else ex-
pressions, the set of dependencies depends offi-ti&;ionly dependencies for the
used branch are returned. This feature allowsitondl dependencies to be tracked
within the model.

After defining the expression semantics we defime = semantics on states and
programs, matching the structure of Bdefinitions in Fig. 9. At the bottom of Fig.
10, we define trace pairs as a type and defineetpair conformance to a program
based on both semantics.
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3.7 PVSProof of Trace Equivalence (I nterferenceTheorem)

We can now state the interference theorem thatldhmiproven over the trace pairs.
Informally, we’d like to state that for a particuliadexidx, if the inputs referenced in
an information flow trace fordx (DepSet have the same values in two state traces
(vtraceEquivSét then the two traces will have the same valuegdfo Formally, this
obligation is expressed in Fig. 11. Note thatehisran asymmetry in the interference
theorem: we define two execution tracetl @ndst2) but only one graph tracgt().
The graph traceg(l) corresponding to an execution trastl) for a given indexdx
characterizes the signals that must match for dahgraexecution trace (in this case
st2) to matchstl for signalidx. It is equivalent to use a graph trace basest®n

vtrace: TYPE = [ tine -> vtype ]

liftv(i: index, st: strace): vtrace =
(LAMBDA (t: time): st(t)(i))

vtraceEqui vSet (set: set[index],stl,st2: strace):
bool =
FORALL (i: index): menber(i,set) =>
liftv(i,stl) = liftv(i,st2)

DepSet (x: index, gt: gtrace): set[index] =
(lanmbda (i: index):
(EXISTS (t: time): menmber(i,gt(t)(x))))

InterferenceTheorem LEMVA
FORALL (p: Program gtl:gtrace, stl,st2:strace):
FORALL (i dx:index):
WFp(p) & St(p,stl) & St(p,st2) &
IFt(p,stl,gtl) &
vt raceEqui vSet (DepSet (i dx, gt1),st1,st2) =>
liftv(idx,stl) = liftv(idx,st2)

Fig. 11 Interference Theorem.

To prove this theorem, we have to build a hierareshgquivalences shown in Fig.
12. This graph does not show all of the connestimetween proofs (e.g., which theo-
rems are instantiated in the proofs of other thasjebut it provides a good overview
of the structure of the proof. Ultimately, we anéerested in proving the final theo-
rem, which defines a relationship between tracedeasribed by the information flow
semanticdF and the value semanti€ In order to prove this theorem, we define an
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intermediate flow semantics based on state deperae®S). Whereas the informa-
tion flow semantics unwinds the dependencies framputs to inputs implicitly
through the use of the graph state and graph tthe®S flow semantics unwind the
graph explicitly and therefore provide an easiaib#or inductive proof.

The “rows” of the proof graph correspond to a lewethe evaluation hierarchy.
Reading from top to bottom, we talk about equivaémin terms of expressions, then
in terms of indices (assignments), then states fiaatly, traces. The “columns” cor-
respond to the different semantics. On the lefihnésinformation flow F) semantics,
in the middle is th®S semantics, and on the right is the val8esgemantics. One se-
mantics bridges thi- andDS semantics@SilF).

There are two different kinds of theorems that mn@ved between the semantics.
The first are equivalences between the differemi fsemantics (e.g., that two flow
semantics yield the same set of dependencies).sé@tend are GWV-style theorems,
in the same style as [6]. These state that ifvillees of the dependent indices for a
piece of synta® are equal within two states or tracgsands2 then the value pro-
duced by evaluatiny overslands2will be equal.

In our analysis, we prove GWVrl-style theorems. \@Wis less expressivihan
GWVr2 but it is simpler to formulate. The addit@rexpressive power in GWVr2 is
necessary to describe dynamic memory, but the sgnolis models that we analyze
in this chapter do not use dynamic memory, so GW¥rdufficiently expressive for
our purposes. The connection between the fornamat this chapter and [6] is ex-
plored further in Section 7.
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Fig. 12Proof Graph for final theorem.
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Expression Equivalence Theorems
In Fig. 13, we begin the process of proving thealfitheorem by describing some

lemmas over expressions. These will form the bakithe later proofs over larger
pieces of syntax.
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DSe _subset De: LEMVA
FORALL (e: ProcessExpr, s0O: state):
subset ?( DSe( e, s0), De(e))

Conpose(uset: set[index], g0: graphState):
set[index] =
(lambda (z: index):
(EXI STS (m index):
menber (m uset) & nenber(z,g0(m)))

menber _Conpose: LEMVA
FORALL (i: index, uset: set[index],
g0: graphState):
nmenber (i, Conpose(uset, g0)) =
(EXI STS (m index):
menber (m uset) & nenber(i,go(m))

| Fe_to_DSe_ Property(e: ProcessExpr): bool
FORALL (principal: set[index], sO: state,
g0: graphState):

| Fe(e, principal, s0, g0)

LET uset: set[index]

(uset & principal)
Conpose(uset & (not(principal)), g0)

DSe(e,s0) IN

+

| Fe_to_DSe_proof: LEMVA
FORALL (e: ProcessExpr): |Fe_to_DSe Property(e)

| Fe_to_DSe: LEMVA
FORALL (e: ProcessExpr, principal: set[index],
s0: state, g0: graphState):
| Fe(e, principal,s0,g0) =
LET uset: set[index] = DSe(e,s0) IN
(uset & principal) +
Conpose(uset & (not(principal)), g0)

Fig. 13Expression Equivalence Proofs.

The DSe_subset_DEmma states that the state-aware dependencyidnn&Se
returns a subset of the indices referenced by yhtaestic dependency functioDé).
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We appeal to this lemma (through another lemwi&g_to WFgDSeto establish a

basis for induction for some of the proofs involyiequivalence of gate assignments.
The Composdunction is used to look up each of the entriesiiset in the graph

state. It performs the same function as the Ditgetraction Allowed DIA) function

in Greve’s formulation [6]. It is used to map frarset of immediate dependencies to

their dependencies.

ThelFe_to_DSe_Propertiemma defines the first mapping between the stated
DSdependency semantics and tieacebasedF dependency semantics. Remember
from Section 3.4 that thi&e semantics are defined in terms of a seprofcipals if a
variable is principal, then we look up its deperades in the graph state. This proper-
ty creates an equivalence between these semantitoking up (viaComposg the
non-principal variables from tHeSesemantics.

Program Well-Formedness Theorems

In Fig. 14, we define a bridge between the prograefi-formedness constraint
WFp and state dependencid33g. This bridge will allow us to use th&Fp predi-
cate in reasoning about GWV equivalences involgtage dependencies. We define a
WFgDSepredicate that defines well-formedness in termshefDSe,and show that
WFpimplies the (more accuraté)FgDSepredicate.

Principal s(p: Program): set[index] =
StatesP(p) + | nputsP(p)

WFg(p: Program): bool =
FORALL (v: index):
bel owSet (v, De(Ae(v, p(Vv))) - Principals(p))

Principals_Gates_partition : LEMVA
FORALL (p: Program:
(GatesP(p) = conpl ement (Principals(p)))

Princi pal s_Gates_subset _equiv : LEMVA
(FORALL (s: set[index], p: Program :
(s & GatesP(p)) = (s - Principals(p)))

WFp_to_WFg : LEMVA
FORALL (p: Program : (Wp(p) = WFg(p))

WFgDSe(p: Program sO: state): bool =
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FORALL (v: index):
bel owSet (v, DSe( Ae(v, p(v)),s0) - Principals(p))

WFg_t o_WFgDSe: LEMVA
FORALL (p: Program s0O: state):
Wrg(p) => WrgDSe(p, s0)

END Processl ndexSet s

Fig. 14Well-Formedness Predicates for Programs.

GWV Equivalence Theorems

Now, we can start proving GWV-style equivalencepamiies. These state that if
the values of the dependent indices for a piecgyofax}. match within two states or
tracessl and s2 then the value produced by the evaluafih@ver s1 and s2 will
match. The idea is that we will start from themediatedependencies of an expres-
sion and progressively unwind the dependenciesrtbwee inputs. This unwinding
occurs in two stages:

« First we unwind to therincipals, which (for the purposes of the proof) are the
states and inputs. Another way of looking at flii unwinding is unwinding back
to the “beginning” of the step. This is the defim of theDSiP dependencies

* Next, we unwind the dependencies back to the inpyitsxamining the graph trace
over time. This is the definition of tigStdependencies.

We also map these state-based equivalences thedmmuted via explicit unwind-
ings of dependencies to tiie equivalences, which implicitly unwind the dependen-
cies using the graph states. This is accompliblyaasing theDSilF dependency rela-
tion. This will be the key lemma to show the eglénce of thelF and DS
formulations.

Fig. 15 shows the dependency proof for ih®e dependencies. There are two
equivalences: the first over evaluation of expi@ssi and the second over evaluation
of indices.

Processl nterference: THEORY
BEGA N
| MPORTI NG Pr ocessl ndexSet s
| MPORTI NG GAW_Equi vSet Rul es[ i ndex, st at e, vt ype, get]
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St at eEqui vSet (s: set[index],sl,s2: state): bool =
equi vSet (s, s1, s2)

GA/rl1 Se DSe: LEMVA
FORALL (e: ProcessExpr):
FORALL (inl, in2: state):
St at eEqui vSet (DSe(e, inl), inl, in2) =>
(Se(e, inl) = Se(e, in2))

GWr1_Si _DSe: LEMVA
FORALL (p: Program:
FORALL (i: index, inl, in2: state):
Ss@E p,inl) & SsE p,in2) &
St at eEqui vSet (DSe( Ae(i, p(i)), inl),
inl, in2) =>
Si(p)(i,inl) = Si(p)(i,in2)

Fig. 15GWVrl for DSe Dependencies.

Figure 16 shows the proofs for the next level ofvinding: showing that if the
principal variables are the same for two states, then thédtsgsroduced for an index
will be the same. This step removes the gates fhemependency calculation.

DSi P(p: Program s0: state)(x: index)
RECURSI VE set[index] =
LET uset: set[index]
LET pri : set[index]
(uset & pri) +
(lambda (z: index):
(EXISTS (m index):

m< x &
menber (m uset & not (pri))
menber (z, DSi P(p,s0)(m)))

DSe(Ae(x, p(x)),s0) IN
Principals(p) IN

&
MEASURE x

DSi P_contains_only Principals: LEMVA
FORALL (x: index, p: Program sO: state):
subset ?(DSi P(p, s0) (x), Principal s(p))

DSi P_def: LEMVA
FORALL (p: Programs0: state,x: index):
Wg(p) =>
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DSi P(p, s0)(x) =
LET uset: set[index]
I'N
LET pri : set[index]
I'N
(uset & pri) +
Conpose(uset & not(pri), DSi P(p, s0))

DSe( Ae(x, p(x)), s0)

Pri nci pal s(p)

GW/r1_Si _DSi P: LEMVA
FORALL (p: Program:
FORALL (i: index, sl1,s2: state):
WFg(p) & Ss@(p,sl) & SsEp,s2) &
St at eEqui vSet (DSi P(p, s1) (i), s1,s2) =>
Si(p)(i,s1l) = Si(p)(i,s2)

Fig. 16 GWVTrl for Principal dependencies.

Fig. 17 shows the proofs of the next level of urdimg, to the dependencies of the

states. The definition of tHeSilF predicate is particularly important as it briddpes
tween the graph-trace-baskdsemantics and the state-bagssisemantics. Like the

DSiP semantics, it backtraces through the gates tdrdapendencies based on states
and inputs. The distinction is that it then loaksthe state dependencies in the graph

state. This means that the dependencies computB&itF will match the dependen-
cies computed by the IF relation, as demonstrajethdlFe_to_DSilFlemma. This
is a key lemma in proving the unwinding theoremrostate dependency tracBSt
and information flow tracels-t.
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GProgram TYPE = { p : Program | Wrg(p) }

DSi | F(p: GProgram s0: state, g0: graphState)
(x: index): RECURSIVE set[index] =
LET uset : set[index] DSe(Ae(x, p(x)),s0) IN
LET ins : set[index] I nputsP(p) IN
LET dff : set[index] StatesP(p) IN
LET gates : set[index] = GatesP(p) |IN
(uset & ins) +
Conpose(uset & dff, g0) +
(lanmbda (z: index):
(EXI STS (m index):
menber (m uset & gates) &
menber (z, DSi | F(p, s0,g0)(m)))
MEASURE x

DSi | F_to_DSi P: LEMVA
FORALL (p: Program sO: state, g0: graphState):
Wg(p) =>
FORALL (x: index):
DSi | F(p,s0,g0)(x) =
(I'nputsP(p) & DSi P(p,s0)(x)) +
Conpose( StatesP(p) & DSi P(p, s0)(x), g0)

Fig. 17GWVrl for State-Input dependencies.

Finally, In Fig. 18, we map dependencies to in@uoss a multistep trace. First,
we prove a lemma that is sufficient for the proéflaich assignment at step zero
(GWVrl_Si_SsL0 This lemma will be used to provide the basedaslatches in the
GWVrl_Si_DSproof.

GMWr1_Si_SsLO: LEMVA
FORALL (p: Program:

FORALL (i: index, s1,s2: state):
WFg(p) & SsLO(p,sl) & SsLO(p,s2) &
SsE p,sl) & SsEp,s2) &
St at eEqui vSet (I nputsP(p) &
DSi P(p,s1)(i),sl,s2) =>

Si(p)(i,sl) = Si(p)(i,s2)

DSt (p: Program st: strace, t: tine)(i: index):
RECURSI VE set[index] =
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IF (t = 0) THEN
I nputsP(p) & DSi P(p,st(t))(i)
ELSE
LET uset: set[index] = DSi P(p,st(t))(i) IN
(uset & InputsP(p)) +
Conpose(not (I nputsP(p)) & uset,
DSt (p,st,t - 1))
ENDI F
MEASURE t

subset Conpose: LEMVA
FORALL (a: index, x: set[index], g: graphState):
menber (a, x) => subset?(g(a), Conpose(Xx, g))

vtrace: TYPE = [ time -> vtype ]

vtrace_extensionality: LEMVA
FORALL (i: index, sl1,s2: vtrace):
(sl =5s2) =
FORALL (t: tine): s1(t) = s2(t)

AUTO REWRI TE+ vtrace_extensionality

liftv(i: index, st: strace): vtrace =
(LAMBDA (t: time): st(t)(i))

vt raceEqui vSet (set: set[index],stl,st2: strace):
bool =
FORALL (i: index): menber(i,set) =>
liftv(i,stl) = liftv(i,st2)

GWr1_Si _DSt: LEMVA
FORALL (p: Program sti1,st2: strace):
FORALL (t: tine, i:index):
WFg(p) & St(p,stl) & St(p,st2) &
vt raceEqui vSet (DSt (p,st1,t)(i),stl,st2) =>
Si(p)(i,sti(t)) = Si(p)(i,st2(t))

Fig. 18GWVrl theorems for trace dependencies.

Next, in Fig. 19, we have to define a graph unwigdiheorem, which maps be-
tween our state-dependency-based formulad&and our graph-dependency-based
formulationlFt. This is performed in two steps. First, we showt thaDSilF formu-
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lation matches the result returned Ifse. Next, we define the unwinding theorem
which demonstrates thBiStandIFt yield the same dependencies.

| Fe_to _DSi | F: LEMVA
FORALL (p: GProgram sO: state, g0: graphState):
| Fs@E p, s0, g0) & Wrg(p) =>
FORALL (x: index):
| Fe(Ae(x, p(x)), I nputsP(p), s0,g0) =
DSi | F(p, s0, g0) (x)

Graph_Unwi ndi ng: LEMVA
FORALL (p: Program st: strace, gt: gtrace):
FORALL (t: time, v: index):
WFg(p) & IFt(p,st,gt) =>
| Fe(Ae(v, p(Vv)), I nputsP(p),st(t),gt(t)) =
DSt (p,st,t)(v)

Fig. 19The Graph Unwinding Theorem demonstrating equivadretweerFt andDStsemantics.

Proof of InterferenceTheorem

Now we have finally assembled the pieces necessasove the trace theorem that
was proposed in Fig. 8 in Section 3.7. The predhiown in Fig. 20. We state that
the information flowcharacterizeghe execution of a model if it satisfies timerfe-
renceTheorem.

DepSet (x: index, gt: gtrace): set[index] =
(lambda (i: index): (EXISTS (t: tine):
menber (i, gt (t)(x))))
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InterferenceTheorem LEMVA
FORALL (p: Program gt: gtrace, stl,st2: strace):
FORALL (i :index):
WFp(p) & St(p,stl) & St(p,st2) &
IFt(p,stl,gt) &
vt raceEqui vSet (DepSet (i, gt),stl,st2) =>
liftv(i,stl) = liftv(i,st2)

Fig. 20Proof of the InterferenceTheorem.

4 |Interference to Noninterference

A nearly immediate corollary of the interferencedhem is a non-interference theo-
rem, shown in Fig. 21. If a variablanclassdoes not depend on a varialskecretin
any legal trace of the system (as definedpyHK, then we say thatecretdoes not
interfere withunclass. This is demonstrated by thdéon_Interferencéemma; in this
lemma, we state that any two traces whose inpfifisrdinly by secretwill yield the
same values farnclass

ProcessNonl nt erference: THEORY
BEG N
| MPORTI NG Processl nterference

Never Interferes(p: Program secret: index,
uncl ass: index) : bool =
FORALL (x: tracePair):
tp_ok(p, x) =>
(FORALL (t: tine):
not (nmenber (secret, g(x)(t)(unclass))))

I nputs_Mat ch_Except _Secret(p: Program
stl, st2: strace, secret: index) : bool =
FORALL (t: tine, idx: index):
((menber (idx, |nputsP(p)) AND
(idx /= secret)) =>
st1(t)(idx) = st2(t)(idx))
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Non_Interference : LEMVA
FORALL (p: Program secret: index,

uncl ass: index, stl,st2: strace):

(menber (secret, InputsP(p)) &

WFg(p) & St(p, stl) & St(p, st2) &

Never Interferes(p, secret, unclass)) &

I nputs_Match_Except _Secret(p, stl, st2,
secret)

=>

liftv(unclass, stl) = liftv(unclass, st2)

END ProcessNonl nt erf erence

Fig. 21Process Non-Interference.

5 Model Checking Information Flow

Up to this point, we have defined formal notionsrdaérference and non-interference
over traces for a simple synchronous dataflow laggyu and shown that @mforma-
tion flow semanticean be used to demonstrate noninterfereridewever, we have
not yet proposed a mechanism for computing nonfiertence relations using the
model checker using a temporal logic such as LTL [2

In order to use a model checker to analyze theonaif non-interference proposed
in Section 4, we must do two things. First, we trfosmalize non-interference in a
temporal logic such as LTL that is understood bydeta@heckers. Second, we must
encode the model and information flow semantice itite notation of the model
checker. The syntax and execution semantics ofamguage (th&rogramtheory in
Fig. 7 andProcesstheory in Fig. 8), were chosen in part becausg tloerespond to a
subset of the syntax and semantics supported lgralepopular model checkers in-
cluding NuSMV [8], SAL [23], and Prover [16]. Theanslation of the execution
model and semantics is therefore immediate.

To support analysis of information flow, howeveg have to encode the seman-
tics in the syntax of the model checker. We daill €ncoding thénformation flow
model. Then we can analyzehybrid modelcontaining both the original program and
the information flow model in order to reason abfboMv properties.
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5.1 Formalizing Noninterferencein LTL
We first assume Rushby's formalization of LTL [2] PVS presented in [6]. We

now prove in Fig. 22 that a noninterference assertiver a graph state machine fol-
lows from a particular LTL assertion, in the sameyvas Greve [6].

ProcessLTL: THEORY
BEG N

| MPORTI NG Processl nterference
GState : TYPE = [# g: graphState, s: state #]
| MPORTI NG | t 1 [ GSt at e]

P : Program
P inputs : TYPE = {x: index | Input?(P(x)) }

split(x: sequence[GState]) : tracePair =
(# s := LAVMBDA (t: time): s(x(t)),
g := LAMBDA (t: tinme): g(x(t)) #)

merge(x: tracePair) : sequence[ GStat e]
(LAMBDA (t: tine):
(#s :=s(x)(t), g :=9(x)(t) #) )

GSTrace : TYPE =
{ x : sequence[GState] | tp_ok(P, split(x)) }

Non_I nterference(secret: P_inputs, unclass: index)
(gs: GState) : bool =
(not (nenber(secret, g(gs)(unclass))))

% only consider well-formed nodel s
reducti on: LEMVA
WFg(P) =>
FORALL (secret: P_inputs, unclass: index):
(FORALL (s: GSTrace):
(s |=
G( Hol ds(
Non_Interference(secret,unclass)))))
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(FORALL (s: tracePair):
tp_ok(P,s) =>
(FORALL (t: time):
(not ( menber (secret,

g(s)(t) (unclass))))))

END ProcessLTL

Fig. 22Connection to LTL.

5.2 Creating the Information Flow Model

Recall that théF semantics correspond to graph traggsace that are composed
of a sequence of graph statgstatg. Eachgstatemaps program variables to a finite
set ofPrincipal variables. The information flow semantics from pirevious section
are then encoded as set manipulations. The intam#8ow model is then the set of
assignments to the information flow variables.

The mechanism for creating the information flowiable assignments is a set of
transformation rules that are applied to the symfaRrocessExpandProcessAssign
datatypes defined in Fig. 7. The transformatidesgenerate a slightly richer expres-
sion syntax (shown in Fig. 23) that contains twditidnal variables. The first expres-
sion, IF_Variable,allows reference variables in the information figraph state. The
second SingletonSettakes an index and generates a singleton setigimgahat in-
dex.
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Expr Ext: DATATYPE
BEG N
| MPORTI NG ProcessTypes
Const ant (val ue : vtype): Constant?

Vari abl e(sname : index): Variable?
| TE(test: ExprExt, thn: ExprExt, els: ExprExt):
ite?

Bop(OpB: BopType, al: ExprExt, a2: ExprExt): Bop?
Uop( OpU: UopType, a0: ExprExt): Uop?

I F_Variable(ifnane : index): |F_Variable?
Si ngl etonSet (var Set: set[index], prnane : index)
Si ngl et onSet ?
END Expr Ext

Assi gnnent Ext : DATATYPE
BEG N
| MPORTI NG Expr Ext
Gate (gexpr: ExprExt): Gate?
Latch(v0: vtype, lexpr: ExprExt): Latch?
I nput: | nput?
END Assi gnnent Ext

Fig. 23Extended Process Syntax.

We can now reflect the information flow semantician extended prograRro-
gramExtthat contains assignments for both the state amphgraces, as shown in Fig.
24.

Transform F : THECRY
BEG N
| MPORTI NG Program Assi gnment Ext

Uni on : BopType
EMPTYSET : vtype
principal _index : [set[index], index -> vtype]

| De(e: ProcessExpr): RECURSI VE ExprExt =
CASES e OF
Const ant (val ue): Const ant (val ue),
Vari abl e(nane): Vari abl e(nane),
| TE(test,thn, els):
| TE(I De(test), IDe(thn), IDe(els)),
Bop( OpB, al,a2): Bop(OpB, I1De(al), IDe(a2)),




Uop( OpU, a0) : Uop(OpU, | De(al))
ENDCASES
MEASURE e by <<

| Da(a: ProcessAssignnment) : Assignnent Ext =
CASES a OF
Gat e(gexpr) : Gate(lDe(gexpr)),
Latch(vO, lexpr) : Latch(vO,IDe(lexpr)),
I nput : I nput
ENDCASES

TRe(e: ProcessExpr, Pr: set[index]):
RECURSI VE ExprExt =
CASES e OF
Const ant (val ue) : Const ant (EMPTYSET) ,
Vari abl e( nane) :
| F Pr(nane) THEN
Si ngl et onSet (Pr, nane)

ELSE
| F_Vari abl e( name)
ENDI F,
| TE(test,thn, el s):
Bop( Uni on,

| TE(I De(test), TRe(thn, Pr), TRe(els, Pr)),
TRe(test, Pr)),
Bop( OpB, a1, a2):
Bop(Uni on, TRe(al, Pr), TRe(a2, Pr)),
Uop( OpU, a0): TRe(aOl, Pr)
ENDCASES
MEASURE e by <<

TRa(a: ProcessAssignnment, Pr: set[index])
Assi gnnment Ext =
CASES a OF
Gat e(gexpr) : Gate(TRe(gexpr, Pr)),
Latch(vO, |expr) :
Lat ch(EMPTYSET, TRe(l expr, Pr)),
I nput : I nput
ENDCASES

AssignSet: TYPE = [index -> Assignnent Ext ]
Prograntext: TYPE =
[# st: AssignSet, gr: AssignSet #]
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TRp(p: Program : ProgranExt =
(# st := (LAMBDA (idx: index) : IDa(p(idx))),
gr (LAMBDA (idx: index) :
TRa(p(idx), InputsP(p))) #)

END Transfornl F

Fig. 24Hybrid Model Definitions.

The hybrid model in Fig. 24 contains assignmentt lfor the state variablest(
and the graph variablegr]. The syntax of the state assignments does rasigeh
however, the strong typing of PVS requires thatdeéne a transformation to map
from the ProcessExprand ProcessAssignmermtatatypes into th&xprExt and Assig-
nExt datatypes, respectively. This is performed bylBeandIDa functions, respec-
tively.

The mapping of the information flolW semantics into syntax that can be inter-
preted is performed by thER functions. These functions create new syntaxdase
an original program that manipulates index setss ihstructive to compare the syntax
created by th&@Refunctionwith the definition of théFe semantics originally defined
in Fig. 10 and shown again in Fig. 25 below. Nbe similarities between the seman-
tic definitions inlFe and the syntax generated by fieefunction.

| Fe(e: ProcessExpr, principal: set[index],
s0: state, g0: graphState): RECURSI VE
set[index] =
CASES e OF
Const ant (val ue): Enpty,
Vari abl e( nane) :
I F principal (name) THEN
si ngl et on( nane)
ELSE
gO0( nane)
ENDI F,
| TE(test,thn, els):
I F isTrue(Se(test,s0)) THEN
| Fe(test, principal,s0,g0) +
| Fe(t hn, princi pal, s0, g0)
ELSE
| Fe(test, principal,s0,g0) +
| Fe(el s, principal, s0, g0)
ENDI F,
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Bop( OpB, a1, a2): |Fe(al, principal,s0,g0) +
| Fe(a2, pri nci pal , s0, g0),
Uop( OpU, a0): 1 Fe(ao, princi pal, s0, g0)
ENDCASES
MEASURE e by <<

Fig. 25Another presentation of the IFe function.

The compositional equivalence between the syntaakicand the semantic rule can
be proven, but we do not demonstrate it in thigptdra To do so would require some
further elucidation of sets-agypeelements as well as an algebraic formulation ef th
union binary operator ovettypeelements to show its equivalence to the standard se
union operator. We plan to do this in future work.

The model encoding tool in the Rockwell Colli@yphontool suite implements
the transformation defined by tA&R rules. It operates over the Lustre language [7].
Lustre includes a superset of the expressions ithescin theTRrules, such as expres-
sions for creating and manipulating composite gat including arrays, records, and
tuples. It also accounts for Lustre’s notion ofdularity, called thenode which cor-
responds to SimulinkubsystemsThe complete rules for rewriting Lustre programs
are described in a Rockwell Collins technical régbat is available at the Springer
web site accompanying this text.

For encoding the set of principals for model chegkiools, we use bitvectors. The
models that we attempt to analyze will always csingf a finite number of variables,
and therefore the principal variables form a firsig2. We encode this set as a bitvec-
tor containing one bit per principal signal. Tlrion andSingletonSebperations are
encoded abit_or operators and bitvector constants, respectively.

5.3 From Principalsto Domains

Our implementation allows multiple variables to fhapped to the same principal
identifier (id). This identifier can be thought a§ asecurity domairj5,20]. For the
purposes of analysis, this can reduce the numbkit®hecessary for a model check-
ing analysis, which improves performance. It atsarsens the analysis, as it is no
longer clear from a counterexample which of thealdes mapped to the principal id
is responsible for information flow.
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5.4 Adding Control Variables

The implementation allows variables to be desighate control variables. The intui-
tion is that an operand of an AND or OR gate somesi acts as a mask for the other
operand (towards FALSE and TRUE, respectively)thia instance, we would like to
consider the information flow from the other vat@into the gate only if the control
variable has the appropriate value. This featulava for slightly more accurate
analysis in some models. It is a conservative asktenbecause the semantics of AND
and OR gates are semantically the same as thafolidf/then/else structure:

Y
Y

Cand E = Y =if Cthen E else fal se;
Cor E = Y=if Cthen true else E ;

Y is semantically equivalent in both cases, andsinndness of the flow analysis
follows from the existing proof of if/then/else eggsions in Fig. 12. Note that the
condition variable for if/then/else (C) is alwaysed for the information flow analysis,
so if bothvariables in a Boolean expression are control s the following is gen-
erated:

Y
Y

G and G -
if G then (if C then G else false) else
(if C then G else false)

After applying the syntacti€Retransformation to the right hand side of the eguiv
lence and simplifying, this yields the “standardfarmation flow expression for the
original binary expressioiBop(Union, TR¢al, Pr), TRda2, Pp).

6 Intransitive Interference and Noninterference

We have defined a considerable amount of infrasirecfor determining which va-
riables caninterfere with a particular computed variable within a modéh the ap-
proach we have pursued in the previous sectionBisfchapter, all interference rela-
tions aretransitive. That is, if variableA interferes with variabl® andB interferes
with C, thenA interferes withC. However, there are several systems in which we are
willing to allow certain kinds of interference assosecurity domains, as long as it is
mediated in some way. The reasoning for allowhig interference is well explained
by Roscoe and Goldsmith [19]:
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It seems intuitively obvious that the relatiotust be transitive: how can it make sensefoo
have lower security level thdy andB to have lower level tha@, withoutA having lower

level thanC? But this argument misses a crucial possibilitgf some high-level users are
trusted tadowngradematerial or otherwise influence low-level usersldad, it has been
argued that no large-scale system for handlingsifled data would make sense without some
mechanism for downgrading information after someene process, interval (e.g., the U.K.
30-year rule) or defined event (the execution ahsalassified mission plan, for example).
Largely to handle this important problem, a varietgxtended theories proposing definitions
of “intransitive noninterference” have appearéabugh we observe that this term is not really
accurate, as it is in fact th@terferencerather than thaoninterferenceelation which is not
transitive. Perhaps the best way to read the temms an abbreviation for “noninterference
under an intransitive security policy”.

There have been several formulations of intrarsitivterference based on state
machines [20], process algebras [19], and evecesrflO].

6.1 Formulating Intransitive I nterference

Our model is entirely defined in terms of variablé3perations such as encryption
or downgrading are implemented as subsystems (detsriables) within a larger
model whose output is another variable within theded. Therefore, it is natural to
think of extending the set of principal variable$rom only the inputs to include in-
ternal variables that define the mediation poirftsnterest. Since the definition of
Noninterferencaequires only that the principal variables agréese intermediaries
are easily incorporated into our definition.

For example, in the shared buffer model, we ardingilto allow information to
flow through the scheduler. By adding the schadstiate toP, we restrict ourselves
to reasoning over traces in which the schedul¢éestaatch. From the perspective of
reasoning, it is straightforward to parameterize ghoofs over a superset of the inputs
and reprove thinterferenceTheoremndNoninterferenceTheoredefined in Sections
3 and 4.

The Problem of Implicit Functional Dependencies
Unfortunately, this formulation of “correctnessiats unintended covert informa-

tion flows around the mediation point as long a&y/tban bdunctionally derivedrom
an input variable.
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(1 )—+—Ppn1 outl

Encryptor

Fig. 26 Simulink model containing a bypass.

Figure 26 presents a Simulink model that illussatee problem. Output O is a
record type that contains two fiel8sandC. Field B is the output of a subsystem that
encrypts the input variable (A); fieldis a simple pass-through Af Suppose that the
output of the encryptdB is functionally derived from inpuA. That is, two traces on
B agreeonly whenthe traces o also agree. In this case, according to the interfe
rence theorem, we can adjudge oupub be dependent only d even though there
is clearly a flow that bypass®& The problem is that the encryptor variabldusc-
tionally derivedfrom a single inpufA, sothe equivalence oB forces a corresponding
equivalence on the inpét. In other words, requiring a trace equivalenceactom-
puted principal variable may cause an implicit gglénce on another principal varia-
ble. These implicit equivalences allow an attadckdrypass the desired mediation va-
riable.

An Overly Conservative Formulation

An approach that could be considered for intravsiiinterference reframes the
problem: given a prograf involving a computed principal variabtewe construct a
programP’ in whichcis an input, and assert that all traces must agné®. P’ has at
least as many traces Bsas the value of is unconstrained with respect to the other
variables inP’. The additional traces distinguish variables thgiass the computed
principal as there is no longer a functional conioacbetween the computed variable
and the inputs.

Unfortunately, treating states as inputs leads/trlg conservative analyses involv-
ing traces that are impossible in the original paoy Consider the shared buffer
model from Section 2. If a new model is createdvirich the scheduler output is in-
stead a system input, then the scheduler can rgetarorrectly mediate access to the
shared buffer and so information flow occurs thitodlge buffer. The flow analysis
will (correctly) state that there is informatioro through the buffer, but the flagged
traces are not possible in the original model.
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6.2 Modeling I ntransitive | nterference using Graph Cuts

The analysis approach that is used in Gryphon imddel intransitive information
flow throughcutsin the information flow graph. That is, we defiaenew principal
variable in the information flow graph by cuttingetedges that define the dependen-
cies of that computed variable. To implement thange in the information flow (IF)
semantics defined in Section 3, we add the interaghble indices to the set of inputs
that are used in th&e, IFi, IFs, andlIFt relations. The definition of the prograenis
left unchanged.

This modified graph model is sufficient to corrgatharacterize both a prograen
and a modified prograr®’ in which a principal variable is treated as an input. In
other words, this formulation is sensitive to teucture of the computation of the
system execution traces as well as fimgctional result The original prograni is
analyzed so there are no problems introduced by the addititaces ofP’, but we
(correctly) characterize models such as the oneritbesl by Fig. 26 as containing di-
rect information flows from input variabketo outputO.

lllustrations of a transitive flow model and anrantsitive model using graph cuts
are shown in Fig. 27. Recall that thgbrid modelhat is generated for model check-
ing is composed of both fanctional model(the original system) and a@nformation
flow modelhich is an encoding of tH& semantics as described in Section 5. In Fig.
27, the functional model is shown at the top offigare. In the middle is &ansitive
information flow model. At the bottom is dntransitive information flow modél
Each model is presented both graphically on thealed in terms of equations on the
right. In this figure, the principal bitvector farvariableX is notatedX.

Suppose variable’ (the switch gate) acts as a downgrader for vaibl We
would like to state that the output)(depends on inpud only when mediated through
the downgrader. Given the transitive formulatidéinformation flow in the middle of
Fig. 27, it is not possible to make this claim. wéwer, the intransitive graph at the
bottom of Fig. 27 breaks the information flow grdpheach use of variabMé, replac-
ing the input flows through the computed definitafiY with a new principal signa.
Given this new graph, it is possible to prove thainformation flows fronD to Z that
is not mediated by. On the other hand, note that with this intransitiwaph, a non-
interference proof would still not be possible f@riableC as it has a flow t& that
bypasse¥.

2 For model-checking analysis ordyieof the two information flow models would be geneditde-
pending on the set of principal signals providétbwever, Fig. 24 is designed to illustrate theetiff
ences between the transitive and intransitive aimaly
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© | Original Model |

‘\ X=AorB
Y =if X then C else D

®) =~ | Z=CandY

Downgrader

Transitive information
flow graph

X_Graph = A bit_orB

‘ w Y_Graph = X_Graph bit_or
w (if X then C else D)

Z_Graph = C bit or Y_Graph

Intransitive graph with
computed principal signal Y

X_Graph = A bit_ orB

Y_Graph = X_Graph bit_or
(if X then C else D)

Z_Graph = C bit_or Y

Fig. 27 Transitive vs. Intransitive flow graphs.

We currently do not have a strong theorem (suctih@mterferenceTheorenthat
we can prove about intransitive dependencies. hEgriwe conjecture that it is not
possible to functionally characterize such depeoi@snusing trace semantics. In-
stead, the structure of the computation functiorstnine examined — the propertyiris
trinsic to the structure.

7 Connections to GWV

In the current chapter and the previous chapteGi®ve [6], we have presented two
quite similar formulations of information flow moliteg. The formulation in Greve’s
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chapter is more abstract and describes informdition over arbitrary functions using
flow graphs. It then describes how these functicas be composed and how multi-
step state transition systems can be encoded. diffeoent formulations (GWVrl and
GWVr2) are presented. The GWVr2 formulation isatap of modeling dynamic in-
formation flows, in which storage locations areateel and released during the com-
putation of the function, but this additional cajifbcomes at a cost of some addi-
tional complexity.

In this chapter, we have modeled information flgeefically for synchronous da-
taflow languages. The basis for this approach madeling GWV-style equivalences
using a model checker. However, the approach wiginally justified by manual
proofs over trace equivalences due to the firsh@tg familiarity with this style of
formalization for synchronous dataflow languageBhe mechanized proofs in this
chapter reflect the manual proofs.

As a basis for formalization, the trace equivalealtews a very natural style of
presentation. It provides a nice abstraction ef tbmputation and information flow
analysis in that a total computation order for éissignments of the semantic and flow
analyses is not required. Instead, we can tallutabonformanceto some existing
trace. Also, since the entire trace is provided,can describe latch conformance by
examining the previous state in the trace.

7.1 From I nterferenceTheorem to GWVrl

From the InterferenceTheoremit is straightforward to map directly into the
GWVrl theorem presented in Greve’s chapter [65hasvn in Figure 28.

GW/r 1 _Connecti on|
(inporting Processlnterference)
P: WFPrograms]: THEORY
BEG N
| MPORTI NG Processlnterference

valid tp : TYPE = {tp: tracePair | tp_ok(P, tp)}

st _liftv(i: index, tp: tracePair) : vtrace =
liftv (i, s(tp))

| MPORTI NG GW/r 1[ i ndex, valid tp, vtrace, st _liftyv,
i ndex, valid_tp, vtrace, st_liftv]
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step_id(tp: valid_tp) : valid_tp = tp;

gtrace_graph(tp: valid_tp)(idx: index)
G aphEdge[ i ndex] =
Conput e( DepSet (i dx, g(tp)))
precondition(tp: valid tp) : bool = true ;
i nput Equi vSet _to_vtraceEqui vSet : LEMVA
(FORALL (is: set[index], tpl, tp2: tracePair)
I nput. equivSet (is, tpl, tp2) =>
vtraceEqui vSet (i's, s(tpl), s(tp2)))

G aphl sGAVr1 : LEMVA
GW/rl(step_id)(precondition, gtrace_graph);

END GWr 1 _Connection

Fig. 28Connection to GWVrl theorem.

GWVrl is defined as a proof obligation over a tios function from an input
state to an output state. The fragment of the GWYeory required for the proof is
shown in Fig. 29.
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GWrl [IN ndex, INState, |Nvalue: TYPE,
getIN: [[INindex, INState] -> INval ue],
QUTi ndex, OUTState, QUTval ue: TYPE,
get QUT: [[ OUTi ndex, QUTState] -> QUTval ue]

GWrl [I N ndex, INState, |Nvalue: TYPE,
getIN: [[INindex, INState] -> INval ue],
QUTi ndex, OUTState, QUTval ue: TYPE,
get QUT: [[ OUTi ndex, QUTState] -> QUTval ue]
]: THEORY

BEG N

| MPORTI NG GW_Gr aph[ | Ni ndex, OUTi ndex]
| MPORTI NG GW_Equi v[ | Ni ndex, | NSt at e, | Nval ue, get I N
AS | nput
| MPORTI NG GW_Equi v[ OUTi ndex, QUTSt at e, QUTval ue,
get QUT] AS CQut put

StepFunction: TYPE = [ INState -> QUTState |
GraphFunction: TYPE = [ INState -> graph ]
PreCondition: TYPE =] INState -> bool ]
GW/r 1( Next: StepFunction)
(Hyps: PreCondition, G aph: G aphFunction): bool =
FORALL (x: QUTindex, inl,in2: INState):
I nput . equi vSet (DI A(x, Graph(inl)),inl,in2) &
Hyps(inl) & Hyps(in2) =>
Qut put . equi v(x, Next (i nl), Next (in2))

Fig. 29 Fragment of GWVr1 theory.

Theindex, state, valueggndget parameters to the theory define the indices of dis
course, the state, the values that can be storedliges, and the “getter” function to
look up a value for the inputs and outputs of tlaagition function. In our case, the
types of inputs and outputs are the same: we aterlg at traces. To format our trace
equivalences as a GWVrl theorem, we create a thmameterized by an arbitrary
well-formed program. The GWV indesalues are simply our index type, the state is
the trace pair containing both the execution saatbthe information flow state, values
map to ouwtype and thegetfunction returns a variable trace from the stadedr

The proof to GWVrl merely involves re-shaping thterferenceTheorernmto the
expected arguments for GWVrl. OsiepFunctions simply the identity; we already
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have the entire trace. TKBraphFunctionreturns the trace dependency set for a varia-
ble of interest; this is the same set used byirtkerferenceTheoremNo hypotheses
are necessary, so we create a trivial preconditiontion. We introduce a lemnia-
putEquivSet_to_vtraceEquivSetmap between the set equivalence functions uged b
InterferenceTheorerand GWVrl,then can establish théraphlsGWVrllemma with
very little difficulty using thenterferenceTheorems a lemma.

Although the trace formulation provides a nice leseabstraction for describing
synchronous dataflow languages, in this chaptehawe duplicated some of the infra-
structure that had already been established iwit8] respect to function composition,
mapping from interference to noninterference, amtifying LTL theorems in terms
of trace equivalence. It would be possible toamvalize the synchronous language
semantics defined in Section 3 in order to bettéize the GWV infrastructure, but
we leave this for future work.

8 Using Gryphon For Information Flow Analysis

We now demonstrate the information flow analysishe Rockwell CollingGryphon
tool suite. Gryphonis an analysis framework designed to support mbdsed devel-
opment tools such as Simulink/Stateflow and SCADHModel-based development
(MBD) refers to the use of domain-specific, graphimodeling languages that can be
executed and analyzed before the actual systemilis bThe use of such modeling
languages allows the developers to create a mddéleosystem, execute it on their
desktop, analyze it with automated tools, and useautomatically generate code and
test cases.

As MBD established itself as a reliable technigoiesoftware development, an ef-
fort was made to develop a set of tools to endi®eptactitioners of MBD to formally
reason about the models they created. Fig. 36triites MBD development process
flow.
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8.1 Model-Based Development Toolchain

The following sections briefly describe each congarof the MBD tool-chain.

Simulink, Stateflow, MATLAB

49
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Simulink, Stateflow, and MATLAB are products of TMathWorks, Inc. [11] Simu-
link is an interactive graphical environment foreus the design, simulation, imple-
mentation, and testing of dynamic systems. Thér@nment provides a customizable
set of block libraries from which the user asseml@esystem model by selecting and
connecting blocks. Blocks may be hierarchicallynposed from predefined blocks.

Reactis

Reacti§ [17], a product of Reactive Systems, Inc., is ato@ated test generation tool
that uses a Simulink/Stateflow model as input and-generates test code for the ve-
rification of the model. The generated test suideget specific levels of coverage, in-
cluding state, condition, branch, boundary, and ifremti condition/decision coverage
(MC/DC). Each test case in the generated test soitsists of a sequence of inputs to
the model and the generated outputs from the motieince, the test suites may be
used in testing of the implementation for behavioomformance to the model, as well
as for model testing and debugging.

Gryphon

Gryphon [24] refers to the Rockwell Collins toolitsuthat automatically translates
from two popular commercial modeling languages, ink/Stateflow and SCADE
[4], into several back-end analysis tools, inclgdmodel-checkers and theorem prov-
ers. Gryphon also supports code generation intok®da and C. An overview of the
Gryphon framework is shown in Fig. 31. Gryphonausiee Lustre [7] formal specifi-
cation language (the kernel language of SCADE}saternal representation. This
allows for the reuse of many of the RCI proprietapgimizations.
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Model Checkers:
NuSMV, Prover,

BAT, Kind, SAL
Simulink ~gz--SM4%% . SCADE .,
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~
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StateFlow 4'&;&?&;" Machines Programming
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SPARK (Ada), C

—lp Rockwell Collins/U of Minnesota

.
--------- » Esterel Technologies *wDesign
= = <  Reactive Systems Verifier

.,

Fig.
31 Gryphon Translator Framework.

Prover

Prover [16] is a best-of-breed commercial modekkh®y tool for analysis of the be-
havior of software and hardware models. Proveraraalyze both finite state models
and infinite-state models, that is, models with aumided integers and real numbers,
through the use of integrated decision proceduoesrdal and integer arithmetic.
Prover supports several proof strategies that dffgih performance for a number of
different analysis tasks including functional vimafion, test-case generation, and
bounded model checking (exhaustive verificatioa tertain maximum number of ex-
ecution steps).

Custom Code Generation
By leveraging its existing Gryphon translator framoek, Rockwell Collins designed

and implemented a tool-chain capable of autotoraliyigenerating 8arRk-compliant
Ada95 source code from Simulink/Stateflow models.
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8.2 Modeling and Analyzing the Turnstile High-Assurance Guard
Architecture

A large scale use of the Gryphon analysis was padd on the Rockwell Collins
Turnstile high-assurance cross-domain guard [¥8high-level view of the architec-
ture is shown in Fig. 32. The offload engines (DE®vide the external interface to
Turnstile. The Guard Engine (GE) is responsibleeoforcing the desired security
policy for message transport. The Guard Data Moy&DMs) provide a high-speed
mechanism to transfer messages under the direofidhe GE. The GE is imple-
mented on the EAL-7 AAMP7 microprocessor [25] aseésithe partitioning guaran-
tees provided by the AAMP to ensure secure operatio

In its initial implementation, Turnstile provides‘ane way” guard. It has high
side OE (OEL1 in Fig. 32) that submits messages (geeeinput) for the guard, law
side OE (OE3 in Fig. 32) that emits messages if theyallowed to pass through the
guard, and amaudit OE (OE2 in Fig. 32) that provides audit functiohafior the sys-
tem.
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Fig. 32 Turnstile System Architecture.

The architectural analysis focused on the intevackietween the GDMs, GE, and
OEs. The OEs, GDMs and GE do not share a commamk end both execute and
communicate asynchronously. In the model,cleek each of the subsystems using a
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system input. This input is allowed to vary nonedministically, allowing us to mod-
el all possible interleavings of system execution.

Representing the Turnstile Architecture in Simulink

The Simulink model of the Turnstile system arcltitee is shown in Fig. 33. The
components were modeled at various levels of figaliepending on their relevance to
the information flow problem:

« The GDMs are responsible for most of the data nguéind were modeled to a high
level of fidelity. All of the GDM channels (transtmreceive, audit, control, and
health monitor) are modeled as well as the GDM-BM5and GDM-to-GE trans-
fer protocols.

« The data routing portions of the GE were accuratebygleled. The policy enforce-
ment portions (the guard evaluator) were modeled-deterministically: the GE
component randomly chooses whether messages queetdror propagated.

» The OEs were modeled at a fairly low level of fidlel As the OEs are not trusted
by the Turnstile architecture, we allow them to {g@terministically submit re-
quests on all of the interfaces between OE and GOMis approach allows us to
model situations in which the OE violates the Ttilms£ommunications protocols
(which should cause the system to enter a fail-sefee).

The principals of interest are those processeherOffload Engines that interact
with the outside world (the low and high networké)e reading and writing processes
on OEL1 and the reading and writing processes on OEBrepresent the arbitrary in-
terleavings of the Turnstile processes, we useblleddclocked) subsystems in Simu-
link. The GDMs run in synchrony at the basic ratehe model while the OEs and
GE run at arbitrary intervals of the basic rate.
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Fig. 33Simulink Turnstile Model.

The model in Fig. 33 was translated via Gryphoo thie model checkers NuSMV
[8] and Prover [16]. With these tools we analyzederal of the information flows
through the model. Since the OE has multiple isputour model (and in real life) we
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analyzed every input into the OEs for the possfiylesence of information from an
unwanted source. In a one-way guard configuratiaare interested in determining
whether there is backflow of information to thehrgjde network, that is, whether any
GDM input into OE1 is influenced by the low-sideE&) reading or writing princip-
als. These properties can be encoded as showg.iB4-

12h_tx1=not gry_IF_OE1_TX_Accesp_oe3 writer] ;

- 12h_tx2=not gry_IF_OE1_TX_Accessp_oe3 reader] ;
12h_tx3 = not gry_IF_OE1_RX_Accessp_oe3 writer] ;
12h_tx4 = not gry_IF_OE1_RX_Access[p_oe3_reader] ;
12h_tx5 = not gry_IF_OE1_RX_Read_Data[p_oe3_writer] ;
12h_tx6 = not gry_IF_OE1_RX_Read_Data[p_oe3 reader] ;
12h_ctrl1 = not gry_IF_OE1_CTRL_Data[p_oe3_writer] ;
12h_ctrl2 = not gry_IF_OE1_CTRL_Datg[p_oe3 reader] ;
12h_ctrl3 =not gry_IF_OE1_CTRL_Accesqp_oe3 writer] ;
12h_ctrl4 = not gry_IF_OE1_CTRL_Accesyp_oe3_reader] ;
12h_hist1=not gry_IF_OE1_HLST_Accessp_oe3_writer] ;
12h_hist2 = not gry_IF_OE1_HLST_Accesyp_oe3_reader] ;

Fig. 34 Backflow Properties from “Low Side” OE3 to “Higbide” OE1.

One of the back flow properties (shown in bold jonas violated in the architec-
tural model. However, this was already a knownre®wf back flow because of the
implementation of the GDM transfer protocol thasuied from a quality of service
requirement levied on the Turnstile implementatiohhis requirement stated that a
new message cannot be accepted until the previessage had been delivered. In
the Turnstile architecture, the high-side writeuigble to transmit to the GDM until
the low side reader has finished consuming the faetsage. The low-side reader
could potentially use this mechanism to transnfibimation (interfere) with the high
side network. The verification of the other prdper demonstrates that the high-side
OE is not, for example, influenced by the low-sider.

Also, because the Audit OE may also be connectédetdigh network we wanted
to verify that no information from OE3 leaks outthe Audit network from any of the
GDM inputs to OE2. These properties, which arepativen correct by the Prover
model checker are shown in Fig. 35.
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oe2_audit1 = not gry_IF_OE2_Audit_Access[p_oe3_writer] ;
oe2_audit2 = not gry_IF_OE2_Audit_Access[p_oe3_reader] ;
oe2_audit3 = not gry_IF_OE2_Audit_Data[p_oe3_writer] ;
oe2_audit4 = not gry_IF_OE2_Audit_Data[p_oe3_reader] ;
oe2_audit5 = not gry_IF_OE2_CTRL_Access[p_oe3_writer] ;
oe2_audité = not gry_IF_OE2_CTRL_Access[p_oe3_reader] ;
oe2_audit7 = not gry_IF_OE2_CTRL_Data[p_oe3_writer] ;
oe2_audit8 = not gry_IF_OE2_CTRL_Data[p_oe3_reader];
oe2_audit9 = not gry_IF_OE2_HLST_Access[p_oe3_writer] ;
oe2_audit10 = not gry_IF_OE2_HLST_Access[p_oe3_reader] ;

Fig. 35Backflow Properties from “Low Side” OE3 to Audit QE

Though much more complex, the Turnstile architedtorodel is conceptually sim-
ilar to the shared buffer example. The GE actshasstheduler between the GDMs,
which are physically connected together and cathbeght of as defining a “shared”
resource. It is crucial to note that accuredeaditionalinformation flow is necessary
to successfully analyze the Turnstile system aechire and many other industrial
systems of interest. Since the GDMs are direathynected, an unconditional analysis
of the architecture would not be able to demonstrain-interference properties be-
tween the high and low side OEs. Only by considgthe state of the system (espe-
cially the GE) can one demonstrate the securith@farchitecture.

9 Conclusion and Future Work

In this chapter, we have described an anapysisedure that can be used to check a
variety of information flow properties of hardwaaed software systems, including
noninterferenceover system traces. This procedure is an instaniaf the GWV-
style flow analysis specialized for synchronousaflatv languages such as SCADE
[4] and Simulink [11]. Our analysis is based omatations that can be added directly
to a Simulink or SCADE model that describe spedsfitirces and sinks of informa-
tion. After this annotation phase, the translatiod model checking tools can be used
to automatically demonstrate a variety of informatflow properties. In the case of
non-interference, they will prove either that thexeo information flow between the
source and a variable of interest, or demonstrageuace of information flow in the
form of a counterexample.

In order to justify the model checking analysis, aese presented a formalization
of our approach in PVS and demonstratedaminterferenceTheoremThis theorem
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states that if our model-checking analysis deteesiim system input does not interfere
with a particular output, then it is possible taywéhe trace of that input without af-
fecting the output in question. The analysisathtscalable and accurate, and can be
used to describe:

« Conditional Information Flow: The analysis is sensitive to the state of the model
and can be used in situations in which multiple diors “share” a resource, such as
the shared buffer model.

« “Covert” Information Flow: The analysis can detect flows due to (for example)
contention for resources. These flows are ultityateanifest in the test expres-
sions for conditionals, which are propagated todimgut of the conditional.

« Intransitive Information Flow: The analysis can be used to define intransitive i
formation flows, in which we are willing to allomfiormation flows between do-
mains as long as they occur through well-definediat®n points.

Our analysis is implemented in tl@yphontool suite that supports several kinds of
formal analysis of Simulink and Stateflow modeGryphonhas been used in several
large-scale formal verification efforts [24], indimg a flow analysis of the Turnstile
high-assurance cross-domain guard.

9.1 Future Work

There are several directions for future work githe framework that has been
created. First, there are a variety of interespirgperties beyond non-interference that
can be formalized using temporal logic. For examiilis possible to begin talking
aboutratesof information flow through a system by creatingrmoteresting tempor-
al logic formulations of flow properties. For expl®, one can state that flow occurs
at most every ten cycles of evaluation (say), vilib following Real-Time CTL
(RTCTL) [2] property:

SPEC AG(gry_IF_output[P1] -> ABF[1,10] (‘gry_IF_quit[P1]));

where ‘ABF’ is the bounded future operator of RTCTThis formula states that if
flow occurs from principaP1 to variableoutputin the current steps, that no flow oc-
curs fromP1 to outputover the next 10 steps. In order to be informatikies obliga-
tion would have to be paired with some notionhofv muchinformation was being
transmitted by a particular flow in an instant whkaw occurs. It should be possible
to annotate (manually or automatically) an inforimatflow model with the flow rates
along particular edges within the graph. Such mmotation could be used to over-
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approximate “acceptable” levels of information legsen strict non-interference is not
possible (such as with the scheduler in the shiaw&er example from Section 2.2).

Similarly, we may want to describe modal informatitow properties. For exam-
ple: as long as the system is not in the self-test ntbda,no information flows from A
to B. These properties are straightforward to speciffemporal logic, but precisely
defining the meaning of these kinds of propertiea imore generahterferenceTheo-
remwould be a useful exercise.

It should be possible to partition the model cheglanalyses using compositional
reasoning techniques such as those described jriiflZor very large models. De-
termining the obligations over both the functioetdte and also the information flow
graph should be an interesting exercise, and meld yurther insights into the rela-
tionship between a functional model and informafio graph.

There are several directions in which to extend fthieformalization of the ap-
proach in PVS. First, we should formalize the probequivalence between tliEe
semantics and thiaformation flow modethat is generated by the translation rules in
Section 5. A more ambitious step would be to fdizeathe entire Lustre language in
PVS including the clock operators and modularitgstoucts and demonstrate the cor-
rectness of the complete translation provided enGinyphon toolsuite.

Finally, we would like to be able to compose thedelochecking results with re-
sults from theorem proving GWV-style theorems usanipeorem prover such as PVS
or ACL2. This would allow partitioning of very Ige problems into portions that can
be analyzed with “the right tool for the job”, ugitheorem proving where required
(e.g., when complex dynamic data structures arelwed) but using automated analy-
sis using model checking where possible.
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