
Auto Tuning Method for Deciding Block Size
Parameters in Dynamically Load-balanced BLAS

Yuta SAWA ⋆ and Reiji SUDA

Graduate School of Information Science and Technology, University of Tokyo
{y sawa,reiji}@is.s.u-tokyo.ac.jp

Abstract. High-performance routines of BLAS (Basic Linear Algebra
Subprograms) are constantly required in the field of numerical calcu-
lations. We have implemented DL-BLAS (Dynamically Load-balanced
BLAS) to enhance the performance of BLAS when other tasks use CPU
resources of multi-core CPU architectures. DL-BLAS tiles matrices into
submatrices to make subtasks and dynamically assigns tasks to CPU
cores. We found that the dimensions of submatrices used in DL-BLAS
affect the performance. To attain high-performance we have to solve an
optimization problem where variables are the dimensions of the sub-
matrices. The search space of the optimization problem is so vast that
exhaustive search is unrealistic. We propose an auto tuning search algo-
rithm which consists of Diagonal Search and Reductive Search. Our auto
tuning algorithm provides semi-optimal parameters in realistic comput-
ing time. Using our algorithm, we got parameters which gave us the best
performance in most of cases. As a result, DL-BLAS reached higher per-
formance than ATLAS and GotoBLAS in many performance evaluation
tests.

Key words: DL-BLAS, Diagonal Search, Reductive Search

1 Introduction

High-performance matrix-matrix multiplication routines are constantly required
in the field of numerical calculations. BLAS[1–5] provide de-facto standard in-
terfaces of basic operations of vectors and matrices, and the interfaces of matrix-
matrix multiplications in the BLAS are called Level 3 BLAS.

Because Level 3 BLAS routines consume the majority of computing time
in many applications, there are many researches about high-performance Level
3 BLAS using parallelization techniques. The past studies assumed that the
amount of machine resources was known before the calculation. Traditionally,
parallelized BLAS routines have required using the machine resources exclusively
to reach their highest performance.

These days, many multi-core personal computers appear, and we have many
occasions to run some other applications concurrently with BLAS. Under such
⋆ Now with Central Research Labolatory, Hitachi, Ltd. yuta.sawa.eh@hitachi.com

2 Yuta SAWA and Reiji SUDA

circumstances, the amount of machine resources available to BLAS changes dy-
namically, and it is difficult to know the exact amount of available resources
before the calculations.

We implemented DL-BLAS (Dynamically Load-balanced BLAS) to get higher
performance when there are some applications running concurrently with BLAS
[6, 7]. In DL-BLAS, there are parameters which mean dimensions of submatrices,
and the performance of DL-BLAS is affected by these parameters. So, a method
to get optimal parameters for DL-BLAS is needed. Here, it is a problem that
the search space is too vast to experiment with all the possible values of the
parameters. Also, the relations between the performance and the parameters are
not clear.

We propose an auto tuning algorithm that consists of Diagonal Search and
Reductive Search to search parameters which provide high-performance DL-
BLAS.

Diagonal Search is a heuristic algorithm which reduce the search space down
to a one-dimensional space while the original search space of our problem is a
two-dimensional space. Reductive Search is an algorithm which collects informa-
tion about good submatrix sizes for various matrix sizes. We applied these algo-
rithms to DL-BLAS parameters and experimental data, from which sub-optimal
submatrix sizes for arbitrary matrix sizes can be calculated, was collected in less
than half an hour, and the chosen parameters achieved the best performance in
most of cases.

The rest of this paper is organized as follows. We introduce BLAS routines in
the next section. In that section, we also explain the algorithm of DL-BLAS and
parameters of them. In section 3, we describe the algorithms of Diagonal Search
and Reductive Search. Section 4 presents the results of performance evaluation
tests of the search algorithms and DL-BLAS.

2 Background

In this section, we describe BLAS and DL-BLAS (Dynamically Load-balanced
BLAS). DL-BLAS is our previous work.

2.1 BLAS

BLAS are routines developed to separate basic linear algebra calculation routines
from the other parts of the calculations. The original purpose of the separation
was to improve reusability and readability of linear algebra calculation programs
and to decrease the frequency of appearance of bugs in the codes [2]. During the
last three decades, BLAS had been appreciated as efficient interfaces in addi-
tion to the original purpose because BLAS interfaces have much generality and
availability. Many famous linear algebra libraries such as LAPACK (Linear Al-
gebra PACKage) [8] and ARPACK (ARnordi PACKage) [9] call BLAS routines
internally.

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 3

From 1970’s, where the first BLAS appeared, so many studies about high-
performance BLAS implementations have been there. For instance, both Go-
toBLAS [10–12] and ATLAS [13, 14] are well known high-performance BLAS
routines.

GotoBLAS achieves more than 90% of theoretical peak performance on many
CPU architectures, and is known as the fastest BLAS implementation. Goto-
BLAS uses assembly level tuning.

ATLAS is a tuning tool to provide high-performance BLAS. There are many
candidates of BLAS implementations in ATLAS package and ATLAS automati-
cally select the fastest one from the candidates by calculating with many sample
matrices.

We propose parallel BLAS routines with dynamic load balancing features
using those packages as building-blocks.

2.2 DL-BLAS

Dynamic load balancing is seldom used for parallel BLAS because dense matrix
calculation times are easy to predict. In 1991, however, Dackland et al. [15]
suggested dynamic load-balanced systems. They proposed to create twice as
many tasks as CPU cores for the load-balancing. Our implementation of DL-
BLAS is a more effective approach than Dackland et al.’s suggestion.

GEMM (GEneral Matrix-Matrix multiplication) routines are the most fre-
quently used routines in Level 3 BLAS. In this paper, we use only double-
precision real routine, known as DGEMM, to establish our routines. GEMM
can be written as the form C = αAB + βC, where A ∈ IRm×k, B ∈ IRk×n,
C ∈ IRm×n and α, β ∈ IR.

In DL-BLAS, matrices A, B and C are split to submatrices as follows:

A =


A11 A12 · · · A1κ

A21 A22 · · · A2κ

...
...

. . .
...

Aµ1 Aµ2 · · · Aµκ

 ,

B =


B11 B12 · · · B1ν

B21 B22 · · · B2ν

...
...

. . .
...

Bκ1 Bκ2 · · · Bκν

 , (1)

C =


C11 C12 · · · C1ν

C21 C22 · · · C2ν

...
...

. . .
...

Cµ1 Cµ2 · · · Cµν

 ,

where

Aij ∈ IRmb×kb (1 ≤ i < µ, 1 ≤ j ≤ κ),

4 Yuta SAWA and Reiji SUDA

Bij ∈ IRkb×nb (1 ≤ i < κ, 1 ≤ j ≤ ν), (2)
Cij ∈ IRmb×nb (1 ≤ i < µ, 1 ≤ j ≤ ν),

and

ν = ⌈n/nb⌉, µ = ⌈m/mb⌉, κ = ⌈k/kb⌉. (3)

Note that the dimensions of rightmost and bottommost submatrices, such
as Aiκ or Aνj , may be smaller than the dimension shown in (2). The user of
DL-BLAS is required to choose nb, mb and kb, and ν, µ, κ are determined from
them.

GEMM calculation C = αAB + βC is converted as:

Cij = βCij + α
κ∑

l=1

AilBlj (1 ≤ i ≤ µ, 1 ≤ j ≤ ν). (4)

We treat the calculation for each pair (i, j) shown in (4) as a task, as shown
in Algorithm 2.1. Note that GEMM routine is called in Algorithm 2.1, named
unit-task routine.

Algorithm 2.1 Unit-Task routine of BLAS Calculation
1: Cij = βCij + αAi1B1j (using GEMM routine)
2: for l in 2 to κ do
3: Cij = Cil + αAilBlj (using GEMM routine)
4: end for

We used ATLAS as GEMM in the experiments, because ATLAS can be com-
piled on many CPU architecture machines, and it provides good performances.

DL-BLAS uses unit-task routines to parallelize the GEMM calculationss by
assigning tasks to CPU cores dynamically. The whole algorithm of the GEMM
of DL-BLAS is shown in Algorithm 2.2.

GEMM-based BLAS [16, 17] uses a similar approach. In GEMM-based BLAS,
GEMM routines are called from other Level 3 BLAS routines to exploit high
performance of GEMM routines in other Level 3 BLAS routines. In GEMM-
based BLAS, other Level 3 BLAS routines reaches the performance close to that
of GEMM routines. But dynamic load balancing is not employed in GEMM-
based BLAS.

2.3 Motivation of the research

We show the relations between the dimensions of submatrices (nb = mb and kb)
and the performance of DL-BLAS on Intel Core 2 Extreme QX9650 architecture.
We calculated matrix multiplication of size m = n = k = 1000 with DL-BLAS.
When we used the parameters nb = mb = 159 and kb = 165, the performance of

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 5

Algorithm 2.2 GEMM of DL-BLAS
1: now = 0
2: tasknum = µν
3: do parallel
4: lock()
5: t = now
6: now = now + 1
7: unlock()
8: if t ≥ tasknum
9: break

10: end if
11: i = now/µ
12: j = now − i ∗ µ
13: Cij = αCij +

∑κ

l=1
βAilBlj (use Unit-Task routine shown in Algorithm 2.1)

14: end do while true

DL-BLAS was about 21.5 GFLOPS which was minimum performance. On the
other hand, using the parameters nb = mb = 224 and kb = 168, the performance
of DL-BLAS was about 37.0 GFLOPS which was maximum performance.

This difference of the performances is large. Also, the parameters which pro-
vide peak performance may not be the same if the CPU architecture and sizes
of argument matrices are different.

The sizes of argument matrices n, m and k are given in runtime. We want
to get good parameters nb, mb and kb for given n, m and k without much cost.

3 Method

In this section, first we analyze the relations between performance and the num-
bers of tasks and processors.

After that, we show auto tuning algorithms of Diagonal Search and Reduc-
tive Search. These algorithms are executed once at the installation and collect
information for the runtime parameter selection from experiments. Last, we show
an algorithm of runtime parameter selection, which determines the parameters
of DL-BLAS referring to the information collected by Diagonal Search and Re-
ductive Research.

3.1 Parallel Efficiency

Even if we use dynamic load-balancing in DL-BLAS, we will not always have
complete load balance. The degree of load imbalances depends on the numbers
of cores available to DL-BLAS and tasks created by DL-BLAS. Specifically, if
there are a smaller number of tasks, the load imbalance tends to be worse. From
this point of view, a larger number of tasks seem better, but it is not the case.
A larger number of tasks in DL-BLAS imply smaller submatrices, which would

6 Yuta SAWA and Reiji SUDA

degrade the performance of each task. There is a trade-off between load balance
and performance of submatrix calculations.

We propose to solve this trade-off in the following way. A lower bound of the
number of tasks is chosen to keep the load imbalance in a certain degree, and
choose the sizes of the submatrices to maximize the performance of submatrix
calculations and to generate subtasks no less than the lower bound.

We have formulated the degree of load imbalances as the followings. We let
the number of processors on a machine be p ≥ 1, and the number of tasks be
t > 0, where p and t are integers.

At first, we define h(t, p) as the ratio of calculation time with a single pro-
cessor to that with p processors for t tasks. Assume that it takes a unit time for
any processor to process a task. Then a single processor takes t units of time to
process t tasks. When t tasks are distributed among p processors, at least one
processor must process ⌈t/p⌉ tasks. Thus we have the following equation:

h(t, p) = t/⌈t/p⌉. (5)

As the next step, we define h′(t, p) as follows:

h′(t, p) =
t/p

⌈t/p⌉
. (6)

Because h′(t, p) is nearly equals to h(t, p)/p, h′(t, p) is considered to express the
ratio of performance between ideally parallelized case and actual case approxi-
mately. We call the value h′(t, p) as parallel efficiency.

Using the equation (6) we prove the following theorem:

Theorem 1. For every 1 ≤ i ≤ p and s ≥ t, h′(s, i) ≥ 1 − p−1
t+p−1 .

To prove this theorem, we use the following lemma:

Lemma 1. For every p, ph′(t, p) is maximum at t ≡ 0 (mod p) and local mini-
mum at t ≡ 1 (mod p).

Proof. Clearly, ph′(t, p) takes its maximum value p at t ≡ 0 (mod p). In other
cases, ⌈t/p⌉ = ⌈(t + 1)/p⌉. So, following statement is true:

ph′(t + 1, p) =
t + 1

⌈(t + 1)/p⌉
=

t + 1
⌈t/p⌉

>
t

⌈t/p⌉
= ph′(t, p). (7)

⊓⊔

Using Lemma 1, we can prove the Theorem 1 as follows.

Proof. We have following inequality expression:

h′(t, p) =
t/p

⌈t/p⌉
≥ t/p

(t−1)
p + 1

=
t

t + p − 1
= 1 − p − 1

t + p − 1
. (8)

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 7

Letting r(t, p) be p−1
t+p−1 , the following statements are true:

r(t, p) − r(s, p) =
p − 1

t + p + 1
− p − 1

s + p + 1

=
(p − 1)(s − t)

(t + p + 1)(s + p + 1)
≥ 0, (9)

and

r(s, p) − r(s, i) =
(p − 1)(s + i − 1) − (i − 1)(s + p − 1)

(s + p − 1)(s + i − 1)

=
s(p − i)

(s + p − 1)(s + i − 1)
≥ 0. (10)

Considering the equations (9) and (10), r(t, p) is larger than r(s, i). Thus
1 − r(t, p) ≤ 1 − r(s, i), and the Theorem have been proven.

⊓⊔

For example, when s ≥ 16 and i ≤ 4, h′(s, i) ≥ 16/19 ≃ 0.842. It means
that when we have less than or equals to 4 processors and we have more than
or equals to 16 tasks, the parallel efficiency is greater than 84%.

So in the following subsections, we will discuss how to find the submatrix size
parameters that gives DL-BLAS high performance under the restriction that 16
or more tasks are generated.

3.2 Diagonal Search

In the sections 3.2 and 3.3, we describe our algorithms to collect performance
information at the installation of DL-BLAS. Exhaustive search requires too much
time. Thus we propose a set of efficient approximate search algorithms, Diagonal
Search and Reductive Search.

In the experiments in this paper, we have an assumption that there are 4
physical CPU cores in each CPU, and we create more than 16 tasks for each
performance evaluation test. So, the parallel efficiency is greater than 84% in
each performance evaluation test.

As first, we will show a heuristics algorithm to get the efficient parameters
(nb, kb) for a given set of matrix sizes (m,n, k). This algorithm is called as
Diagonal Search in this paper.

Diagonal Search takes 5 arguments, n, m, k, smin and smax. The new variables
smin and smax mean the range of search space of nb and kb. In other words, nb

and kb are searched from the following range:

smin ≤ nb ≤ smax, smin ≤ kb ≤ smax. (11)

The algorithm of Diagonal Search is shown in Algorithm 3.1. In this al-
gorithm, a function ”benchmark-with” is called. This function calculates BLAS
problem as a benchmark, and returns FLOPS value of the calculation. DL-BLAS

8 Yuta SAWA and Reiji SUDA

Algorithm 3.1 Diagonal Search
1: (n, m, k, smin, smax) = input
2: vmax = 0, imax = 0
3: for i in smin to smax do
4: v = benchmark-with(n, m, k, nb = i, kb = i)
5: if v > vmax then
6: v = vmax, i = imax

7: end if
8: end for
9: n′

b = imax, k′
b = imax

10: for j in smin to smax do
11: v = benchmark-with(n, m, k, nb = imax, kb = j)
12: if v > vmax then
13: v = vmax, n′

b = imax, k′
b = j

14: end if
15: v = benchmark-with(n, m, k, nb = j, kb = imax)
16: if v > vmax then
17: v = vmax, n′

b = j, k′
b = imax

18: end if
19: end for
20: return (n′

b, k
′
b)

calculates BLAS problem in the function ”benchmark-with”. The first to third
arguments of the function ”benchmark-with” are matrix sizes of benchmark
problem, and fourth and fifth arguments are block sizes used in DL-BLAS.

This algorithm need only to calculate 3(smax − smin) benchmarks, though
the exhaustive calculation needs (smax − smin)2 calculations. When the value
(smax − smin) is larger than 100, the number of function call of ”benchmark-
with” in exhaustive search is more than 30 times than that in Diagonal Search.

3.3 Reductive Search

The range (smin, smax) must be decided to call Diagonal Search. Also, we have
to select a set of matrix sizes (m, n, k) for Diagonal Search, because we cannot
execute Diagonal Search for all possible combinations of m, n and k.

Reductive Search is given as Algorithm 3.2. We use (smin, smax) = (150, 250)
and γ = 4.

Reductive Search begins its experiments with calling Diagonal Search with
(n,m, k) = (1000, 1000, 1000) and (smin, smax) = (150, 250). This choice comes
from our observation that the performance of ATLAS is similar for DGEMM with
(n,m, k) = (1000, 1000, 1000) and larger matrices. The value γ = 4 (or smax =
250) is chosen so that there are at least 16 tasks. The optimum parameters
(nb, kb) found by Diagonal Search are stored in lists ln and lk.

In the following steps, Reductive Search choose (smin, smax) as (0.5nb, 0.9nb),
and n = m = k = γsmax, which is reduced into 0.9 times the previous size or less.

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 9

Diagonal Search is called with those arguments, and the optimum parameters
(nb, kb) are added to the list.

The iteration of Reductive Search terminates when the dynamic load balanc-
ing of ”benchmark-with” function takes longer time than a serial execution by
a single thread. Here, we assume there is no other tasks running concurrently
with Reductive Search.

Algorithm 3.2 Reductive Search
1: (smin, smax) = input
2: ln = new list()
3: lk = new list()
4: repeat
5: m = γsmax, n = γsmax, k = γsmax

6: (nb, kb) = Diagonal Search(m, n, k, smin, smax)
7: addF irst(ln, nb)
8: addF irst(lk, kb)
9: (smin, smax) = (0.5nb, 0.9nb)

10: until benchmark-with(m, n, k, nb, kb) > single-thread-benchmark-with(m, n, k)
11: return (ln, lk)

3.4 Parameter Selection

Algorithm 3.3 shows Parameter Selection, which determines the parameters
(nb, kb) from the matrix size (n,m, k) whenever DL-BLAS is called. We have
gotten list of parameters. When we calculate BLAS problems, we choose only
one set of parameters (nb, kb) in the routines as fast as possible. The algorithm
to choose the parameters is shown in Algorithm 3.3.

We used the value LIMIT = 16 to have more than 16 tasks, which let the
parallel efficiency be greater than 84%.

Algorithm 3.3 Parameter Selection
1: for i = 0 to sizeof(ln) − 2 do
2: nb = ln(i)
3: kb = lk(i)
4: TaskNum = ⌈n/nb⌉⌈m/nb⌉
5: if TaskNum ≥ LIMIT then
6: return (nb, kb)
7: end if
8: end for
9: return (ln(sizeof(ln) − 1), lm(sizeof(ln) − 1))

There are less than 10 floating point operations in each loop calculation, and
the length of the list was less than 20 in our experiments. When we calculate

10 Yuta SAWA and Reiji SUDA

BLAS problem n = 10,m = 10, k = 10, we need about 2000 of floating point
operations. So, this calculation is thought not to be large overhead.

4 Experiments

4.1 Enviroinments

The list of the CPU architectures used in the following experiments is shown in
Table 1.

CPU vendor CPU CPU Clock OS

Intel Core 2 Extreme QX9650 3 GHz Fedora 8

AMD Phenom 9600 2.3 GHz Fedora 8

Intel Core i7 365 (Hyper-Threading on) 3.2 GHz Ubuntu

Intel Core i7 365 (Hyper-Threading off) 3.2 GHz Ubuntu

AMD PhenomII X4 940 3 GHz Fedora 8

Table 1. Used Machine Environments

All the CPU architectures shown in Table 1 have implementation of Goto-
BLAS. ATLAS also can be compiled on all the CPU architectures above. The
installation time of ATLAS was about 2-3 hours in all the CPU architectures
shown above.

Intel Core i7 can be used with Hyper-Threading option, which provide si-
multaneous multi-threading mode. With this option, Intel Core i7 processor can
handle 8 logical processors while only 4 processors are physically present.

The theoritical peak performance of each architecture shown above can be
calculated by the following formula:

theoretical-peak-performance = 16CPU-Clock. (12)

4.2 Performance of Diagonal Search

In this section, we show the results of the Diagonal Search. In the following
experiments, we calculated DGEMM problem with the matrix sizes n = 1000,
m = 1000 and k = 1000 and all the parameters in the range 150 ≤ nb, kb ≤ 250.
We compare the results of the full search and Diagonal Search.

In all the experiments shown above, the results of exhaustive search and that
of Diagonal Search are the same.

When we search parameters exhaustively, a few hours were needed, while
Diagonal Search need less than 10 minutes in each computer. Also, the combi-
national algorithm of Diagonal Search and Reductive Search need less than 30
minutes in each computer. ATLAS requires more than an hour when we install
ATLAS to the computers. So, we claim that the cost of Diagonal Search and
Reductive Search can be allowed.

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 11

CPU Architecture Exhaustive Search Performance Diagonal Search

Core2 Extreme 37.0 GFLOPS 37.0 GFLOPS

Core i7 Hyper-Thread 34.4 GFLOPS 34.4 GFLOPS

Core i7 36.1 GFLOPS 36.1 GFLOPS

Phenom 17.1 GFLOPS 17.1 GFLOPS

Phenom II 34.8 GFLOPS 34.8 GFLOPS
Table 2. Comparison of Diagonal Search and Exhaustive Search

4.3 Analysis and Discussion of Diagonal Search

In this section, we analyze the reason why Diagonal Search found the same
parameters as the exhaustive search. In an exhaustive search, we calculated a
problem m = n = k = 1000 with the parameters 150 ≤ nb, kb ≤ 250. The rela-
tions between the performance and the parameters are different in each CPU.
We show results in two CPU architectures as examples. The two CPU architec-
tures are Intel Core 2 Extreme and AMD Phenom. Figures 1 and 3 are results
of the exhaustive search.

37GFLOPS

30GFLOPS

n

k

b

b

250150
150

250

Fig. 1. Exhaustive Search Performance on Intel Core 2 Extreme

 26

 38

 20 38
 26

 38

 20 38p(i, i)

p(ｊ, i) max

p(i, i)

ｊ p(i, j) max
j

Fig. 2. Relations between p(i, i), maxj p(i, j) and maxj p(j, i) on Intel Core 2 Extreme

We define p(nb, kb) as p(nb, kb) = benchmark-with(1000, 1000, 1000, nb, kb),
where ”benchmark-with” is a function used in Algorithm 3.1. The first step
of Diagonal Search calculates p(i, i) for each smin ≤ i ≤ smax in Line 3-8 of
Algorithm 3.1. The next step calculates p(imax, j) and p(j, imax) in Line 10-19.

So, if the value of maxj p(i, j) or maxj p(j, i) is large when p(i, i) is large,
Diagonal Search get high-performance. Figures 2 and 4 show the relations be-
tween p(i, i), maxj p(i, j) and maxj p(j, i). Two graphs in Figure 2 and left graph

12 Yuta SAWA and Reiji SUDA

17GFLOPS

10GFLOPS

n

k

b

b

250150
150

250

Fig. 3. Exhaustive Search Performance on AMD Phenom

 10

 18

 9 18
 10

 18

 9 18p(i, i)

p(ｊ, i) max

p(i, i)

ｊ p(i, j) max
j

Fig. 4. Relations between p(i, i), maxj p(i, j) and maxj p(j, i) on AMD Phenom

in Figure 4 show positive correlations. These positive correlations let Diagonal
Search work well.

4.4 Performance Evaluation Tests

In this section, we show the results of the performance evaluation tests. In the
tests, we calculate square matrix multiplication 1 <= m = n = k <= 2000.
We compare the performances of DL-BLAS, GotoBLAS and ATLAS. The pa-
rameters nb and kb in DL-BLAS are tuned by Diagonal Search and Reductive
Search.

The tests are executed in two different circumstances, no other task and
busy loop running. No other task means that there are not any tasks are
running other than the test (benchmark) program, and BLAS routines can use
machine resources exclusively. Busy loop running means that BLAS routines run
sharing the machine resources with another process that executes an empty loop
infinitely.

The results of the tests are shown in Figures 5-9.
We have gotten four remarkable observations from the graphs above.
At first, while the performance of GotoBLAS is fastest with no other tasks,

that is low and unstable in busy loop running. So, if we run BLAS routines with
other applications concurrently, using GotoBLAS is not a good choice.

Second, ATLAS is slower than DL-BLAS in with no other tasks on Intel Core
2 Extreme and AMD Phenom. On the other CPU architectures, the performance
of ATLAS is almost the same to DL-BLAS.

Third, DL-BLAS is faster than ATLAS with busy loop running on the CPU
architectures except Intel Core i7.

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 13

square matrix dimensionsquare matrix dimension

no other tasks busy loop running

 0

 45

 0 2000
 0

 45

 0 2000

G
F

LO
P

S

G
F

LO
P

S

GotoBLAS

ATLAS

DL-BLAS

GotoBLAS

ATLAS

DL-BLAS

Fig. 5. Square matrix multiplication performance on Intel Core 2 Extreme

 0

 50

 0 2000
 0

 50

 0 2000square matrix dimensionsquare matrix dimension

no other tasks busy loop running

G
F

LO
P

S

G
F

LO
P

S

GotoBLAS

ATLAS

DL-BLAS
DL-BLAS

ATLAS

GotoBLAS

Fig. 6. Square matrix multiplication performance on Intel Core i7

 0

 50

 0 2000
 0

 50

 0 2000square matrix dimensionsquare matrix dimension

no other tasks busy loop running

G
F

LO
P

S

G
F

LO
P

S

GotoBLAS

ATLAS
DL-BLAS

DL-BLAS

ATLAS

GotoBLAS

Fig. 7. Square matrix multiplication performance on Intel Core i7 with Hyper-
Threading

 0

 35

 0 2000
 0

 35

 0 2000square matrix dimensionsquare matrix dimension

no other tasks busy loop running

G
F

LO
P

S

G
F

LO
P

S

GotoBLAS

ATLAS

DL-BLAS

GotoBLAS

ATLAS
DL-BLAS

Fig. 8. Square matrix multiplication performance on AMD Phenom

14 Yuta SAWA and Reiji SUDA

 0

 50

 0 2000
 0

 50

 0 2000square matrix dimensionsquare matrix dimension

no other tasks busy loop running

G
F

LO
P

S

G
F

LO
P

S

GotoBLAS

ATLAS

DL-BLAS

DL-BLAS

ATLAS

GotoBLAS

Fig. 9. Square matrix multiplication performance on AMD Phenom2

At last, ATLAS is faster than DL-BLAS with busy loop running on Intel
Core i7 when the problem is m = n = k < 1000. ATLAS used only less than 4
CPU cores when m = n = k < 1000, and thus allowed execution of busy loop
without degrading its own performance.

5 Conclusion

DL-BLAS is an implementation of high-performance BLAS routine for the en-
vironments where other tasks are running concurrently. DL-BLAS needs sophis-
ticated method of selecting sizes of submatrices as parameters, which affect the
performance.

In this paper, we proposed an auto tuning algorithm which consists of Diag-
onal Search and Reductive Search. The two algorithms create several candidates
for the parameters of DL-BLAS, and DL-BLAS select one from the candidates.
The calculation time of the algorithms is shorter than the installation time of
ATLAS.

Using the parameters gotten by the auto tuning algorithm, we have evaluated
the performance of DL-BLAS. As performance evaluation tests, we solved square
matrix multiplication problems. On many CPUs the performance of DL-BLAS
was at least in the same range as that of ATLAS when no other tasks are running
concurrently. In the experiments with busy loop running, the performance of DL-
BLAS was better than GotoBLAS.

In this research, our trial problems are square matrix multiplications (n =
m = k) and we calculate DGEMM routine. As future works, we will evaluate
DL-BLAS in different trial problems, for example, rectangle (not square) matrix
multiplications, single precision calculations, complex calculations, symmetric
matrix multiplication routines etc.

Acknowledgement

This research was partially supported by New IT Infrastructure for the information-
explosion Era of MEXT Grant-in-Aid for Scientific Research on Priority Areas,
and also by 4th IJARC Blue Sky program of Microsoft Corporation.

Auto Tuning Method for Deciding Block Size Parameters in DL-BLAS 15

References

1. Basic Linear Algebra Subprograms (BLAS) Technical Forum Standard: BLAS
(Basic Linear Algebra Subprograms). http://www.netlib.org/blas/ (January 26
2009)

2. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic Linear Algebra
Subprograms for Fortran Usage. ACM Transactions on Mathmatical Software 5
(1979) 308–323

3. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An extended set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathematical
Software 14(1) (March 1988) 1–17

4. Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.: A set of level 3 Basic Linear
Algebra Subprograms. ACM Transactions on Mathematical Software 16(1) (March
1990) 1–17

5. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C.: An updated set of Basic Linear Algebra Subprograms (BLAS).
ACM Transactions on Mathematical Software 28(2) (June 2002) 135–151

6. Sawa, Y., Suda, R.: BLAS parallelization for binary distrubution for multi-core
processors (In Japanese). JSIAM Annualy meeting 2008 425–426

7. Sawa, Y.: Adaptive Parallelization of BLAS for Multi-Tasking Environment. Mas-
ter Thesis, Department of Computer Science, Graduate School of Information Sci-
ence and Technology, University of Tokyo (February 2009)

8. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide. Third edn. Society for Industrial and Applied Mathematics, Philadel-
phia, PA (1999)

9. Lehoucq, R., Maschhoff, K., Sorensen, D., Yang, C.: ARPACK - Arnoldi Package.
http://www.caam.rice.edu/software/ARPACK/ (January 26 2009)

10. Goto, K.: GotoBLAS. http://www.tacc.utexas.edu/resources/software/ (January
26 2009)

11. Goto, K., van de Geijn, R.: High-performance implementation of the level-3 blas.
ACM Trans. Math. Softw. 35(1) (2008) 1–14

12. Goto, K., van de Geijn, R.: Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software 34(3) (2008)

13. Whaley, R.C., Petitet, A.: Automatically Tuned Linear Algebra Software (AT-
LAS). http://math-atlas.sourceforge.net/ (January 26 2009)

14. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Experience 35(2)
(February 2005) 101–121

15. Dackland, K., Elmroth, E., Kagstrom, B., Loan, C.V.: Design and evaluation of
parallel block algorithms: Lu factorization on an ibm 3090 vf/600j, PPSC (1991)
3–10

16. Kagstrom, B., Ling, P., van Loan, C.: GEMM-Basd Level3 BLAS. ACM Transac-
tions on Mathematical Software (TOMS) (1998) 288–302

17. Kagstrom, B., Ling, P., van Loan, C.: GEMM Based BLAS. http://
www.netlib.org/blas/gemm based/ (January 26 2009)

