
Low Power Hardware Synthesis from Concurrent
Action-Oriented Specifications

Gaurav Singh · Sandeep K. Shukla

Low Power Hardware
Synthesis from Concurrent
Action-Oriented
Specifications

123

Gaurav Singh
Intel Corporation
S. Mopac Expressway 1501
78746 Austin
TX, USA
gasingh@vt.edu

Sandeep K. Shukla
Virginia Tech
Bradley Department of Electrical &

Computer Engineering
Whittemore Hall 302
24061 Blacksburg
VA, USA
shukla@vt.edu

ISBN 978-1-4419-6480-9 e-ISBN 978-1-4419-6481-6
DOI 10.1007/978-1-4419-6481-6
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010930047

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To the friends and families,
and all our fellow Hokies.

Preface

Human lives are getting increasingly entangled with technology, especially comput-
ing and electronics. At each step we take, especially in a developing world, we are
dependent on various gadgets such as cell phones, handheld PDAs, netbooks, medi-
cal prosthetic devices, and medical measurement devices (e.g., blood pressure mon-
itors, glucometers). Two important design constraints for such consumer electronics
are their form factor and battery life. This translates to the requirements of reduction
in the die area and reduced power consumption for the semiconductor chips that go
inside these gadgets. Performance is also important, as increasingly sophisticated
applications run on these devices, and many of them require fast response time.

The form factor of such electronics goods depends not only on the overall area
of the chips inside them but also on the packaging, which depends on thermal char-
acteristics. Thermal characteristics in turn depend on peak power signature of the
chips. As a result, while the overall energy usage reduction increases battery life,
peak power reduction influences the form factor.

One more important aspect of these electronic equipments is that every 6 months
or so, a newer feature needs to be added to keep ahead of the market competition,
and hence new designs have to be completed with these new features, better form
factor, battery life, and performance every few months. This extreme pressure on
the time to market is another force that drives the innovations in design automation
of semiconductor chips.

If one considers high-end servers, workstations, and other performance-hungry
systems, their corresponding semiconductor chips also need to resolve many of
these market and technological forces. However, the time scale and the scale of
betterment from generation to generation are quite different. In this book, our focus
is not on these high-performance computing systems. Our focus is rather on the
specific, battery-driven consumer devices, in particular the semiconductor ICs or
chips inside them.

However, we are not concerned here with the architecture or the design specifics
of these chips, but rather with the process of designing them. These are mostly
implemented as ASICs (Application-Specific Integrated Circuits) or sometimes on
FPGAs (Field Programmable Logic Arrays) for computing specific functions or
algorithms. For example, one could design a chip for encryption or decryption of
bit streams or one could design a chip for matrix multiplication or Fast Fourier

vii

viii Preface

Transform. One could also have complex interfaces in these chips, such as an
AMBA bus interface, or a DMA interface, or some other kind of communication
or I/O interface. These would mean that not only such chips do specific computa-
tion, they also have multiple threads of control. The computation itself may also be
designed with multiple threads of control, because hardware does allow us to over-
lap computations that do not have to be sequenced in a specific order. However, such
concurrent threads of computation require synchronization and communication with
each other. Most computation and communication functions have such concurrency
and synchronization between concurrent threads of computation.

The question is how to design such a highly concurrent hardware system and fab-
ricate it on a chip, while resolving various constraints on performance (e.g., latency),
power consumption (e.g., peak power, leakage, overall energy), area, etc. This is
a question of innovative design methodology, design environment, language for
design entry, transformation, abstraction, and many other issues. Electronic Design
Automation (EDA) community has been debating these questions for many years,
but in the last 10 years or so, this question has become one of the prime movers of the
industry. Designing complex chips that satisfy requirements and design constraints
and delivering them fast enough to meet the time-to-market goals is the central issue
of design automation these days.

Semiconductor IC design process has gone through a long history in the last 40
or so years, starting from SSI (Small-Scale Integration), MSI (Medium-Scale Inte-
gration), LSI (Large-Scale Integration), VLSI (Very Large-Scale Integration), ULSI
(Ultra Large-Scale Integration), etc. Moore’s law as predicted by Gordon Moore
is still going on with full steam, and we are seeing a doubling of the number of
transistors per unit area of the chip every 2 years approximately. As a result, more
complex functionalities are being implemented on chip, and thus the need for ultra
large-scale integration – UVLSI. (The term UVLSI did not catch up, and the term
VLSI is still pervasive in the literature, even though since the time the term VLSI
was introduced, the scale has improved by orders of magnitude.)

In the beginning, the designers used to design each transistor by hand, tweak-
ing their parameters to make sure that required characteristics are implemented
correctly. Then came gate-level design era, where schematics were initially hand
drawn, and later various automated tools arrived. However, as the industry moved
from hundreds of gates to thousands of gates on the die, the gate-level design tech-
niques and corresponding automation processes also ran out of steam. The advent
of register transfer level (RTL) languages in the early 1990s ushered a new era of
productivity in silicon chip design. Capturing the state of the system with registers
and state transition conditions with combinational logic facilitated the designers’
ability to make much faster design entry into the automation flow. Initially, this
abstraction from gate-level design to register transfer level was meant to provide
better simulation abilities. A design described only with gates would take much
more time to simulate for a few million clock cycles than if it were described with
RTL. VHDL was conceived as a simulation language, and so was Verilog. Pretty
soon various logic synthesis algorithms started to show up in the literature, and
eventually logic synthesis allowed the large-scale proliferation of the use of RTL

Preface ix

as a design entry language for most semiconductor IC companies by the late 1990s.
The use of RTL thus reduced validation time by speeding up simulation and reduced
the design time by virtue of optimized logic synthesis algorithms and tools.

However, the designers started to demand more out of the automation tools and
tried to introduce higher level constructs into RTL, and behavioral RTL constructs
found ample designer attention. The original variant of RTL called the structural
RTL described the architecture of the design in terms of modules, the combinational
logics with interconnected gates, and the state machines in terms of registers and
their update logic. Behavioral RTL aimed at easing the burden on the designers by
allowing them to describe the designs in terms of their behaviors rather than the
architectural structures (e.g., a state machine described as a state transition system,
and not as an interconnection of registers and gates). Algorithms for logic synthesis
from behavioral RTL became a popular topic of research. Given a behavioral state
machine description, the synthesis algorithm is required to choose among various
possible structural implementations of the state machine. For example, one could
vary the state encoding (e.g., binary vs. one-hot vs. Huffman encoded) and obtain
various area, power, latency characteristics of the design. Instead of the designer
having to make the choice, the synthesis algorithm is supposed to do a design space
exploration and choose the best implementation based on the design constraints.
This means that the synthesis algorithm had to be made aware of constraints such
as area, power, latency. The exploration, however, is non-trivial because depending
on such design constraints, one encoding vs. another would be more appropriate.
This meant that the synthesis algorithms have to solve multi-objective optimization
problems before making decisions on what to synthesize. A number of tools such
as Behavioral Compiler attempted this, but did not gain popularity because expert
designers thought that they could do a better job through their experience and intu-
ition on what makes the best hardware for the given set of constraints.

One of the most important reasons for promoting the behavioral style of RTL
came from the fact that the chips being designed got increasingly complex, requiring
various parts executing sophisticated protocols for communicating with the outside
world as well as among its own components. Protocols are best described behav-
iorally than structurally. Thus protocol compilation was another name for behavioral
synthesis. There has been mixed reaction to such tools and methodologies, and it
was suspected by expert designers to be producing non-optimal implementations.

In the late 1990s and early part of 2000, a push for higher abstraction level than
RTL came about. A number of activities related to C/C++-based design entry lan-
guages for hardware were announced, including SpecC from the University of Cali-
fornia – Irvine, Synopsys’ Scenic, later named SystemC, Cynapp’s Cynlib, IMEC’s
OCAPI, etc. Also, enhancing Verilog into Superlog and VHDL into Object-Oriented
VHDL were announced around the same time. It was clear that without raising the
abstraction level for hardware design entry, it is hard to keep up with the increasing
productivity requirements in the semiconductor industry.

The introduction of high-level software languages as carriers for RTL description
does not, however, enhance the abstraction level. It only allows one to compile the
hardware description with traditional software compilers and, therefore, provides

x Preface

a free simulation environment. But the cost of RTL simulator is not the biggest
concern for the industry, and hence a need for higher abstraction level was given
serious thoughts. More academic languages such as SpecC already had introduced a
number of conceptual abstractions such as behaviors as processes, channels for com-
munication, channel refinement for communication protocol elaboration, events,
and various synchronization between behaviors and events. A stepwise refinement
strategy and taxonomy formed the core of the SpecC methodology. Some of these
abstractions found their way into the SystemC-2.0 specification and ushered the
era of transaction-oriented design entry. The terminology of transaction level model
or TLM came about very soon after that, and various levels of transaction-level
descriptions were prescribed and adopted into the SystemC language.

The transaction-oriented description of functionalities of a hardware system (or
hardware/software system) allows one to abstract away from descripting the bit-
level details of the design, especially the communications between modules within
a design. Transactions not only allow abstracting away the data-type representation
from bits to high-level data types but also allow temporal abstraction. For example, a
data transfer over a bus between a module and memory could take a number of clock
cycles, and the protocol may be described by a cycle-by-cycle description of what
bits get set and what bits get reset at each cycle. This entire process can be replaced
by a simple transaction. As a result, transaction-level models can be simulated much
faster (orders of magnitude) compared to simulating RTL models.

Since transactions abstract away precise cycle-by-cycle behavior, synthesizing
code from transactional model into real hardware brought the old pain back. Now,
the synthesizer has to solve multi-objective optimization problem to select from
various possible elaboration of transactions into bit level, cycle-by-cycle behavior.
If such optimization problem is not solved fast and accurately, the synthesized hard-
ware will be possibly suboptimal. This became a cause of pain for a while, and
even today, this problem is not entirely solved. However, progress has been made
in two directions. Synthesis of acceptable-quality RTL from TLM models has been
done by a number of companies – Forte Design Systems’ (now erstwhile Cynapps)
Cynthesizer has much of such capabilities. Mentor’s Catapult-C, initially started as
an algorithmic C to RTL synthesizer, also has adapted itself so it can handle a lot
of transactional constructs and synthesize quality RTL. The second technological
innovation that allowed this trend of TLM-based design entry to proliferate further
was Calypto System’s sequential equivalence verification engine that can compare
a TLM model and the generated RTL to verify their sequential equivalence.

Having reached this status has enabled the design industry, especially ASIC
industry, to progress toward bridging the notorious productivity gap in the industry.
However, a lot more is desirable, and TLM with higher abstraction is still out of the
scope for much of the automated synthesis tools. TLM synthesis and verification
and transference of the verification assurance at the TLM level to the resulting RTL
level are still topics of research. Such research papers are in abundance at most
design automation-related conferences today.

Recall that the ability to synthesize is not the only criteria for success here, nor
is the ability to carry out automated sequential equivalence verification. The quality

Preface xi

of the generated RTL in terms of latency, power, area, etc., is very important, and
active research is being carried out along those lines. Many of the tools mentioned
above also allow the users to specify timing, power, and area budget constraints and
accordingly try to synthesize RTL that meets those bounds. However, estimating
power, area, or timing from a TLM-level model is another hard problem. For exam-
ple, power consumption of a hardware design is highly dependent on the technology
being used, details of the physical structure of the design, clock frequency, voltage
levels, interconnects and clock tree, etc. Therefore, optimizing the result of synthesis
from TLM models for power has to be based on a number of assumptions, profiling
of past designs, and various intuitions formulated as numeric guesses. Many of these
have been formalized in terms of statistical regressions over other parameters such
as toggle counts, state transitions, transaction duration, and width, and research in
this field is being carried out vigorously as we write this preface.

As this push toward abstraction was warming up, an alternative approach started
taking shape at the Massachusetts Institute of Technology (MIT). James Hoe and
Arvind started looking at the specification of hardware in terms of term rewriting
systems. Term rewriting is a topic extensively studied by the automated theorem-
proving community. For example, the steps to proving an algebraic identity can be
captured by rewriting rules. Starting from the left-hand side of the identity to be
proven, one applies appropriate rewrite rules to arrive at the right-hand side term.
Computer algorithms that efficiently figure out which rewrite rules to apply in what
order are at the core of term rewriting systems. It seems that the intuition behind
Hoe and Arvind’s work was as follows. One could conceive of the current state of
a hardware system as a term over an appropriate term algebra and the transitions
of the system as rewrite rules. Therefore, the evolution of a hardware system in
its state space can be looked upon as applications of rewrite rules from the term
denoting the initial state. This approach to hardware specification turned out to be
abstracting the system in a direction that transactions usually cannot. The concur-
rency in hardware systems (i.e., one set of registers changing state independent
of another set of registers changing state, at the same clock cycle) gets captured
by the different rewrite rules. One could actually apply multiple of these rules
to the same term (state) to express concurrent evolution in the state space. More
importantly, the parts of the state space (registers) on which the multiple rules are
applied must be disjoint; otherwise, there will be attempts to change the state of
the system by two distinct transitions at the same time, leading to race conditions.
This non-interference property is essential for representing the correct transitions
in the state space. In the concurrency literature this is known as atomicity of the
transactions, or the rules. Finding which rules can be applied concurrently without
violating atomicity is not difficult, if one knows exactly which parts of the state
these rules try to modify. One can declare those rules which modify overlapping
parts of the state space as “conflicting” and create a conflict graph. The conflict
graph will have nodes denoting rules and edges denoting conflict. Thus, finding the
rules which can be concurrently applied in the same clock cycle is equivalent to
finding the maximal independent set in the conflict graph. Finding the maximum
size-independent set is an NP-complete problem, but finding maximal such set can

xii Preface

be heuristically done efficiently. This led to the scheduling algorithms required to
synthesize RTL from such kind of hardware specification. Hoe and Arvind created a
new paradigm of hardware specification and synthesis of RTL from such specifica-
tions by computing schedules of rules that apply in each clock cycle. The RTL they
created had this scheduler inbuilt into the hardware. Later this concept evolved into
the language Bluespec. The Bluespec language was first used in a network proces-
sor design company and was later developed into a product by an EDA company,
also named Bluespec Inc. Both of these companies were started by Arvind and his
colleagues.

It turns out that the idea germane to the term rewriting view of the state tran-
sitions had other variants in the literature. Dijkstra had introduced the notion of a
guarded command language, where a system state is spread across multiple vari-
ables. A guarded command is a rule that updates those variables based on certain
conditions. Given a set of guarded commands, the update process is based on rounds
of non-deterministic choices. The choice at each round is among the set of guarded
commands whose guard evaluates to true over the current state. This is a simple
model to describe interleaving concurrent evolution of the state space. Even if one
command is executed per round, it could model concurrent execution of commands.
For two successive commands that do not overlap in the set of variables they modify,
the effect of executing them sequentially is equivalent to that of executing them
concurrently. Chandi and Mishra later extended this notion and defined the UNITY
language based on guarded commands for parallel program specification. Any pos-
sible execution sequence of commands allowed by the program is a behavior of
the specified program. An implemented program, however, may not have all these
behaviors but some of the possible ones. Thus, an implementation satisfies such a
specification if the set of possible behaviors of the implementation is a subset of the
set of possible behaviors of the specification.

A number of computer scientists including Leslie Lamport suggested that inter-
leaving semantics of parallel programs is the appropriate semantics. This means
that if you have two guarded commands a and b which can execute at the same
time in parallel, then the effect of that is equivalent to first executing a and then
b or vice versa. Diagrammatically, this leads to a diamond representation, often
called the diamond rule. If a and b are non-interfering (i.e., they do not modify the
same variables or state elements), it makes sense to view their execution this way.
However, if execution of a modifies a variable that is being used in the guard of
b, then after execution of a, the guard of b may not hold true any more. Hence,
it would not be possible to have the same effect as a and b executing in paral-
lel. In the interleaving semantics, even parallel execution of a and b would not be
allowed in such a case, because there is no equivalent interleaving of such guarded
commands.

The other school of thought about parallel program specification at that time
was championed by Vaugh Pratt at Stanford and his colleagues. This was termed
“partial order” semantics of concurrency. According to this semantics, interleav-
ing semantics misses out many possible interactions between concurrent executions
and is not sufficient to capture all possible behaviors one could see in concurrent

Preface xiii

systems. Also, they came up with examples of scenarios where two concurrent sys-
tems that are indistinguishable in terms of interleaving semantics are distinguishable
by partial order semantics, based on partially ordered multiset (POMSET) models
of behaviors.

There was a raging debate between these two schools in the early 1990s over an
Internet-based mailing list called the “concurrency mailing list.” The often heated
exchange of messages on the mailing list between Pratt and Lamport is interest-
ing to read and is available in the appendix of a book on partial order models of
concurrency edited by Holzmann and Peled, published in 1996. However, here we
need not concern ourselves with POMSETs and partial order semantics. Hardware
system behaviors are usually observed as traces of inputs and outputs as the state
space evolves in reaction to the inputs that are provided to it by the environment. As
a result, a trace-based semantics is sufficient for our purposes.

A lot of the work described in this book is based on our experience in working
with the Bluespec engineers and researchers. However, in order to make the model
of concurrent atomic rules (also called actions) independent of a specific company,
we adopted the idea of CAOS (Concurrent Action-Oriented Specifications) which is
a Bluespec-like guarded atomic action-based language. In this language, the actions
have guards like guarded command languages and Bluespec. The guards are predi-
cates evaluated over the state of the system. At every round of execution, guards are
evaluated, and the rules or actions whose guards evaluate to true are called enabled
actions. The execution of the rules can be carried out in many different ways. The
simplest one is to choose one of the enabled rules non-deterministically, execute it,
and record the change in the state. In the next round, guards are reevaluated and a
rule is selected among enabled ones. This goes on ad infinitum or until no guard
is evaluated to true in a round. This is considered the reference semantics of any
CAOS model. This describes all possible allowable behaviors of the specification.
If a certain behavior is undesirable, the actions and their guards may be suitably
modified, and possibly more state elements are added to modify the model such that
undesirable behaviors are eliminated.

If one’s intention is to create a hardware system implementing the specification, it
is not a good idea to execute one rule at a time. This is because one would map each
round of the model execution to one clock cycle of the actual hardware. Therefore,
executing one rule at every cycle will provide an unacceptable latency of the system.
To obtain better latency, one should attempt to execute as many rules as possible
per round. This reduces to determining which rules are non-conflicting and then
selecting a maximal set of such rules per round (clock cycle). But one has to be
careful at this point. We have declared the behaviors generated by executing one rule
per round as the reference semantics of our model. Thus, by executing multiple non-
conflicting rules in the same round, if we create a behavior which has no equivalent
behavior in the reference semantics, we will be violating the specification. As a
result one has to worry about an extra constraint while scheduling – even when two
rules a and b are non-conflicting, one is allowed to execute them concurrently in
the same round, if and only if the resulting change in state can also be effected by
either executing a first, and then b, or vice versa. This is important for correctness.

xiv Preface

Thus, the scheduling process must know which pair of non-conflicting rules would
violate this particular constraint and never schedule them together in a single round.
A simple example would be two rules written as follows: R1 : true → x := y |
R2 : true → y := x . These two rules R1 and R2 are non-conflicting and when
executed concurrently, they swap the values of x and y. However, if you execute R1
followed by R2, then x and y both end up having the last value of y. If you do the
opposite, both x and y end up having the last value of x . Hence, the rules R1 and
R2, albeit non-conflicting, cannot be executed in the same round, concurrently.

Once this restriction is understood, creating a scheduler and embedding it into the
generated RTL is not very difficult. Thus, synthesizing RTL from CAOS or Bluespec
is not a problem at all. In fact, in a 2004 ICCAD paper, Arvind et al. showed that
the generated RTL using Bluespec is often competitive in terms of area and latency
against the handwritten Verilog RTL for the same functionality. More interestingly,
the generated RTL’s structure is quite easy to understand.

As mentioned before, the computation of the schedule that executes maximum
possible number of rules in every cycle is computationally hard but the heuristics
perform well in most cases. One could, however, show contrived examples where
even the heuristics can produce results with latencies arbitrarily far from the optimal.
But such contrived examples do not happen in practice, and the Bluespec synthesis
does produce hardware that has required area and latency. One of the chapters in this
book will look deeper into the algorithmic complexity of the scheduling problems
related to such CAOS-based synthesis and their approximability with heuristics.
Such analyses are important for the sake of understanding the heuristics and their
corner cases, but in practice they do not make much difference.

The 2004 ICCAD paper claimed nothing about the power consumption or peak
power of the designs generated using Bluespec. That is where this book contributes
the most to the CAOS-based synthesis processes. Since executing all non-conflicting
rules in the same cycle might reduce latency, there may be a tendency to do so.
But that may have several implications – the peak power of the hardware will rise,
leading to thermal issues, degradation of performance, and stronger cooling and
packaging requirements. Thus, it is not inconceivable to slow down the system a bit
by not scheduling all the rules that could be scheduled in the same cycle, but rather
stagger them a bit. To do this, one has to have an estimate of the power consump-
tion of each hardware resource that is engaged in the execution of a rule, create
a metric of peak power per rule, and accordingly solve an optimization problem.
More interestingly, selecting some rules for execution and leaving the rest for later
cycles might mean that the behavior of the design has changed. Nevertheless, such
selective execution of the rules in a clock cycle can be done as long as the resul-
tant behavior is still included in the set of possible behaviors under the reference
semantics.

This led us to another interesting work described in this book. How do you know
that when you change the behavior of a design by disallowing some enabled rules
from executing in a clock cycle, you are still adhering to the original specifica-
tion? Neither Bluespec nor CAOS had a formal verification methodology at that
point. In fact, the question of formal verification is a bit tricky in this context. One

Preface xv

possibility is to formally verify the generated RTL using standard model checking
techniques. But this does not provide any advantage over standard RTL verifica-
tion techniques used in other methodologies for hardware design. Since the one
rule per round semantics embodies the reference semantics for the specification,
it would be best to prove that the set of behaviors produced by the synthesized
hardware is a subset of the behaviors allowed by the reference semantics. This
means that standard model checking is not what we want, but rather automata
theoretic language inclusion-based formal verification is more appropriate. There
are not many tools out there which (i) allow automata theoretic formal verification
and (ii) have the facility to model concurrent atomic actions in a straight-forward
manner. The one freely available tool which has a great reputation in software ver-
ification is SPIN from Bell Labs. However, SPIN does not have a notion of clock
cycle, and hence requires addition of a clock process if clocked hardware needs
to be modeled. Having managed these modeling issues, we were able to model
the reference behavior and the behavior of the generated hardware into SPIN and
carry out automata theoretic verification. The interesting results we obtained were
as follows: if a maximal set of non-conflicting rules are scheduled per cycle then
the set of behaviors we obtain is correct with respect to the reference model. So
is the peak power saving-based scheduling model which selectively executes rules
based on a peak power constraint. But the peak power saving model and the stan-
dard RTL model (which executes maximal set of non-conflicting rules) actually
may not have the same set of behaviors. This is a bit of a conundrum, because
one would think that peak power saving model would have behaviors that are
special cases of the standard RTL behavior, but this is not the case always. This
is due to the unique nature of the CAOS-type modeling paradigm. The model is
non-deterministic in its reference semantics, and hence a large number of different
behaviors are allowed, and any implementation could actually pick to implement a
subset of these behaviors. So two distinct implementation strategies might produce
very different behaviors, both of which are correct with respect to the reference
specification.

One way out of this dilemma would be to always use the same synthesis strategy,
so that behaviors of the synthesized RTL are always the same. But that means any
new optimization trick would be difficult to incorporate into the synthesis process.
Another way is to suitably restrain the CAOS model with lots of constraints in the
guards, such that the model has deterministic behavior. In other words, the reference
semantics has only a very restricted set of behaviors. But this means constraining
the CAOS model very tightly and burdening the designer with all the worries of han-
dling synchronizations to determinise the model. We suspect that such an approach
would make hardware specification with CAOS as error prone and hard as with
traditional RTL specification.

As we alluded to earlier, peak power reduction is an important aspect of chip
design due to thermal and packaging considerations. But overall energy reduction
for increasing battery life is also another aspect of power optimization. This field is
well studied for over a decade, especially with clock-gating and operand isolation
techniques. Clock-gating essentially helps in reducing register power, by gating the

xvi Preface

clocks to the registers that do not change their values in a particular clock cycle. The
gating logic can be inserted automatically during the synthesis process. Operand
isolation is a process of isolating combinational logic from its inputs when the cor-
responding output is not being used in the current clock cycle. Both of these tech-
niques have shown to save average dynamic power. For CAOS-based synthesis, one
could essentially implement these techniques by analyzing the operations involved
in each action or rule. Specifically, when the guard of an action is evaluated to false
in a clock cycle, we know that the corresponding state updates will not take effect in
that cycle. However, if there are other rules which might also update the same state
element (register) and if one of those rules is enabled and selected for execution by
the scheduler, then one has to make sure that the clock-gating of that register does
not get turned on in that particular cycle. This requires more involved analysis of
data dependency between various rules. In order to take some of these decisions
efficiently during the execution of a design, extra logic needs to be added, which in
turn is a potential source of additional power consumption. Thus, one has to figure
out if the additional circuitry added to enable clock-gating and/or operand isolation
is not offsetting the gains in overall power savings for the design. These techniques
were implemented in the Bluespec synthesis tool called Bluespec Compiler. With
specific options enabled in the compiler, one could effectively reduce the power con-
sumption of the generated design. Power estimation techniques applied on various
industrial benchmark designs have shown power gains. This book has a chapter on
this particular topic reporting the techniques and detailed experimental results.

To sum up, in our experience, every time a new paradigm of modeling is intro-
duced for hardware design entry, one has to create a design flow starting at spec-
ification of designs in that paradigm. But a design flow is not possible without
automated synthesis techniques to generate the implementation at gate level or
RTL. Once the synthesis algorithms are proven to be correct, one has to concentrate
on resource optimizing synthesis techniques, especially targeting reduction in area,
latency, power, etc. One might have to consider various trade-off points and accord-
ingly create the appropriate tools and methodologies. The work described in this
book is on CAOS-based hardware specification and was inspired by our association
with Bluespec language and the company. Therefore, this work is focussed on vari-
ous power reduction issues related to CAOS-based synthesis and the corresponding
formalism, algorithms, complexity analysis, and verification problems.

We believe that it will provide the readers, especially research students who are
entering the field of resource-constrained synthesis of hardware from high-level
specifications, with a perspective and guide them into creating their own research
agenda in related fields.

We are particularly indebted to Bluespec Inc. for their financial support in car-
rying out this research work [105–111] between 2005 and 2007, including multiple
summer internships for the first author. A part of this research was also supported by
a National Science Foundation PECASE award and a CRCD grant. We also received
personal attention and help from Arvind, Rishiyur Nikhil, Joe Stoy, Jacob Schwartz,
and others at Bluespec Inc. Sumit Ahuja at the FERMAT lab of Virginia Tech has
been particularly helpful by providing many suggestions in power estimation and

Preface xvii

power reduction techniques. Finally, this work was the basis of the Ph.D. disserta-
tion [103] of the first author, and this Ph.D. work was carried out at Virginia Tech’s
Electrical and Computer Engineering Department. We are indebted to Virginia Tech
for all the facilities.

Austin, TX Gaurav Singh
Blacksburg, VA Sandeep K. Shukla
March 2010

Acknowledgments

We acknowledge the support received from Bluespec Inc., NSF PECASE, and NSF-
CRCD grants, which provided funding for the work reported in this book.

xix

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 High-Level Synthesis . 2

1.2.1 CDFG-Based High-Level Synthesis . 3
1.2.2 Esterel-Based High-Level Synthesis . 5
1.2.3 CAOS-Based High-Level Synthesis . 5

1.3 Low-Power Hardware Designs . 6
1.3.1 Power-Aware High-Level Synthesis . 7

1.4 Verification of Power-Optimized Hardware Designs 9
1.4.1 Verification Using CAOS . 9

1.5 Problems Addressed . 10
1.6 Organization . 11

2 Related Work . 13
2.1 High-Level Synthesis . 13

2.1.1 C-Based Languages and Tools . 13
2.1.2 Other Languages and Tools . 14

2.2 Low-Power High-Level Synthesis . 14
2.2.1 Dynamic Power Reduction . 14
2.2.2 Peak Power Reduction . 17
2.2.3 Summary – Low-Power High-Level Synthesis Work 18

2.3 Power Estimation Using High-Level Models 18
2.4 Verification of High-Level Models . 21

2.4.1 SpecC . 22
2.4.2 SystemC . 22
2.4.3 Other Work . 23
2.4.4 Summary – High-Level Verification Work 23

3 Background . 25
3.1 CDFG-Based High-Level Synthesis . 25
3.2 Concurrent Action-Oriented Specifications . 26

3.2.1 Concurrent Execution of Actions . 26

xxi

xxii Contents

3.2.2 Mutual Exclusion and Conflicts . 27
3.2.3 Hardware Synthesis . 27
3.2.4 Example . 28

3.3 Power Components . 29
3.3.1 Average Power . 29
3.3.2 Transient Characteristics of Power . 30
3.3.3 Low-Power High-Level Synthesis . 30

3.4 Complexity Analysis of Algorithms . 31
3.4.1 NP-Completeness . 31
3.4.2 Approximation Algorithm . 31

3.5 Formal Methods for Verification . 32
3.5.1 Model Checking . 33

4 Low-Power Problem Formalization . 35
4.1 Definitions . 35
4.2 Other Details . 38

4.2.1 Schedule of a Design . 38
4.2.2 Re-scheduling of Actions . 39
4.2.3 Cost of a Schedule . 39
4.2.4 Low-Power Goal . 40
4.2.5 Factorizing an Action . 40

4.3 Formalization of Low-Power Problems . 41
4.3.1 Peak Power Problem . 41
4.3.2 Dynamic Power Problem . 41
4.3.3 Peak Power Problem Is NP-Complete 42
4.3.4 Dynamic Power Problem Is NP-Complete 42

5 Heuristics for Power Savings . 45
5.1 Basic Heuristics . 46

5.1.1 Peak Power Reduction . 46
5.1.2 Dynamic Power Reduction . 48
5.1.3 Example Applications . 50

5.2 Refinements of Above Heuristics . 53
5.2.1 Re-scheduling of Actions . 53
5.2.2 Factorizing and Re-scheduling of Actions 57
5.2.3 Functional Equivalence . 59
5.2.4 Example Applications . 62

6 Complexity Analysis of Scheduling in CAOS-Based Synthesis 65
6.1 Related Background . 66

6.1.1 Confluent Set of Actions . 66
6.1.2 Peak Power Constraint . 66

6.2 Scheduling Problems Without a Peak Power Constraint 66
6.2.1 Selecting a Largest Non-conflicting Subset of Actions 66

Contents xxiii

6.2.2 Constructing Minimum Length Schedules 70
6.3 Scheduling Problems Involving a Power Constraint 72

6.3.1 Packing Actions in a Time Slot Under Peak Power
Constraint . 73

6.3.2 Maximizing Utility Subject to a Power Constraint 75
6.3.3 Combination of Makespan and Power Constraint 76
6.3.4 Approximation Algorithms for MM-PP 79
6.3.5 Approximation Algorithms for MPP-M 81

7 Dynamic Power Optimizations . 83
7.1 Related Background . 83

7.1.1 Clock-Gating of Registers . 83
7.1.2 Operand Isolation . 83

7.2 Clock-Gating of Registers . 84
7.3 Insertion of Gating Logic . 86

7.3.1 Other Versions of Algorithm 2 . 90
7.4 Experiment and Results . 91

7.4.1 Algorithm 1 . 91
7.4.2 Algorithm 2 . 93
7.4.3 RTL Power Estimation . 98

7.5 Summary . 100

8 Peak Power Optimizations . 103
8.1 Related Background . 104
8.2 Formalization of Peak Power Problem . 106
8.3 Peak Power Reduction Algorithm . 107

8.3.1 Handling Combinational Path Dependencies 108
8.4 Experiments and Results . 110

8.4.1 Designs . 110
8.4.2 Gate-Level Average Power and Peak Power

Comparisons . 111
8.4.3 Effects on Latency, Area, and Energy 111
8.4.4 RTL Activity Reduction . 112

8.5 Summary . 113
8.6 Issues Related to Proposed Algorithm . 113

9 Verifying Peak Power Optimizations Using SPIN Model Checker . . . 115
9.1 Related Background . 116
9.2 Formal Description of CAOS-Based High-Level Synthesis 118

9.2.1 Hardware Description . 118
9.2.2 Scheduling of Actions . 119

9.3 Correctness Requirements for CAOS Designs 122
9.3.1 AOA Semantics . 122
9.3.2 Concurrent Semantics . 122

xxiv Contents

9.3.3 Comparing Two Implementations . 123
9.4 Converting CAOS Model to PROMELA Model 124

9.4.1 Why SPIN?. 124
9.4.2 Generating PROMELA Variables and Processes 124
9.4.3 Adding Scheduling Information to PROMELA Model 124
9.4.4 Sample PROMELA Models . 126

9.5 Formal Verification Using SPIN . 128
9.5.1 Verifying Correctness Requirement 1 (CR-1) 128
9.5.2 Verifying Correctness Requirement 2 (CR-2) 128
9.5.3 Verifying Correctness Requirement 3 (CR-3) 129
9.5.4 Sample Experiments . 130

9.6 Summary . 131

10 Epilogue . 141

References . 145

Index . 151

List of Figures

1.1 High-level to gate-level design flow . 2
1.2 CAOS description of GCD design . 5
1.3 Power savings at various abstraction levels . 7
1.4 Book organization . 12
3.1 Synthesis from concurrent action-oriented specifications [10] 28
3.2 Circular pipeline specification of LPM module design using concurrent

actions . 28
4.1 LPM module design using concurrent actions . 36
5.1 List of the variables used in Algorithm 1 . 46
5.2 List of the sets/functions used in Algorithm 2 . 48
5.3 Packet processor design . 52
5.4 Schedule under no peak power constraints . 55
5.5 Schedule by applying Algorithm 3 under peak power constraints 56
5.6 Schedule using the factorization of actions under peak power

constraints . 59
5.7 Schedule under no peak power constraints (LPM design) 62
5.8 Schedule by applying Algorithm 3 when Ppeak = 4 (LPM design) 62
5.9 Schedule using the factorization of actions when Ppeak = 3

(LPM design) . 63
6.1 Steps of the heuristic for the special case of the MNS problem 68
6.2 Steps of the algorithm for the MNA-PP problem . 73
6.3 Steps of the first fit decreasing algorithm for the BIN PACKING

problem . 80
7.1 CAOS description of GCD design . 84
7.2 Expressions used in GCD design . 87
8.1 Vending machine design . 105
9.1 Language-containment relationships . 123
9.2 Algorithm for generating PROMELA model from CAOS-based

specification . 125
9.3 Algorithm for verifying correctness requirement 1 128
9.4 Algorithm for proof of language-containment . 129
9.5 Algorithm for generating set of variables of PROMELA model 132
9.6 Algorithm for generating set of processes of PROMELA model 133

xxv

xxvi List of Figures

9.7 Algorithm for generating process denoting start of hardware cycle in
PROMELA model . 134

9.8 Algorithm for modeling AOA execution semantics in PROMELA
model . 135

9.9 Algorithm for modeling concurrent execution semantics in PROMELA
model . 136

List of Tables

5.1 Combinations of the execution of actions and the associated power
consumption . 51

5.2 Combinations of the execution of actions and the associated power
consumption on applying Algorithm 1 when Ppeak = 5 units 52

7.1 Power savings using Algorithm 1 compared with Blast Create’s
results . 91

7.2 Area penalties using Algorithm 1 compared with Blast Create’s
results . 92

7.3 Power savings using Algorithm 1 compared with Power Compiler’s
results . 92

7.4 Area penalties using Algorithm 1 compared with Power Compiler’s
results . 92

7.5 Power savings using Algorithm 2 and its versions synthesized using
Blast Create . 94

7.6 Area penalties using Algorithm 2 and its versions synthesized using
Blast Create . 95

7.7 Power savings using Algorithm 2 and its versions synthesized using
Power Compiler . 96

7.8 Area penalties using Algorithm 2 and its versions synthesized using
Power Compiler . 97

7.9 RTL power savings using Algorithm 1 . 98
7.10 RTL power savings using Algorithm 2 and its versions 99
8.1 Gate-level power reductions . 111
8.2 Latency, area, and energy overheads of proposed Algorithm 112
8.3 Peak switching activity reductions at RTL . 112

xxvii

Acronyms

RTL Register Transfer Level
HLS High Level Synthesis
EDA Electronic Design Automation
HDL Hardware Description Language
CAOS Concurrent Action Oriented Specifications
CDFG Control Data-Flow Graph
HTG Hierarchical Task Graph
GCD Greatest Common Divisor
BSC Bluespec Compiler
BSV Bluespec System Verilog
LPM Longest Prefix Match
VM Vending Machine
LTL Linear-time Temporal Logic
TLA Temporal Logic of Actions
MCS Maximal Concurrent Schedule
ACS Alternative Concurrent Schedule
MNS Maximum Non-conflicting Subset
MIS Maximum Independent Set
MLS Minimum Length Schedule
FFD First Fit Decreasing
PTAS Polynomial Time Approximation Scheme
AES Advanced Encryption Standard
UC Upsize Converter

xxix

	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

