Skip to main content

Modeling Biochemical Pathways

  • Chapter
  • First Online:
  • 601 Accesses

Abstract

Sequence analysis methods predict macromolecule properties and intermolecular interactions. These data can be used to reconstruct molecular networks, which are complex systems that regulate cell functions. Systems biology uses mathematical modeling and computer-based numerical simulations in order to understand emergent properties of these systems. This chapter describes the approaches to define kinetic models to simulate biochemical pathways dynamics. It deals with three main steps: the definition of the system’s structure, the mathematical formulation to reproduce the time evolution and the parameter estimation to find the set of parameter values such that the model behavior fits the experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alfieri, R., Merelli, I., Mosca, E., Milanesi, L.: A data integration approach for cell cycle analysis oriented to model simulation in systems biology. BMC Syst Biol 1, 35 (2007). doi:10.1186/1752-0509-1-35. http://dx.doi.org/10.1186/1752-0509-1-35

  2. Back, T.: Evolution strategies: an alternative evolutionary algorithm. In: Artificial evolution, Lecture Notes in Computer Science, vol. 1063, pp. 3–20. Springer, Berlin (1995)

    Google Scholar 

  3. Balsa-Canto, E., Alonso, A.A., Banga, J.R.: Dynamic optimization of bioprocess: deterministic and stochastic strategies. In: Proceedings of ACoFop IV (1998)

    Google Scholar 

  4. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J Chem Phys 124(4), 044109 (2006). doi:10.1063/1.2159468. http://dx.doi.org/10.1063/1.2159468

    Google Scholar 

  5. Chalmers, D.J.: The re-emergence of emergence. In: Chap. Strong and weak emergence. Oxford University Press, London (2006)

    Google Scholar 

  6. Conrad, E.D., Tyson, J.J.: System modelling in cellular biology: from concepts to nuts and bolt. In: Chap. Modelling molecular interaction networks with nonlinear ordinary differential equations, pp. 97–125. MIT, MA (2006)

    Google Scholar 

  7. Corning, P.A.: Holistic Darwinism: synergy, cybernetics, and the bioeconomics of evolution. University of Chicago Press, IL (2005)

    Google Scholar 

  8. Dawkins, R.: Climbing mount improbable (1997)

    Google Scholar 

  9. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat Rev Neurosci 9(4), 292–303 (2008). doi:10.1038/nrn2258. http://dx.doi.org/10.1038/nrn2258

    Google Scholar 

  10. Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine intelligence, 3rd edn. Wiley, NY (2006)

    Google Scholar 

  11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25), 2340–2361 (1977). http://dx.doi.org/10.1021/j100540a008

    Google Scholar 

  12. Gillespie, D.T., Petzold, L.R.: System modeling in cellular biology, from concepts to nuts and bolts. In: Chap. Numerical simulation for biochemical kinetics, pp. 331–353. MIT, MA (2006)

    Google Scholar 

  13. Hoffmeister, F., Back, T.: Genetic algorithms and evolution strategies: similarities and differences. In: Lecture notes in computer science, vol. 496, pp. 455–469. Springer, Berlin (1991)

    Google Scholar 

  14. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Klamt, S., Stelling, J.: System modelling in cellular biology: from concepts to nuts and bolt. In: Chap. Stoichiometric and constraint-based modeling, pp. 73–96. MIT, MA (2006)

    Google Scholar 

  16. Leloup, J.C., Goldbeter, A.: Modeling the circadian clock: from molecular mechanism to physiological disorders. Bioessays 30(6), 590–600 (2008). doi:10.1002/bies.20762. http://dx.doi.org/10.1002/bies.20762

    Google Scholar 

  17. Liebermeister, W., Klipp, E.: Biochemical networks with uncertain parameters. In: Systems Biology, IEE Proceedings, vol. 152, pp. 97–107 (2005)

    Article  CAS  Google Scholar 

  18. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13(11), 2467–2474 (2003). doi:10.1101/gr.1262503. http://dx.doi.org/10.1101/gr.1262503

    Google Scholar 

  19. Mosca, E., Merelli, I., Alfieri, R., Milanesi, L.: A distributed approach for parameter estimation in systems biology models. Il Nuovo Cimento C 2, 165–168 (2009)

    Google Scholar 

  20. Novre, N.L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., Demir, E., Wegner, K., Aladjem, M.I., Wimalaratne, S.M., Bergman, F.T., Gauges, R., Ghazal, P., Kawaji, H., Li, L., Matsuoka, Y., Villger, A., Boyd, S.E., Calzone, L., Courtot, M., Dogrusoz, U., Freeman, T.C., Funahashi, A., Ghosh, S., Jouraku, A., Kim, S., Kolpakov, F., Luna, A., Sahle, S., Schmidt, E., Watterson, S., Wu, G., Goryanin, I., Kell, D.B., Sander, C., Sauro, H., Snoep, J.L., Kohn, K., Kitano, H.: The systems biology graphical notation. Nat Biotechnol 27(8), 735–741 (2009). doi:10.1038/nbt.1558. http://dx.doi.org/10.1038/nbt.1558

    Google Scholar 

  21. Runarsson, T.P., Yao, X.: Stochastic ranking for constrined evolutionary optimization. IEEE Trans Evol Optim 4(3), 284–294 (2000)

    Article  Google Scholar 

  22. Saravanan, N., Fogel, D.B., Nelson, K.M.: A comparison of methods for self-adaptation in evolutionary algorithms. Biosystems 36(2), 157–166 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Sole, R., Goodwin, B.: Signs of life. How complexity pervades biology. BasicBooks, NY (2000)

    Google Scholar 

  24. Stelling, J., Sauer, U., III, F.J.D., Doyle, J.: System modeling in cellular biology: from concepts to nuts and bolts. In: Chap. Complexity and robustenss of cellular network, pp. 19–41. MIT, MA (2006)

    Google Scholar 

  25. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2), 221–231 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Vera, J., Balsa-Canto, E., Wellstead, P., Banga, J.R., Wolkenhauer, O.: Power-law models of signal transduction pathways. Cell Signal 19(7), 1531–1541 (2007). doi:10.1016/j. cellsig.2007.01.029. http://dx.doi.org/10.1016/j.cellsig.2007.01.029

    Google Scholar 

  27. Westerhoff, H.V., Palsson, B.O.: The evolution of molecular biology into systems biology. Nat Biotechnol 22(10), 1249–1252 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NET2DRUG, MIUR-FIRB LITBIO (RBLA0332RH), ITALBIONET (RBPR05ZK2Z), BIOPOPGEN (RBIN064YAT) and CNR-BIOINFORMATICS initiatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Milanesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Mosca, E., Milanesi, L. (2011). Modeling Biochemical Pathways. In: Bruni, R. (eds) Mathematical Approaches to Polymer Sequence Analysis and Related Problems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6800-5_6

Download citation

Publish with us

Policies and ethics