Skip to main content

High-Energy Physics

  • Chapter
  • First Online:

Abstract

High-energy physics (HEP) applications represent a cutting-edge field for signal processing systems. HEP applications require sophisticated hardware-based systems to process the massive amounts of data that they generate. Scientists use these systems to identify and isolate the fundamental particles produced during collisions in particle accelerators. This chapter examines the fundamental characteristics of HEP applications and the technical and developmental challenges that shape the design of signal processing systems for HEP. These challenges include huge data rates, low latencies, evolving specifications, and long design times. We cover techniques for HEP system design, including scalable designs, testing and verification, dataflow-based modeling, and design partitioning. Throughout, we provide concrete examples from the design of the Level-1 Trigger System for the Compact Muon Solenoid (CMS) Experiment at the Large Hadron Collider (LHC). We also discuss some of the new physics algorithms to be included in the proposed Super LHC upgrade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abolins, M., Edmunds, D., Laurens, P., Linnemann, J., Pi, B.: A high luminosity trigger design for the Tevatron collider experiment in DO. IEEE Trans. Nuclear Science 36, 384–389 (1989)

    Article  Google Scholar 

  2. Adler, S.S., et al.: PHENIX on-line systems. Nucl. Inst. and Meth. in Phys. Res. A 449, 560–592 (2003)

    Article  Google Scholar 

  3. Altegoer, J., et al.: The trigger system of the NOMAD experiment. Tech. Rep. CERN-EP 98-202, CERN (1998)

    Google Scholar 

  4. Amidei, D., et al.: A two level FASTBUS based trigger system for CDF. Tech. Rep. FERMILAB-Pub-87/187-E, The Enrico Fermi Institute (1987)

    Google Scholar 

  5. Amsler, C., et al.: Review of particle physics, 2008–2009. Review of particle properties, 2008- 2009. Phys. Lett. B 667 (2008)

    Google Scholar 

  6. Ang, R., Dutt, N.: Equivalent design representations and transformations for interactive scheduling (1992)

    Google Scholar 

  7. Anikeev, K., et al.: CDF Level 2 Trigger upgrade (2005)

    Google Scholar 

  8. Anvar, S., et al.: The charged trigger system of NA48 at CERN. Nucl. Inst. and Meth. in Phys. Res. A 419, 686–694 (1998)

    Article  Google Scholar 

  9. Azuelos, G., et al.: The Beyond the Standard Model Working Group: Summary report (2002)

    Google Scholar 

  10. Bachtis, M.: SLHC CMS Calorimeter Trigger dataflow and algorithms (2008)

    Google Scholar 

  11. Bachtis, M.: SLHC Calorimeter Trigger algorithms (2009)

    Google Scholar 

  12. Baudrenghien, P., Höfle, W., Kotzian, G., Rossi, V.: Digital signal processing for the multibunch LHC transverse feedback system. Tech. Rep. LHC-PROJECT-Report-1151, CERN (2008)

    Google Scholar 

  13. Bene, P., et al.: First-level charged particle tirgger for the L3 detector. Nucl. Inst. and Meth. in Phys. Res. A 306, 150–158 (1991)

    Article  Google Scholar 

  14. Bhattacharyya, S.S., Brebner, G., Eker, J., Janneck, J.W., Mattavelli, M., von Platen, C., Raulet, M.: OpenDF — A dataflow toolset for reconfigurable hardware and multicore systems. In: Proceedings of the Swedish Workshop on Multi-Core Computing, pp. 43–49. Ronneby, Sweden (2008)

    Google Scholar 

  15. Bhattacharyya, S.S., Kedilaya, S., Plishker,W., Sane, N., Shen, C., Zaki, G.: The DSPCAD Integrative Command Line Environment: Introduction to DICE version 1. Tech. Rep. UMIACSTR- 2009–13, Institute for Advanced Computer Studies, University of Maryland at College Park (2009)

    Google Scholar 

  16. Bieser, F.S., et al.: The STAR trigger. Nucl. Inst. and Meth. in Phys. Res. A 499, 766–777 (2003)

    Article  Google Scholar 

  17. Blaising, J., et al.: Performance of the L3 second level trigger implemented for the LEP II with the SGS Thomson C104 packet switch. IEEE Trans. Nuclear Science 45, 1765–1770 (1998)

    Article  Google Scholar 

  18. Busson, P.: Overview of the new CMS electromagnetic calorimeter electronics. In: 8th Workshop on Electronics for LHC Experiments, pp. 324–328 (2003)

    Google Scholar 

  19. Canale, V., et al.: The DELPHI trigger system at LEP200. Tech. Rep. DELPHI 99-7 DAS 88, CERN (1999)

    Google Scholar 

  20. Caspers, F., et al.: The 4.8 GHz LHC Schottky pick-up system. Tech. Rep. LHC-PROJECTReport- 1031, CERN (2007)

    Google Scholar 

  21. Chung, Y., et al.: The Level-3 Trigger at the CDF experiment at the Tevatron Run II. IEEE Transactions on Nuclear Science 52 (2005)

    Article  Google Scholar 

  22. CMS Collaborations: CMS TriDaS Project: Technical Design Report; 1, The Trigger systems. Tech. rep., CERN (2000)

    Google Scholar 

  23. Covarelli, R.: The CMS High-Level Trigger. In: CIPANP ’09 (2009)

    Google Scholar 

  24. Darriulat, P.: The discovery of the W and Z particles, a personal recollection. The European Physical Journal C - Particles and Fields 34(1), 33–40 (2004)

    Article  Google Scholar 

  25. Day, C.T., Jacobsen, R.G., Kral, J.F., Levi, M.E., White, J.L.: The BaBar trigger, readout and event gathering system. In: CHEP95 (1995)

    Google Scholar 

  26. Dugne, J., Fredriksson, S., Hansson, J.: Preon Trinity - A schematic model of leptons, quarks and heavy vector bosons. Europhysics Letters 57, 188 (2002)

    Article  Google Scholar 

  27. Fang, W.J., Wu, A.C.H.: Performance-driven multi-FPGA partitioning using functional clustering and replication. In: Proceedings of the 35th Design Automation Conference (1998)

    Google Scholar 

  28. Flores-Castillo, L.: Standard Model Higgs searches at the LHC. Nuclear Physics B 177–178, 229–233 (2004)

    Google Scholar 

  29. Fuljahn, T., et al.: Concept of the first level trigger for Hera-B. IEEE Trans. on Nucl. Sci. 45(4), 1782–1786 (1998)

    Article  Google Scholar 

  30. Gianotti, F., Mangano, M., Virdee, T.: Physics potential and experimental challenges of the LHC luminosity upgrade. European Physical Journal C 39, 293 (2005)

    Article  Google Scholar 

  31. Godbole, R.: Predictions for Higgs and SUSY Higgs properties and their signatures at the hadron colliders (1999)

    Google Scholar 

  32. Gordon, H., et al.: The Axial-Field Spectrometer at the CERN ISR. In: 1981 INS International Symposium on Nuclear Radiation Detectors (1981)

    Google Scholar 

  33. Gregerson, A., Farmahini-Farahani, A., Buchli, B., Naumov, S., Bachtis, M., Schulte, M., Compton, K., Smith, W., Dasu, S.: FPGA design analysis of the Clustering Algorithm for the CERN Large Hadron Collider. In: Proceedings of the 17th IEEE Symposium on Field- Programmable Custom Computing Machines (2009)

    Google Scholar 

  34. Gregerson, A., Farmahini-Farahani, A., Plishker, W., Xie, Z., Compton, K., Schulte, M.: Advances in architectures and tools for FPGAs and their impact on the design of complex systems for particle physics. In: Topical Workshop on Electronics in Particle Physics (2009)

    Google Scholar 

  35. Hsu, C., Keceli, F., Ko, M., Shahparnia, S., Bhattacharyya, S.S.: DIF: An interchange format for dataflow-based design tools. In: Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, pp. 423–432 (2004)

    Google Scholar 

  36. Jacobs, D.A.: Applications of ESOP, a fast microprogrammable processor, in high energy physics experiments at CERN. Computer Physics Communications 22(2–3), 261–267 (1981)

    Article  Google Scholar 

  37. JDEM: The Joint Dark Energy Mission (2009). URL http://jdem.gsfc.nasa.gov

  38. Kane, G., Pierce, A.: Perspectives of LHC Physics. World Scientific (2008)

    Google Scholar 

  39. Kisselev, A., Petrov, V., Ryutin, R.: 5-dimensional quantum gravity effects in exclusive double diffractive events. Physics Letters B 630, 100–105 (2005)

    Google Scholar 

  40. Kopec, D., Tamang, S.: Failures in complex systems: case studies, causes, and possible remedies. SIGCSE Bull. 39(2), 180–184 (2007)

    Article  Google Scholar 

  41. LeCompte, T., Diehl, H.T.: The CDF and D0 upgrades for Run II. Annu. Rev. Nucl. Part. Sci 50, 71–117 (2000)

    Article  Google Scholar 

  42. Moreira, P., Toifl, T., Kluge, A., Cervelli, G., Faccio, F.,Marchioro, A., Christiansen, J.: G-link and gigabit ethernet compliant serializer for LHC data transmission. In: 47th IEEE Nuclear Science Symposium and Medical Imaging Conference (2000)

    Google Scholar 

  43. Navarro, A.P., Frank, M.: Event reconstruction in the LHCb online cluster. Tech. Rep. LHCb- CONF-2009-018, CERN (2009)

    Google Scholar 

  44. Pal, S., Bharadwaj, S., Kar, S.: Can extra-dimensional effects replace dark matter? Physics Letters B 609, 195–199 (2005)

    Article  Google Scholar 

  45. Parodi, F.: Upgrade of the tracking and trigger system at ATLAS and CMS (2009)

    Google Scholar 

  46. Pastore, F.: ATLAS trigger: Design and commissioning. In: ICCMSE Symposium: Computing in Experimental High Energy Physics (2009)

    Google Scholar 

  47. Smith, W.: Trigger and data acquisition for the Super LHC. In: Proceedings of the 10th Workshop on electronics for LHC Experiments, pp. 34–37 (2004)

    Google Scholar 

  48. Smith, W., Chumney, P., Dasu, S., Jaworski, M., Lackey, J.: CMS Regional Calorimeter Trigger high speed ASICs. In: Proceedings of the 6th Workshop on Electronics for LHC Experiments, pp. 2000–2010 (2000)

    Google Scholar 

  49. Sriram, I., Govindarajan, S., Srinivasn, V., Kaul, M., Vemuri, R.: An integrated partitioning and synthesis system for dynamically reconfigurable multi-FPGA architectures (1998)

    Google Scholar 

  50. Stamen, R.: The ATLAS trigger (2005)

    Google Scholar 

  51. Stettler, M., Iles, G., Hansen, M., Foudas, C., Jones, J., Rose, A.: The CMS Global Calorimeter Trigger hardware design. In: 12th Workshop on Electronics for LHC and Future Experiments (2006)

    Google Scholar 

  52. Varela, J.: Timing and synchronization in the LHC experiments. In: Proceedings of the 6th Workshop on Electronics for LHC Experiments, pp. 2000–2010 (2000)

    Google Scholar 

  53. Varela, J.: CMS L1 Trigger control systems (2002)

    Google Scholar 

  54. Waloschek, P.: Fast trigger techniques. Physica Scripta 23, 480–486 (1981)

    Article  Google Scholar 

  55. Wiedemann, H.: Particle accelerator physics. Springer Verlag (2007)

    Google Scholar 

  56. Wilson, E.: An introduction to particle accelerators. Oxford University Press (2001)

    Google Scholar 

  57. Yadgar, A., Orna, G., Assf, S.: Parallel sat solving for model checking (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Gregerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gregerson, A., Schulte, M.J., Compton, K. (2010). High-Energy Physics. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6345-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6345-1_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6344-4

  • Online ISBN: 978-1-4419-6345-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics