Skip to main content

Video Compression

  • Chapter
  • First Online:
Book cover Handbook of Signal Processing Systems
  • 2882 Accesses

Abstract

In this chapter, we show the demands of video compression and introduce video coding systems with state-of-the-art signal processing techniques. In the first section, we show the evolution of video coding standards. The coding standards are developed to overcome the problems of limited storage capacity and limited communication bandwidth for video applications. In the second section, the basic components of a video coding system are introduced. The redundant information in a video sequence is explored and removed to achieve data compression. In the third section, we will introduce several emergent video applications (including High Definition TeleVision (HDTV), streaming, surveillance, and multiview videos) and the corresponding video coding systems. People will not stop pursuing move vivid video services. Video coding systems with better coding performance and visual quality will be continuously developed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Douglas A. Kerr. Chrominance Subsampling in Digital Images. Available: http://doug.kerr.home.att.net/pumpkin/Subsampling.pdf November 2005.

  2. Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s-Part 2: Video. ISO/IEC 11172-2 (MPEG-1 Video), ISO/IEC JTC 1, March 1993.

    Google Scholar 

  3. Generic Coding of Moving Pictures and Associated Audio Information-Part 2: Video. ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG-2 Video), ITU-T and ISO/IEC JTC 1, May 1996.

    Google Scholar 

  4. Video Codec for Audiovisual Services at p ?64 Kbit/s. ITU-T Rec. H.261, ITU-T, November 1990.

    Google Scholar 

  5. Video Coding for Low Bit Rate Communication. ITU-T Rec. H.263, ITU-T, November 1995.

    Google Scholar 

  6. Coding of Audio-Visual Objects-Part 2: Visual. ISO/IEC 14496-2 (MPEG-4 Visual), ISO/IEC JTC 1, April 1999.

    Google Scholar 

  7. Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, May 2003.

    Google Scholar 

  8. A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan. Performance comparison of video coding standards using Lagragian coder control. In Proc. IEEE International Conference on Image Processing (ICIP), pages 501–504, 2002.

    Google Scholar 

  9. Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen, and Liang-Gee Chen. Survey on block matching motion estimation algorithms and architectures with new results. Journal of VLSI Signal Processing, 42(3):297–320, March 2006.

    Article  MATH  Google Scholar 

  10. Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay Luthra. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):560–576, July 2003.

    Article  Google Scholar 

  11. K. Ramamohan Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, August 1990.

    Google Scholar 

  12. Gray and David L. Neuhoff. Quantization. IEEE Transactions on Information Theory, 44(6):2325–2383, October 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Sullivan, P. Topiwala, and A. Luthra. The H.264 advanced video coding standard : Overview and introduction to the fidelity range extensions. In Proc. SPIE Conference on Applications of Digital Image Processing XXVII, August 2004.

    Google Scholar 

  14. D. Marpe and et al. H.264/MPEG4-AVC fidelity range extensions : Tools, profiles, performance, and application areas. In Proc. IEEE International Conference on Image Processing (ICIP), volume 1, pages 593–596, September 2005.

    Google Scholar 

  15. T. Wiegand and B. Girod. Multi-Frame Motion-Compensated Prediction for Video Transmission. Kluwer Academic Publishers, September 2001.

    Google Scholar 

  16. G. J. Sullivan and T. Wiegand. Rate-distortion optimization for video compression. IEEE Signal Processing Magazine, 15(6):74–90, November 1998.

    Article  Google Scholar 

  17. T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan. Rate-constrained coder control and comparison of video coding standards. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):688–703, July 2003.

    Article  Google Scholar 

  18. D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):620–644, July 2003.

    Article  Google Scholar 

  19. J. Reichel, H. Schwarz, and M. Wien. Working Draft 4 of ISO/IEC 14496-10:2005/AMD3 Scalable Video Coding. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. N7555, January 2005.

    Google Scholar 

  20. Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17:1103–1120, September 2007.

    Article  Google Scholar 

  21. B. S. Wilburn, M. Smulski, H.-H. K. Lee, and M. A. Horowitz. Light field video camera. In Proceedings of Media Processors, SPIE ElectronicImaging, volume 4674, pages 29–36, 2002.

    Google Scholar 

  22. C. Zhang and T. Chen. A self-reconfigurable camera array. In Eurographics symposium on Rendering, 2004.

    Google Scholar 

  23. Nick Holliman. 3d display systems. In Handbook of Optoelectronics, chapter 3. Taylor and Francis, 2006.

    Google Scholar 

  24. Philipp Merkle, Aljoscha Smolic abd Karsten Muller, and Thomas Wiegand. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 17(11):1461–1473, November 2007.

    Article  Google Scholar 

  25. ISO/IEC JTC 1/SC 29/WG11 N1088. Proposed draft amendament No. 3 to 13818-2 (multiview profile). MPEG-2, 1995.

    Google Scholar 

  26. S.-Y. Chien, S.-H. Yu, L.-F. Ding, Y.-N. Huang, and L.-G. Chen. Efficient stereo video coding system for immersive teleconference with two-stage hybrid disparity estimation algorithm. In Proc. of IEEE International Conference on Image Processing, 2003.

    Google Scholar 

  27. ISO/IEC JTC1/SC29/WG11 N6501. Requirements on multi-view video coding. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Han Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, YH., Chen, LG. (2010). Video Compression. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6345-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6345-1_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6344-4

  • Online ISBN: 978-1-4419-6345-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics