
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

DIPARTIMENTO DI TECNOLOGIE DELL’INFORMAZIONE

DOTTORATO DI RICERCA IN INFORMATICA (INF/01 INFORMATICA)

SCUOLA DI DOTTORATO IN INFORMATICA, XXI CICLO

Preserving Privacy in Data Outsourcing

tesi di dottorato di ricerca di

Sara Foresti

relatore

Prof. Pierangela Samarati

correlatore

Prof. Sabrina De Capitani di Vimercati

direttore della scuola di dottorato

Prof. Ernesto Damiani

Anno Accademico 2007/08

Abstract

The increasing availability of large collections of personal information as well as of data storage fa-
cilities for supporting data-intensive services, support the view that service providers will be more
and more requested to be responsible for the storage and the efficient and reliable dissemination
of information, thus realizing a “data outsourcing” architecture. Within a data outsourcing archi-
tecture data are stored together with application front-ends at the sites of an external server who
takes full charges of their management. While publishing data on external servers may increase
service availability, reducing data owners’ burden of managing data, data outsourcing introduces
new privacy and security concerns since the server storing the data may be honest-but-curious. A
honest-but-curious server honestly manages the data but may not be trusted by the data owner
to read their content. To ensure adequate privacy protection, a traditional solution consists in
encrypting the outsourced data, thus preventing outside attacks as well as infiltration from the
server itself. Such traditional solutions have however the disadvantage of reducing query execu-
tion efficiency and of preventing selective information release. This introduces then the need to
develop new models and methods for the definition and enforcement of access control and privacy
restrictions on outsourced data while ensuring an efficient query execution.

In this thesis, we present a comprehensive approach for protecting sensitive information when
it is stored on systems that are not under the data owner’s control. There are mainly three security
requirements that need to be considered when designing a system for ensuring confidentiality of
data stored and managed by a honest-but-curious server. The first requirement is access control
enforcement to limit the ability of authorized users to access system’s resources. In traditional
contexts, a trusted module of the data management system is in charge of enforcing the access
control policy. In the considered scenario, the service provider is not trusted for enforcing the access
control policy and the data owner is not willing to mediate access requests to filter query results.
We therefore propose a new access control system, based on selective encryption, that does not
require the presence of a trusted module in the system for the enforcement of the policy. The second
requirement is privacy protection to limit the visibility of stored/published data to non authorized

II

users while minimizing the adoption of encryption. Data collections often contain personally
identifiable information that needs to be protected both at storage and when disseminated to other
parties. As an example, medical data cannot be stored or published along with the identity of the
patients they refer to. To guarantee privacy protection and to limit the use of encryption, in this
thesis we first propose a solution for modeling in a simple while powerful way privacy requirements
through confidentiality constraints, which are defined as sets of data whose joint visibility must
be prevented. We then propose a mechanism for the enforcement of confidentiality constraints
based on the combined use of fragmentation and encryption techniques: associations broken by
fragmentation will be visible only to those users who are authorized to know the associations
themselves. The third requirement is safe data integration to limit the ability of authorized users
to exchange data for distributed query evaluation. As a matter of fact, often different sources
storing the personal information of users need to collaborate to achieve a common goal. However,
such data integration and sharing may be subject to confidentiality constraints, since different
parties may be allowed to access different portions of the data. We therefore propose both a model
for conveniently representing data exchange constraints and a mechanism for their enforcement
during the distributed query evaluation process.

In this thesis, we address all these three security requirements by defining a model and a
mechanism for enforcing access control on outsourced data; by introducing a fragmentation and
encryption approach for enforcing privacy constraints; and by designing a technique for regulating
data flows among different parties. The main contributions can be summarized as follows.

◦ With respect to the access control enforcement on outsourced data, the original results are:
the combined use of selective encryption and key derivation strategies for access control en-
forcement; the introduction of a notion of minimality of an encryption policy to correctly
enforce an access control policy without reducing the efficiency in key derivation; the develop-
ment of a heuristic approach for computing a minimal encryption policy in polynomial time;
the introduction of a two-layer encryption model for the management of policy updates.

◦ With respect to the definition of a model for enforcing privacy protection, the original re-
sults are: the definition of confidentiality constraints as a simple while complete method
for modeling privacy requirements; the introduction of the notion of minimal fragmentation
that captures the property of a fragmentation to satisfy the confidentiality constraints while
minimizing the number of fragments; the development of an efficient approach for computing
a minimal fragmentation, which is a NP-hard problem; the introduction of three notions
of local optimality, based on the structure of the fragments composing the solution, on the
affinity of the attributes in the fragments, and on a query evaluation cost model, respectively;
the proposal of three different approaches for computing fragmentations satisfying the three
definitions of optimality.

◦ With respect to the design of a safe data integration mechanism, the original results are:
the definition of permissions as a simple while complete method for modeling data exchange
limitations; the modeling of both permissions and queries as relation profiles and their repre-
sentation through a graph-based model; the introduction of an approach for the composition
of permissions working in polynomial time; the definition of a method that takes data ex-
change restrictions into account while designing a query execution plan.

Acknowledgements

I would like to use the occasion of this thesis to thank all the people who helped me in reaching
this important goal.

First of all, I would like to sincerely thank my advisor, Pierangela Samarati. It has been an
honor for me to be one of her Ph.D. students. I would like to express her all my gratitude for
introducing me to scientific research and for her constant support, guidance, and help over the
years, which made my Ph.D. experience productive and stimulating.

I would like to thank Sabrina De Capitani di Vimercati: for her answers to all my questions
(even to senseless ones), for her precious advices, and for her optimism in any situation that helped
me to win my usual negativity.

I would like to thank Valentina Ciriani, Sabrina De Capitani di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati for the manifold profitable discussions and support
on the various aspects of the work presented in this thesis.

I would like to thank Vijay Atluri, Carlo Blundo, Sushil Jajodia, and Javier Lopez, the referees
of this thesis, for having dedicated their precious time in reviewing the thesis and for contributing,
with their valuable comments, to the improvement of the quality of the results presented here.

Last, but not least, I would like to thank my family. All the pages of this thesis would not be
sufficient to express my gratitude to them: their teaching, their support, and their love have been,
and will always be, a fundamental reference point for achieving any result.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of the thesis . 3

1.2.1 Access control enforcement . 4
1.2.2 Privacy protection . 5
1.2.3 Safe data integration . 5

1.3 Organization of the thesis . 6

2 Related work 9
2.1 Introduction . 9

2.1.1 Chapter outline . 10
2.2 Basic scenario and data organization . 10

2.2.1 Parties involved . 11
2.2.2 Data organization . 11
2.2.3 Interactions . 13

2.3 Querying encrypted data . 14
2.3.1 Bucket-based approach . 15
2.3.2 Hash-based approach . 16
2.3.3 B+ tree approach . 17
2.3.4 Order preserving encryption approaches . 19
2.3.5 Other approaches . 20

2.4 Evaluation of inference exposure . 21
2.5 Integrity of outsourced data . 23
2.6 Privacy protection of databases . 24
2.7 Access control enforcement in the outsourcing scenario 25

VI Contents

2.8 Safe data integration . 26
2.9 Chapter summary . 27

3 Selective encryption to enforce access control 29
3.1 Introduction . 29

3.1.1 Chapter outline . 31
3.2 Relational model . 31

3.2.1 Basic concepts and notation . 31
3.3 Access control and encryption policies . 32

3.3.1 Access control policy . 32
3.3.2 Encryption policy . 33
3.3.3 Token management . 36

3.4 Minimal encryption policy . 38
3.4.1 Vertices and edges selection . 41
3.4.2 Vertices factorization . 43

3.5 A2E algorithm . 43
3.5.1 Correctness and complexity . 49

3.6 Policy updates . 53
3.6.1 Grant and revoke . 53
3.6.2 Correctness . 57

3.7 Two-layer encryption for policy outsourcing . 59
3.7.1 Two-layer encryption . 60

3.8 Policy updates in two-layer encryption . 63
3.8.1 Over-encrypt . 63
3.8.2 Grant and revoke . 64
3.8.3 Correctness . 68

3.9 Protection evaluation . 69
3.9.1 Exposure risk: Full SEL . 70
3.9.2 Exposure risk: Delta SEL . 72
3.9.3 Design considerations . 73

3.10 Experimental results . 73
3.11 Chapter summary . 76

4 Combining fragmentation and encryption to protect data privacy 77
4.1 Introduction . 77

4.1.1 Chapter outline . 79
4.2 Confidentiality constraints . 79
4.3 Fragmentation and encryption for constraint satisfaction 81
4.4 Minimal fragmentation . 83

4.4.1 Correctness . 83
4.4.2 Maximal visibility . 84
4.4.3 Minimum number of fragments . 84
4.4.4 Fragmentation lattice . 85

4.5 A complete search approach to minimal fragmentation 87
4.5.1 Computing a minimal fragmentation . 89
4.5.2 Correctness and complexity . 91

Contents VII

4.6 A heuristic approach to minimize fragmentation . 92
4.6.1 Computing a vector-minimal fragmentation 92
4.6.2 Correctness and complexity . 94

4.7 Taking attribute affinity into account . 96
4.8 A heuristic approach to maximize affinity . 99

4.8.1 Computing a vector-minimal fragmentation with the affinity matrix 100
4.8.2 Correctness and complexity . 102

4.9 Query cost model . 104
4.10 A heuristic approach to minimize query cost execution 107

4.10.1 Computing a vector-minimal fragmentation with the cost function 108
4.10.2 Correctness and complexity . 110

4.11 Query execution . 111
4.12 Indexes . 114
4.13 Experimental results . 117
4.14 Chapter summary . 121

5 Distributed query processing under safely composed permissions 123
5.1 Introduction . 123

5.1.1 Chapter outline . 124
5.2 Preliminary concepts . 125

5.2.1 Data model . 125
5.2.2 Distributed query execution . 126

5.3 Security model . 128
5.3.1 Permissions . 128
5.3.2 Relation profiles . 130

5.4 Graph-based model . 131
5.5 Authorized views . 136

5.5.1 Authorizing permissions . 136
5.5.2 Composition of permissions . 137
5.5.3 Algorithm . 141

5.6 Safe query planning . 144
5.6.1 Third party involvement . 146

5.7 Build a safe query plan . 149
5.8 Chapter summary . 154

6 Conclusions 155
6.1 Summary of the contributions . 155
6.2 Future work . 156

6.2.1 Access control enforcement . 156
6.2.2 Privacy protection . 157
6.2.3 Safe data integration . 157

6.3 Closing remarks . 158

Bibliography 159

A Publications 167

List of Figures

2.1 DAS scenario . 11
2.2 An example of plaintext (a) and encrypted (b) relation 13
2.3 An example of bucketization . 15
2.4 An example of B+ tree indexing structure . 18
2.5 Indexing methods supporting queries . 21

3.1 An example of access matrix (a) and authorization policy graph (b) 33
3.2 An example of encryption policy graph . 35
3.3 Catalog for the encryption policy represented in Figure 3.2 37
3.4 Key derivation process . 38
3.5 An example of encryption policy graph over {A,B,C,D} 39
3.6 Algorithm for computing an encryption policy E equivalent to A 44
3.7 Procedure for covering material vertices and removing redundant edges 45
3.8 Procedure for factorizing the common ancestors between vertices 46
3.9 Procedure for creating an encryption policy . 47
3.10 An example of algorithm execution . 48
3.11 Procedure for granting or revoking permission 〈u, o〉 54
3.12 Function that inserts a new vertex representing U 54
3.13 Procedure for deleting vertex v . 55
3.14 Procedure for updating the encryption policy . 56
3.15 Examples of grant and revoke operations . 57
3.16 An example of BEL and SEL combination (Delta SEL and Full SEL) 61
3.17 Procedures for granting and revoking permission 〈u,o〉 65
3.18 An example of grant operation . 66
3.19 An example of revoke operation . 67
3.20 Possible views on object o . 70

X List of Figures

3.21 View transitions in the Full SEL . 71
3.22 From locked to sel locked views . 71
3.23 View transitions in the Delta SEL . 72
3.24 Number of tokens for the DBLP scenario . 74
3.25 Number of tokens for the championship scenario 75

4.1 An example of plaintext relation (a) and its well defined constraints (b) 80
4.2 An example of physical fragments for the relation in Figure 4.1(a) 82
4.3 Algorithm that correctly fragments R . 83
4.4 An example of fragmentation lattice . 86
4.5 A fragmentation tree for the fragmentation lattice in Figure 4.4 87
4.6 Function that performs a complete search . 89
4.7 An example of the execution of function Fragment in Figure 4.6 90
4.8 Function that finds a vector-minimal fragmentation 93
4.9 An example of the execution of function Fragment in Figure 4.8 95
4.10 An example of affinity matrix . 97
4.11 Graphical representation of the working of the function in Figure 4.12 99
4.12 Function that finds a vector-minimal fragmentation with maximal affinity 100
4.13 An example of the execution of function Fragment in Figure 4.12 101
4.14 Depiction of the search spaces . 107
4.15 Function that finds a vector-minimal fragmentation with minimal cost 109
4.16 An example of the execution of function Fragment in Figure 4.15 110
4.17 Interactions among users and server storing the fragments 112
4.18 An example of query translation over a fragment 113
4.19 Adversary knowledge (a,b) and choices for indexed fragments (c,d,e) 115
4.20 Computational time of the algorithms . 118
4.21 Number of fragments of the solution produced by the algorithms 118
4.22 Affinity of the solution produced by the algorithms 119
4.23 Cost of the solution produced by the algorithms . 120
4.24 Cost of the solution with indexes . 120

5.1 An example of relations, referential integrity constraints, and joins 125
5.2 An example of query tree plan . 127
5.3 Examples of permissions . 129
5.4 Profiles resulting from operations . 131
5.5 Schema graph for the relations in Figure 5.1 . 132
5.6 Function for coloring a view graph . 133
5.7 Examples of permissions and their view graphs . 134
5.8 Examples of queries, their relation profiles, and their view graphs 135
5.9 Function composing two permissions . 138
5.10 Examples of permission compositions . 140
5.11 Function that checks if a release is authorized . 142
5.12 An example of the execution of function Authorized 143
5.13 Execution of operations and required views with corresponding profiles 145
5.14 Different strategies for executing join operation - with third party 148
5.15 An example of servers’ permissions . 149

List of Figures XI

5.16 Algorithm computing a safe assignment for a query plan 149
5.17 Function that determines the set of safe candidates for nodes in T 150
5.18 Function that chooses one candidate for each node in T 151
5.19 Function that evaluates the intervention of a third party for join operations 152
5.20 An example of execution of the algorithm in Figure 5.16 153

1

Introduction

The amount of data stored, processed, and exchanged by private companies and public organiza-
tions is rapidly increasing. As a consequence, users are today, with increasing frequency, resorting
to service providers for disseminating and sharing resources they want to make available to others.
The protection against privacy violations is becoming therefore one of the most important issues
that must be addressed in such an open and collaborative context.

In this thesis, we define a comprehensive approach for protecting sensitive information when it
is stored on systems that are not under the data owner’s direct control. In the remainder of this
chapter, we give the motivation and the outline of this thesis.

1.1 Motivation

The rapid evolution of storage, processing, and communication technologies is changing the tradi-
tional information system architecture adopted by both private companies and public organizations.
This change is necessary for mainly two reasons. First, the amount of information held by organi-
zations is increasing very quickly thanks to the growing storage capacity and computational power
of modern devices. Second, the data collected by organizations contain sensitive information (e.g.,
identifying information, financial data, health diagnosis) whose confidentiality must be preserved.

Systems storing and managing these data collections should be secure both from external
users breaking the system and from malicious insiders. However, the design, realization, and
management of a secure system able to grant the confidentiality of sensitive data might be very
expensive. Due to the growing costs of in-house storage and management of large collections of
sensitive data, since it demands for both storage capacity and skilled administrative personnel,
data outsourcing and dissemination services have recently seen considerable growth and promise
to become a common component of the future Web, as testifies by the growing success of Web
companies offering storage and distribution services (e.g., MySpace, Flickr, and YouTube). The
main consequence of this trend is that companies often store their data on external honest-but-
curious servers, which are relied upon for ensuring availability of data and for enforcing the basic
security control on the data they store. While trustworthy with respect to their services in making

2 1. Introduction

published information available, these external systems are however trusted neither to access the
content nor to fully enforce access control policy and privacy protection requirements.

It is then clear that users as well as the companies would find an interesting opportunity in
the use of a dissemination service offering strong guarantees about the protection of user privacy
against both malicious users breaking into the system and the service provider itself. Indeed,
besides well-known risks of confidentiality and privacy breaks, threats to outsourced data include
improper use of information: the service provider could use substantial parts of a collection of data
gathered and organized by the data owner, potentially harming the data owner’s market for any
product or service that incorporates that collection of information.

There are mainly three security aspects that need to be considered when designing a system
for ensuring confidentiality of data stored and managed by a honest-but-curious server, as briefly
outlined in the following.

◦ Access control enforcement. Traditional architectures assign a crucial role to the reference
monitor [7] for access control enforcement. The reference monitor is the system component
responsible of the validation of access requests. The scenario considered in this thesis how-
ever challenges one of the basic tenets of traditional architectures, where a trusted server is
in charge of defining and enforcing access control policies. This assumption no longer holds
here, because the server does not even have to know the access defined (and possibly mod-
ified) by the data owner. We therefore need to rethink the notion of access control in open
environments, where honest-but-curious servers are in charge of managing the data collection
and are not trusted with respect to the data confidentiality.

◦ Privacy protection. The vast amounts of data collected and maintained by organizations of-
ten include sensitive personally identifiable information. This trend has raised the attention
of both individuals and legislators, which are forcing organizations to provide privacy guar-
antees over sensitive information when storing, processing or sharing it with others. Indeed,
recent regulations [22, 78] explicitly require specific categories of sensitive information to
be either encrypted or kept separate from other personally identifiable information to grant
confidentiality. Since encryption makes access to stored data inefficient, because it is not
possible to directly evaluate queries on encrypted data, it is necessary to define new solutions
that grant data confidentiality and efficient query evaluation.

◦ Safe data integration. More and more emerging scenarios require different parties, each
withholding large amounts of independently managed information, to cooperate for sharing
their information. Since the data collection detained by each subject contains sensitive
information, classical distributed query evaluation mechanisms cannot be adopted [23, 64].
We therefore need an approach for regulating data flows among parties and for redefining
query evaluation mechanisms to the aim of fulfilling access control restrictions imposed by
each party. Indeed, data flows among the cooperating parties may be prohibited by privacy
constraints, thus making the design of query execution depending on both efficiency principles
and privacy constraints.

There are many real-life examples of applications need a mechanism to exchange and disclose
data in a selective and secure way. We outline here three possible scenarios.

1.2. Contribution of the thesis 3

Multimedia sharing systems. The amount of multimedia data people collect every day is
quickly increasing. As a consequence, systems offering storage and distribution services for pho-
tographs and videos are becoming more and more popular. However, these data may be sensitive
(e.g., photographs retracting people) and their wide diffusion on the Internet should be prevented
if not explicitly authorized by the data owner. Since the distribution service may not be trusted
with respect to data confidentiality, it cannot enforce the access control policy defined by the data
owner. Therefore, it is necessary to think to an alternative solution to prevent sensitive data
publication.

Healthcare system. More and more healthcare systems collect sensitive information about
historical and present hospitalizations, diagnosis, and more in general health conditions of patients.
Since these data, associated with the identity of patients, are sensitive, their storage, management,
and distribution is subject to both state-level and international regulations. As a consequence,
any healthcare system should adopt an adequate privacy protection system, which guarantees, for
example, that sensitive information is never stored together with patients’ identity.

Recently, the functionalities of healthcare systems have been extended, thanks also to the
evolution and wide diffusion of network communication technologies, to allow data exchange among
cooperating parties, such as medical personnel, pharmacies, insurance companies, and the patients
themselves. Even if this solution improves the quality of the service offered to patients, it however
needs to be carefully designed to avoid non authorized data disclosure. It is therefore necessary to
define a data integration protocol that guarantees data confidentiality.

Financial system. Financial systems store sensitive information that needs to be adequately
protected. As an example, the data collected by companies for credit card payments are sensitive
and need protection both when stored and managed (e.g., credit card numbers and the correspond-
ing security codes cannot be stored together), as demanded by law. Furthermore, thanks also to
the wide diffusion of online transactions, the amount of financial data that systems need to man-
age and protect is increasing very quickly. Financial systems, as well as healthcare systems, need
also to cooperate with other parties, managing independent data collections, such as governmental
offices, credit card companies, and clients.

From the above description, it is straightforward to see that the security problems envisioned
for healthcare systems apply also to the financial scenario, which demands for the same solutions
and technologies for guaranteeing data confidentiality in data storage and exchange.

1.2 Contribution of the thesis

The thesis provides an analysis of the main problems arising when the data owner does not directly
control her data, since they are manager and/or stored by a honest-but-curious server. The contri-
butions of this thesis focus on the three security aspects above-mentioned, that is, access control
enforcement, privacy protection, and safe data integration. In the remainder of this section, we
present the contributions in more details.

4 1. Introduction

1.2.1 Access control enforcement

The first important contribution of this thesis is the proposal of a model for access control enforce-
ment on encrypted, possibly outsourced, data [41, 42]. The original contribution of our work can
be summarized as follows.

Selective encryption. An access control system protecting data stored by a honest-but-curious
system cannot rely on a trusted component (i.e., the reference monitor) that evaluates clients’
requests. Since the data owner cannot act as an intermediary for data accesses, the access control
policy should be embedded in the stored data themselves. Preliminary solutions try to overcome
this issue proposing a novel access control model and architecture that eliminates the need for
a reference monitor and relies on cryptography to ensure confidentiality of the data stored on
the server. New solutions instead propose to combine authorization policy and encryption, thus
allowing access control enforcement to be delegated together with the data. The great advantage
is that the data owner, while specifying the policy, does not need to be involved in its enforcement.
The access control system illustrated in this thesis exploits this same idea: different portions of the
data are encrypted using different encryption keys, which are then distributed to users according
to their access privileges. The model proposed in this thesis differs from previous ones since it
exploits key derivation methods [8, 31] to limit the number of secret keys that users and the data
owner herself need to securely manage. Key derivation methods allow the derivation of a secret
key from another key by exploiting a piece of publicly available information. This solution allows
us to reduce the amount of sensitive information that users and owners have to protect against
third parties.

Efficient access to data. Since key derivation requires a search process in the catalog of publicly
available information and the evaluation of a function, the key derivation process may become
expensive from the client’s point of view. In fact, the public catalog is stored at the provider’s site
and therefore any search operation implies a communication between the client and the server. To
limit the burden due to the key derivation process, in this thesis we propose a solution that tries to
minimize the size of the public catalog. Since such a minimization problem is NP-hard , we present
a heuristic solution that experimentally obtains good results.

Policy updates. Since access control enforcement bases on selective encryption, any time the
policy changes, it is necessary for the data owner to re-encrypt the data to reflect the new policy.
However, the re-encryption process is expensive from the data owner’s point of view, since it
requires interaction with the remote server. To reduce the burden due to this data exchange process,
we propose a two-layer encryption model where a inner layer is imposed by the owner for providing
initial protection and an outer layer is imposed by the server to reflect policy modifications. The
combination of the two layers provides an efficient and robust solution, which avoids data re-
encryption while correctly managing policy updates.

Collusion model. An important aspect that should always be taken into account when designing
a security system is its protection degree. To this purpose, we analyzed the security of the two-
layer model with respect to the risk of collusion among the parties interacting in the considered
scenario. In particular, we consider the case when the server, knowing the encryption keys adopted

1.2. Contribution of the thesis 5

at the outer layer, and a user, knowing a subset of the keys adopted at the inner layer, collude to
gain information that none of them is authorized to access. From this analysis, it is clear that the
proposed model introduces a low collusion risk, which can be further reduced at the cost of a less
efficient query evaluation process.

1.2.2 Privacy protection

The second contribution we present in this thesis is a system that nicely combines fragmentation
and encryption for privacy purposes [28]. The original contribution of our work can be summarized
as follows.

Confidentiality constraints. The release, storage, and management of data is nowadays sub-
ject to a number of rules, imposed by either legislators or data owners, aimed at preserving the
privacy of sensitive information. Since not all the data in a collection are sensitive per se, but
their association with other information may need to be protected, solutions encrypting the whole
data may be an overdo. Therefore, recently solutions combining fragmentation and encryption
have been proposed [2]. In this thesis, we propose a simple while expressive model for representing
privacy requirements, called confidentiality constraints that exploits fragmentation and encryption
for enforcing such constraints. A confidentiality constraint is a set of attributes whose joint visi-
bility should be prevented; a singleton constraint indicates that the values of the single attribute
need to be kept private. This model, while simple, nicely captures different privacy requirements
that need to be enforced on a data collection (e.g., sensitive data and sensitive associations).

Minimality. The main goal of the approach proposed in this thesis is to minimize the use of
encryption for privacy protection. A trivial solution for solving confidentiality constraints consists
in creating a fragment for each attribute that does not appear in a singleton constraint. Obviously
such a solution is not desiderated, unless demanded by constraints, since it makes query evaluation
inefficient. Indeed, since fragments cannot be joined by non authorized users, the client posing
the query would be in charge of combining the data extracted from the different fragments. To
avoid such a situation, we propose three different models for designing a fragmentation that, while
granting privacy protection, maximizes query evaluation efficiency. The three solutions differ in the
efficiency measure proposed (i.e., number of fragments, affinity among attributes, query workload).

Query evaluation. Data fragmentation is usually transparent to the final user, meaning that
queries are formulated on the original schema and then they are reformulated to operate on frag-
ments. Since, as already noted, encryption and fragmentation reduce the efficiency in data retrieval,
we propose to add indexes to fragments. Indexes are defined on attributes that do not appear in
clear form in the fragment. Also, since indexes may open the door to inference and linking attacks,
we carefully analyze the exposure risk due to different indexing methods, considering the external
knowledge of a possible malicious user.

1.2.3 Safe data integration

The third and last contribution we present in this thesis is a solution for the integration of data
from different data sources, which must be subject to confidentiality constraints [43, 44]. The
original contribution coming from our work can be summarized as follows.

6 1. Introduction

Access control model. We present a simple, yet powerful, approach for the specification and en-
forcement of permissions regulating data release among data holders collaborating in a distributed
computation, to ensure that query processing discloses only data whose release has been explicitly
authorized. The model is based on the concept of profile, which nicely models both the information
carried by the result of a query, and the information whose release is authorized by permissions.
To easily evaluate when a data release is allowed by the permissions of the requesting subject, we
propose a graph based model. Profiles are then represented by adequately coloring the graph. The
process of controlling if a query must be denied or allowed is then based on the comparison of
the colors of vertices and edges in the graphs representing the query and the permissions in the
system.

Permission composition. The amount of data that need to be integrated is potentially large
and therefore it is not possible to check queries against single permissions, since the number of
permissions to be explicitly defined would increase quickly. We then introduce the principle that
a query must be allowed if the information release it (directly or indirectly) entails is allowed
by the permissions. In other words, if the subject formulating the query is able to compute
its result by combining information she is allowed to access, then the query should be allowed.
To enforce this basic principle, we propose a permission composition method, which is based on
reachability properties on the graphs representing the profiles of the permissions. The composition
method proposed has the great advantage of working in polynomial time, even if the number of
possible composed permissions is exponential in the number of base permissions. This is due to a
nice dominance property, which we prove in this thesis, between composed permissions and their
components.

Safe query planning. Besides defining and composing permissions, it is necessary to evaluate if
a query operating in the distributed scenario can be executed (i.e., the query is safe) or if the query
must be denied. To this purpose, we characterize the flows of information among the interacting
subjects for the evaluation of the given query, considering also different methods for executing join
operations between distinct data sources. A query is therefore safe if all the data flows it requires
for its evaluation are allowed by the set of (composed) permissions characterizing the system. We
present an algorithm that given a query checks if the query can be evaluated without violating
the set of permissions regulating the distributed system. If the query can be safely executed, the
algorithm we propose also determines which server is in charge for executing which operation.

1.3 Organization of the thesis

In this chapter, we discussed the motivation and the main objectives of our work and described
the major contributions of this thesis. The remaining chapters are structured as follows.

Chapter 2 discusses the state of the art of the security aspects related to the objectives of the
thesis. It presents the main results obtained in the data outsourcing scenario, focusing on mecha-
nisms for query evaluation, inference exposure measurement, and data integrity. Also, it introduces
preliminary works on access control enforcement, privacy protection, and data integration in the
considered scenario.

1.3. Organization of the thesis 7

Chapter 3 illustrates our access control system for securing data stored at a honest-but-curious
server and proposes an efficient mechanism for managing access control policy updates. The risk
of collusion among parties is also analyzed to prove the security of the presented solution.

Chapter 4 addresses the problem of modeling and enforcing privacy requirements to protect
sensitive data and/or their associations. It also presents three cost models for computing an
optimal fragmentation, that is, a fragmentation that allows efficient query evaluation.

Chapter 5 focuses on the problem of integrating data made available from different parties and
that must satisfy security constraints. It proposes a model for expressing restrictions on data flows
among parties and a mechanism for querying distributed data collections under these constraints.

Chapter 6 summarizes the contributions of this thesis and outlines future work.

Appendix A reports a list of publications related to the work illustrated in this thesis.

2

Related work

This chapter discusses the related work in the area of data outsourcing, which is mainly focused on
efficient methods for querying encrypted data. We also present some approaches for evaluating the
inference exposure due to data publication, and solutions for granting data integrity. A few research
efforts have instead addressed the problem of developing access control systems for outsourced data
and for securely querying distributed databases.

2.1 Introduction

The amount of information held by organizations’ databases is increasing very quickly. To respond
to this demand, organizations can:

◦ add data storage and skilled administrative personnel (at a high rate);

◦ delegate database management to an external service provider (database outsourcing), a
solution becoming increasingly popular.

In the database outsourcing scenario, usually referred to as Database As a Service (DAS), the
external service provider provides mechanisms for clients to access the outsourced databases. A
major advantage of database outsourcing is related to the high costs of in-house versus outsourced
hosting. Outsourcing provides significant cost savings and promises higher availability and more
effective disaster protection than in-house operations. On the other hand, database outsourcing
poses a major security problem, due to the fact that the external service provider, which is relied
upon for ensuring high availability of the outsourced database (i.e., it is trustworthy), cannot
always be trusted with respect to the confidentiality of the database content.

Besides well-known risks of confidentiality and privacy breaks, threats to outsourced data in-
clude improper use of database information: the server could extract, resell, or commercially use
parts of a collection of data gathered and organized by the data owner, potentially harming the
data owner’s market for any product or service that incorporates that collection of information.

10 2. Related work

Traditional database access control techniques cannot prevent the server itself from making unau-
thorized access to the data stored in the database. Alternatively, to protect against “honest-but-
curious” servers, a protective layer of encryption can be wrapped around sensitive data, preventing
outside attacks as well as infiltration from the server itself [38]. This scenario raises many inter-
esting research challenges. First, data encryption introduces the problem of efficiently querying
outsourced encrypted data. Since confidentiality demands that data decryption must be possible
only at the client-side, techniques have then been proposed, enabling external servers to directly
execute queries on encrypted data. Typically, these solutions consist mainly in adding a piece
of information, called index , to the encrypted data. Indexes are computed based on the plain-
text data and preserve some of the original characteristics of the data to allow (partial) query
evaluation. However, since indexes carry some information about the original data, they may be
exploited as inference channels by malicious users or by the service provider itself. Second, since
data are not under the owner’s direct control, unauthorized modifications must be prevented to
the aim of granting data integrity. For this purpose, different solutions based on different signature
mechanisms have been proposed, with the main goal of improving verification efficiency. Third,
although index-based solutions represent an effective approach for querying encrypted data, they
introduce an overhead in query execution, due to both query formulation through indexes and
data decryption and filtering of query results. However, since often what is sensitive in a data
collection is the association among attributes more than the values assumed by each attribute per
se, new solutions based on the combination of fragmentation and encryption have been proposed
to reduce the usage of encryption and to therefore increase query execution efficiency. Fourth, an
interesting issue that has not been deeply studied in the data outsourcing scenario is represented
by the access control enforcement, which cannot be delegated to the service provider. Finally,
when the outsourced data are stored at different servers, new safe data integration mechanisms are
needed that should take into consideration the different data protection needs of the cooperating
servers.

2.1.1 Chapter outline

In this chapter, we survey the main proposals addressing the data access and security issues arising
in the data outsorcing scenario. The remainder of the chapter is organized as follows. Section 2.2
gives an overview of the entities involved in the data outsourcing scenario and of their typical inter-
actions. Section 2.3 describes the main indexing methods proposed in the literature for supporting
queries over encrypted data. Section 2.4 addresses inference exposure due to different indexing tech-
niques. Section 2.5 focuses on techniques granting data integrity. Section 2.6 describes solutions
efficiently combining fragmentation and encryption for granting privacy protection. Section 2.7
presents the main proposals for access control enforcement on outsourced encrypted data. Sec-
tion 2.8 illustrates problems and solutions for safe data integration in a distributed system. Finally,
Section 2.9 concludes the chapter.

2.2 Basic scenario and data organization

In this section, we describe the entities involved in the DAS scenario, how data are organized in
the outsourced database context, and the interactions among the entities in the system for query
evaluation.

2.2. Basic scenario and data organization 11

Translator

Encrypt

Decrypt

AC

Policy

R

Meta

Data

Meta

Data

Query

Executor

k

3) encrypted

result

2) transformed

query Q
s

1) original query Q

metadata

R
k

Client
 Server

User
 Data owner

Query

Engine

Q
c

Q
s

Query Processor

4) plaintext result

Figure 2.1 DAS scenario

2.2.1 Parties involved

There are four distinct entities interacting in the DAS scenario (Figure 2.1):

◦ a data owner (person or organization) produces and outsources resources to make them
available for controlled external release;

◦ a user (human entity) presents requests (queries) to the system;

◦ a client front-end transforms the queries posed by users into equivalent queries operating on
the encrypted data stored on the server;

◦ a server receives the encrypted data from one or more data owners and makes them available
for distribution to clients.

Clients and data owners, when outsourcing data, are assumed to trust the server to faithfully
maintain outsourced data. The server is then relied upon for the availability of outsourced data,
so the data owner and clients can access data whenever requested. However, the server (which can
be “honest-but-curious”) is not trusted with the confidentiality of the actual database content, as
outsourced data may contain sensitive information that the data owner wants to release only to
authorized users. Consequently, it is necessary to prevent the server from making unauthorized
accesses to the database. To this purpose, the data owner encrypts her data with a key known
only to trusted clients, and sends the encrypted database to the server for storage.

2.2.2 Data organization

A database can be encrypted according to different strategies. In principle, both symmetric and
asymmetric encryption can be used at different granularity levels. Symmetric encryption, being
cheaper than asymmetric encryption, is usually adopted. The granularity level at which database

12 2. Related work

encryption is performed can depend on the data that need to be accessed. Encryption can then
be at the finer grain of [55, 63]:

◦ relation: each relation in the plaintext database is represented through a single encrypted
value in the encrypted database; consequently, tuples and attributes are indistinguishable in
the released data, and cannot be specified in a query on the encrypted database;

◦ attribute: each column (attribute) in the plaintext relation is represented by a single en-
crypted value in the encrypted relation;

◦ tuple: each tuple in the plaintext relation is represented by a single encrypted value in the
encrypted relation;

◦ element: each cell in the plaintext relation is represented by a single encrypted value in the
encrypted relation.

Both relation level and attribute level encryption imply the communication to the requesting client
of the whole relation involved in a query, as it is not possible to extract any subset of the tuples
in the encrypted representation of the relation. On the other hand, encrypting at element level
would require an excessive workload for data owners and clients in encrypting/decrypting data. For
balancing client workload and query execution efficiency, most proposals assume that the database
is encrypted at tuple level.

While database encryption provides an adequate level of protection for data, it makes impossible
for the server to directly execute the users’ queries on the encrypted database. Upon receiving
a query, the server can only send to the requestor the encrypted relations involved in the query;
the client needs then to decrypt such relations and execute the query on them. To allow the
server to select a set of tuples to be returned in response to a query, a set of indexes can be
associated with the encrypted relation. In this case, the server stores an encrypted relation with
an index for each attribute on which conditions may need to be evaluated. For simplicity, we
assume the existence of an index for each attribute in each relation of the database. Different
kinds of indexes can be defined for the attributes in a relation, depending on the clauses and
conditions that need to be remotely evaluated. Given a plaintext database R, each relation ri over
schema Ri(ai1,ai2,. . .,ain) in R is mapped onto a relation rki over schema Rk

i (Counter, Etuple, Ii1 ,
Ii2 ,. . .,Iin) in the corresponding encrypted database Rk. Here, Counter is a numerical attribute
added as primary key of the encrypted relation; Etuple is the attribute containing the encrypted
tuple, whose value is obtained applying an encryption function Ek to the plaintext tuple, where k
is the secret key; and Iij is the index associated with the j-th attribute aij in Ri. While we assume
encrypted tuples and indexes to be in the same relation, we note that indexes can be stored in a
separate relation [35].

To illustrate, consider relation Employee in Figure 2.2(a). The corresponding encrypted relation
is shown in Figure 2.2(b), where index values are conventionally represented with Greek letters.
The encrypted relation has exactly the same number of tuples as the original relation. For the sake
of readability, the tuples in the encrypted relation are listed in the same order with which they
appear in the corresponding plaintext relation. The same happens for the order of indexes, which
are listed in the same order as the corresponding attributes are listed in the plaintext relation
schema. For security reasons, real-world systems do not preserve the order of attributes and tuples
and the correspondence between attributes and indexes is maintained by metadata relations that
only authorized parties can access [32].

2.2. Basic scenario and data organization 13

Employee

Emp-Id Name YoB Dept Salary

P01 Ann 1980 Production 10
R01 Bob 1975 R&D 15
F01 Bob 1985 Financial 10
P02 Carol 1980 Production 20
F02 Ann 1980 Financial 15
R02 David 1978 R&D 15

(a)

Employee
k

Counter Etuple I1 I2 I3 I4 I5

1 ite6Az*+8wc π α γ ε λ
2 8(Xznfeua4!= φ β δ θ λ
3 Q73gnew321*/ φ β γ µ λ
4 -1vs9e892s π α γ ε ρ
5 e32rfs4aS+@ π α γ µ λ
6 r43arg*5[) φ β δ θ λ

(b)

Figure 2.2 An example of plaintext (a) and encrypted (b) relation

2.2.3 Interactions

The introduction of indexes allows the partial evaluation of any query Q at the server-side, provided
it is previously translated in an equivalent query operating on the encrypted database. Figure 2.1
summarizes the most important steps necessary for the evaluation of a query submitted by a user.

1. The user submits her query Q referring to the schema of the plaintext database R, and passes
it to the client front-end. The user needs not to be aware that data have been outsourced to
a third party.

2. The client maps the user’s query onto: i) an equivalent query Qs, working on the encrypted
relations through indexes, and ii) an additional query Qc working on the results of Qs. Query
Qs is then passed on to the remote server. Note that the client is the unique entity in the
system that knows the structure of both R and Rk and that can translate the queries the
user may submit.

3. The remote server executes the received query Qs on the encrypted database and returns the
result (i.e., a set of encrypted tuples) to the client.

4. The client decrypts the tuples received and eventually discards spurious tuples (i.e., tuples
that do not satisfy the query submitted by the user). These spurious tuples are removed by
executing query Qc. The final plaintext result is then returned to the user.

Since a client may have limited storage and reduced computation capacity, one of the primary goals
of the query execution process is to minimize the workload at the client side, while maximizing
the operations that can be computed at the server side [36, 55, 57, 63].

14 2. Related work

Iyer et al. [55, 63] present a solution for minimizing the client workload that is based on a
graphical representation of queries as trees. Since the authors limit their analysis to select-from-
where queries, each query Q=“select A from R1,. . . ,Rn where C” can be reformulated as an
algebra expression of the form πA(σC(R1 ⊲⊳ . . . ⊲⊳ Rn)). Each query can then be represented as a
binary tree, where leaves correspond to relations R1,. . . ,Rn and internal nodes represent relational
operations, receiving as input the result produced by their children. The tree representing a query
is split in two parts: the lower part includes all operations that can be executed by the server, while
the upper part contains all operations that cannot be delegated to the server and that therefore
need to be executed by the client. In particular, since a query can be represented with different,
but equivalent, trees by simply pushing down selections and postponing projections, the basic idea
of the proposed solution is to determine a tree representation of the query, where the operations
that only the client can execute are in the highest levels of the tree. For instance, if there are
two anded conditions in the query and only one can be evaluated at the server-side, the selection
operation is split in such a way that one condition is evaluated server-side and the other client-side.

Hacigümüs et al. [57] show a method for splitting the query Qs to be executed on the encrypted
data into two sub-queries, Qs1 and Qs2, where Qs1 returns only tuples that belongs to the final
result, and query Qs2 may contain also spurious tuples. This distinction allows the execution of Qc

over the result of Qs2 only, while tuples returned by Qs1 can be immediately decrypted. To further
reduce the client’s workload, Damiani et al. [36] propose an architecture that minimizes storage
at the client and introduce the idea of selective decryption of Qs. With selective decryption, the
client decrypts the portion of the tuples needed for evaluating Qc, while complete decryption is
executed only for tuples that belong to the final result and that will be returned to the final user.
The approach is based on a block-cipher encryption algorithm, operating at tuple level, that allows
the detection of the blocks containing the attributes necessary to evaluate the conditions in Qc,
which are the only ones that need decryption.

It is important to note that the process of transforming Q in Qs and Qc greatly depends both
on the indexing method adopted and on the clauses and conditions composing query Q. There
are operations that need to be executed by the client, since the indexing method adopted does not
support the specific operations (e.g., range queries are not supported by all types of indexes) and
the server is not allowed to decrypt data. Also, there are operations that the server could execute
over the index, but that require a pre-computation that only the client can perform and therefore
must be postponed in Qc (e.g., the evaluation of a condition in the having clause, which needs a
grouping over an attribute, whose corresponding index has been created by using a method that
does not support the group by clause).

2.3 Querying encrypted data

When designing a solution for querying encrypted data, one of the most important goals is to
minimize the computation at the client-side and to reduce communication overhead. The server
therefore should be responsible for the majority of the work. Different indexing approaches allow
the execution of different types of queries at the server side.

We now describe in more detail the methods initially proposed to efficiently execute simple
queries at the server side, and we give an overview of more recent methods that improve the
server’s ability to query encrypted data.

2.3. Querying encrypted data 15

1970
 1980
 1990

10
 20
 30

Year of Birth

Salary

Figure 2.3 An example of bucketization

2.3.1 Bucket-based approach

Hacigümüs et al. [58] propose the first method to query encrypted data, which is based on the def-
inition of a number of buckets on the attribute domain. Let ri be a plaintext relation over schema
Ri(ai1,ai2,. . . ,ain) and rki be the corresponding encrypted relation over schema Rk

i (Counter,
Etuple,Ii1,. . . ,Iin). Considering an arbitrary plaintext attribute aij in Ri, with domain Dij , bucket-
based indexing methods partition Dij in a number of non-overlapping subsets of values, called
buckets, containing contiguous values. This process, called bucketization, usually generates buck-
ets that are all of the same size.

Each bucket is then associated with a unique value and the set of these values is the domain
for index Iij associated with aij . Given a plaintext tuple t in ri, the value of attribute aij for t
(i.e., t [aij]) belongs to only one bucket defined on Dij . The corresponding index value is then the
unique value associated with the bucket to which the plaintext value t[aij] belongs. It is important
to note that, for better preserving data secrecy, the domain of index Iij may not follow the same
order as the one of the plaintext attribute aij . Attributes I3 and I5 in Figure 2.2(b) are the
indexes obtained by applying the bucketization method defined in Figure 2.3 for attributes YoB

and Salary in Figure 2.2(a). Note that I3 values do not reflect the order of the domain values it
represents, since 1975 < 1985, while δ follows γ in lexicographic order.

Bucket-based indexing methods allow the server-side evaluation of equality conditions appearing
in the where clause, since these conditions can be mapped into equivalent conditions operating
on indexes. Given a plaintext condition of the form aij=v, where v is a constant value, the
corresponding condition operating on index Iij is Iij=β, where β is the value associated with
the bucket containing v. As an example, with reference to Figure 2.3, condition YoB=1985 is
transformed into I3=γ. Also, equality conditions involving attributes defined on the same domain
can be evaluated by the server, provided that attributes characterized by the same domain are
indexed using the same bucketization. In this case, a plaintext condition of the form aij=aik is
translated into condition Iij=Iik operating on indexes.

Bucket-based methods do not easily support range queries. Since the index domain does not
necessarily preserve the plaintext domain ordering, a range condition of the form aij≥v, where
v is a constant value, must be mapped into a series of equality conditions operating on index
Iij of the form Iij=β1 or Iij=β2 or . . .or Iij=βk, where β1, . . . , βk are the values associated
with buckets that correspond to plaintext values greater than or equal to v. For instance, with
reference to Figure 2.3, condition YoB>1977 must be translated into I3=γ or I3=δ, since both
values represent years greater than 1977.

Note that, since the same index value is associated with more than one plaintext value, queries
exploiting bucket-based indexes usually produce spurious tuples that need to be filtered out by

16 2. Related work

the client front-end. Spurious tuples are tuples that satisfy the condition over the indexes, but
that do not satisfy the original plaintext condition. For instance, with reference to the relations
in Figure 2.2, query “select * from Employee where YoB=1985” is translated into “select

Etuple from Employeek where I3=γ”. The result of the query executed by the server contains
tuples 1, 3, 4, and 5; however, only tuple 3 satisfies the original condition as written by the user.
Tuples 1, 4, and 5 are spurious and must be discarded by the client during the postprocessing of
the Qs result.

Hore et al. [61] propose an improvement to bucket-based indexing methods by introducing an
efficient way for partitioning the domain of attributes. Given an attribute and a query profile on
it, the authors present a method for building an efficient index, which tries to minimize the number
of spurious tuples in the result of both range and equality queries.

As we will see in Section 2.4, one of the main disadvantages of bucket-based indexing methods
is that they expose data to inference attacks.

2.3.2 Hash-based approach

Hash-based index methods are similar to bucket-based methods and are based on the concept of
one-way hash function [35].

Let ri be a plaintext relation over schema Ri(ai1,ai2,. . . ,ain) and rki be the corresponding
encrypted relation over schema Rk

i (Counter, Etuple,Ii1,. . . ,Iin). For each attribute aij in Ri to be
indexed, a one-way hash function h : Dij → Bij is defined, where Dij is the domain of aij and
Bij is the domain of index Iij associated with aij . Given a plaintext tuple t in ri, the index value
corresponding to attribute aij for t is computed by applying function h to the plaintext value t[aij].

An important property of any hash function h is its determinism; formally, ∀x, y ∈ Dij : x =
y ⇒ h(x) = h(y). Another interesting property of hash functions is that the codomain of h is
smaller than its domain, so there is the possibility of collisions; a collision happens when given two
values x, y ∈ Dij with x 6= y, we have that h(x) = h(y). A further property is that h must produce a
strong mixing, that is, given two distinct but near values x, y (| x−y |< ǫ) chosen randomly in Dij ,
the discrete probability distribution of the difference h(x)−h(y) is uniform (the results of the hash
function can be arbitrarily different, even for very similar input values). A consequence of strong
mixing is that the hash function does not preserve the domain order of the attribute on which it is
applied. As an example, consider the relations in Figure 2.2. Here, the indexes corresponding to
attributes Emp-Id, Name, and Dept in relation Employee are computed by applying a hash-based
method. The values of attribute Name have been mapped onto two distinct values, namely α and β;
the values of attribute Emp-Id have been mapped onto two distinct values, namely π and φ; and the
values of attribute Dept have been mapped onto three distinct values, namely ε, θ, and µ. Like for
bucket-based methods, hash-based methods allow an efficient evaluation of equality conditions of
the form aij=v, where v is a constant value. Each condition aij=v is transformed into a condition
Iij=h(v), where Iij is the index corresponding to aij in the encrypted relation. For instance,
condition Name=“Alice” is transformed into I2=α. Also, equality conditions involving attributes
defined on the same domain can be evaluated by the server, provided that these attributes are
indexed using the same hash function. The main drawback of hash-based methods is that they
do not support range queries, for which a solution similar to the one adopted for bucket-based
methods is not viable: colliding values are in general not contiguous in the plaintext domain.

If the hash function used for index definition is not collision free, then queries exploiting the
index produce spurious tuples that need to be filtered out by the client front-end. A collision-

2.3. Querying encrypted data 17

free hash function guarantees absence of spurious tuples, but may expose data to inference (see
Section 2.4). For instance, assuming that the hash function adopted for attribute Dept in Fig-
ure 2.2(a) is collision-free, condition Dept=“Financial” is translated into I4=µ, that will return
only the tuples (in our example, tuples with Counter equal to 3 and 5) that belong to the result
of the query that contains the corresponding plaintext condition.

2.3.3 B+ tree approach

Both bucket-based and hash-based indexing methods do not easily support range queries, since
both these solutions are not order preserving. Damiani et al. [35] propose an indexing method
that, while granting data privacy, preserves the order relationship characterizing the domain of
attribute aij . This indexing method exploits the traditional B+ tree data structure used by
relational DBMSs for physically indexing data. A B+ tree with fan out n is a tree where every
vertex can store up to n − 1 search key values and n pointers and, except for the root and leaf
vertices, has at least ⌈n/2⌉ children. Given an internal vertex storing f key values k1, . . . , kf with
f ≤ n− 1, each key value ki is followed by a pointer pi and k1 is preceded by a pointer p0. Pointer
p0 points to the subtree that contains keys with values lower than k1, pf points to the subtree
that contains keys with values greater than or equal to kf , and each pi points to the subtree that
contains keys with values included in the interval [ki, ki+1). Internal vertices do not directly refer
to tuples in the database, but just point to other vertices in the structure; on the contrary, leaf
vertices do not contain pointers, but directly refer to the tuples in the database having a specific
value for the indexed attribute. Leaf vertices are linked in a chain that allows the efficient execution
of range queries. As an example, Figure 2.4(a) represents the B+ tree index built for attribute
Name of relation Employee in Figure 2.2(a). To access a tuple with key value k, value k is first
searched in the root vertex of the B+ tree. The tree is then traversed by using the following
scheme: if k < k1, pointer p0 is chosen; if k ≥ kf , pointer pf is chosen, otherwise if ki ≤ k < ki+1,
pointer pi is chosen. The process continues until a leaf vertex has been examined. If k is not found
in any leaf vertex, the relation does not contain any tuple having, for the indexed attribute, value
k.

A B+ tree index can be usefully adopted for each attribute aij in the schema of relation Ri,
provided aij is defined over a partially ordered domain. The index is built by the data owner
over the plaintext values of the attribute, and then stored on the remote server, together with the
encrypted database. To this purpose, the B+ tree structure is translated into a specific relation with
the two attributes: Id , represents the vertex identifier; and VertexContent , represents the actual
vertex content. The relation has a row for each vertex in the tree and pointers are represented
through cross references from the vertex content to other vertex identifiers in the relation. For
instance, the B+ tree structure depicted in Figure 2.4(a) is represented in the encrypted database
by the relation in Figure 2.4(b). Since the relation representing the B+ tree contains sensitive
information (i.e., the plaintext values of the attribute on which the B+ tree is built) this relation
has to be protected by encrypting its content. To this purpose, encryption is applied at the level
of vertex (i.e., of tuple in the relation), to protect the order relationship among plaintext and
index values and the mapping between the two domains. The corresponding encrypted relation
has therefore two attributes: Id that represents, as before, the identifier of the vertex; and C
that contains the encrypted vertex. Figure 2.4(c) illustrates the encrypted B+ tree relation that
corresponds to the plaintext B+ tree relation in Figure 2.4(b).

The B+ tree based indexing method allows the evaluation of both equality and range conditions

18 2. Related work

Carol

Bob
 David

Ann
 Bob
 Carol
 David

(a)

Id VertexContent

1 2, Carol, 3
2 4, Bob, 5
3 6, David, 7
4 Ann, 5, 1, 5
5 Bob, 6, 2, 3
6 Carol, 7, 4
7 David, nil, 6

(b)

Id C

1 gtem945/*c
2 8dq59wq*d’

3 ue63/)¡Ã¨w
4 8/*5sym,p

5 mw3Â£9wio[
6 =wco21!ps
7 oieb5(p8*

(c)

Figure 2.4 An example of B+ tree indexing structure

appearing in the where clause. Moreover, being order preserving, it also allows the evaluation of
order by and group by clauses of SQL queries, and of most of the aggregate operators, directly
on the encrypted database. Given the plaintext condition aij≥v, where v is a constant value, it
is necessary to traverse the B+ tree stored on the server to find out the leaf vertex representing v
for correctly evaluating the considered condition. To this purpose, the client queries the B+ tree
relation to retrieve the root, which conventionally is the tuple t with t [Id]=1. It then decrypts
t [C], evaluates its content and, according to the search process above-mentioned, queries again the
remote server to retrieve the next vertex along the path to v . The search process continues until a
leaf vertex containing v is found (if any). The client then follows the chain of leaf vertices starting
from the retrieved leaf to extract all the tuples satisfying condition aij≥ v. For instance, consider
the B+ tree in Figure 2.4(a) defined for attribute Name in relation Employee in Figure 2.2(a). A
query asking for tuples where the value of attribute Name follows “Bob” in the lexicographic order
is evaluated as follows. First, the root is retrieved and evaluated: since “Bob” precedes “Carol”,
the first pointer is chosen and vertex 2 is evaluated. Since “Bob” is equal to the value in the vertex,
the second pointer is chosen and vertex 5 is evaluated. Vertex 5 is a leaf, and all tuples in vertices
5, 6, and 7 are returned to the final user.

It is important to note that B+ tree indexes do not produce spurious tuples when executing a
query, but the evaluation of conditions is much more expensive for the client with respect to bucket
and hash-based methods. For this reason, it may be advisable to combine the B+ tree method
with either hash-based or bucket-based indexing, and use the B+ tree index only for evaluating
conditions based on intervals. Compared with traditional B+ tree structures used in DBMSs, the
vertices in the indexing structure presented here do not have to be of the same size as a disk block;

2.3. Querying encrypted data 19

a cost model can then be used to optimize the number of children of a vertex, potentially producing
vertices with a large number of children and trees with limited depth. Finally, we note that since
the B+ tree content is encrypted, the method is secure against inference attacks (see Section 2.4).

2.3.4 Order preserving encryption approaches

To support equality and range queries over encrypted data without adopting B+ tree data struc-
tures, Agrawal et al. [4] present an Order Preserving Encryption Schema (OPES). An OPES
function has the advantage of flattening the frequency spectrum of index values, thanks to the
introduction of new buckets when needed. It is important to note here that queries executed over
this kind of indexes do not return spurious tuples. Also, OPES provides data secrecy only if the
intruder does not know the plaintext database or the domain of original attributes.

Order Preserving Encryption with Splitting and Scaling (OPESS) [96] is an evolution of OPES
that both supports range queries and does not suffer from inference problems. This indexing
method exploits the traditional B-tree data structure used by relational DBMSs for physically
indexing data. B-tree data structure is similar to B+ tree data structure, but internal vertices
directly refer to tuples in the database and leaves of the tree are not linked in a unique list.

An OPESS index can be usefully adopted for each attribute aij in the relation schema Ri,
provided aij is defined over a partially ordered domain. The index is built by the data owner
over the plaintext values of the attribute, and then stored on the remote server, together with
the encrypted database. Differently from B+ tree indexing structure, the B-tree data structure
exploited by OPESS is built on index values, and not on plaintext values. Therefore, before building
the B-tree structure to be remotely stored on the server, OPESS applies two techniques on the
original values of aij , called splitting and scaling , aimed at obtaining a flat frequency distribution
of index values.

Consider attribute aij defined on domain Dij and assume that the values {v1, . . . , vn} in the
considered relation ri have occurrences, in the order, equal to {f1, . . . , fn}. First, a splitting process
is performed on aij , producing a number of index values having almost a flat frequency distribution.
The splitting process applies to each value vh assumed by aij in ri. It determines three consecutive
positive integers, m − 1, m, and m + 1, such that the frequency fh of value vh can be expressed
as a linear combination of the computed values: fh = c1(m − 1) + c2(m) + c3(m + 1), where c1,
c2, and c3 are non negative integer values. The plaintext value vh can therefore be mapped into
c1 index values each with m + 1 occurrences, c2 index values each with m occurrences, and c3

index values each with m − 1 occurrences. To preserve the order of index values with respect to
the original domain of attribute aij , for any two values vh < vl and for any index values ih and
il associated with vh and vl respectively, we need to guarantee that ih < il. To this purpose, the
authors in [96] propose to exploit an order preserving encryption function. Specifically, for each
plaintext value vh, its index values are obtained by adding a randomly chosen string of low order
bits to a common string of high order bits computed as follows: veh = Ek(vh), where E is an order
preserving encryption function with key k.

Since splitting technique grants the sum of frequencies of indexes representing value v to be
exactly the same as the original frequency of v, an attacker who knows the frequency distribution of
plaintext domain values could exploit this property to break the indexing method adopted. Indeed,
the index values mapping a given plaintext value are, by definition, contiguous values. Therefore,
the authors in [96] propose to adopt a scaling technique together with splitting. Each plaintext
value vh is associated with a scaling factor sh. When vh is split into n index values, namely

20 2. Related work

i1, . . . , in, each index entry in the B-tree corresponding to ih is replicated sh times. Note that all
sh replicas of the index point to the same block of tuples in the encrypted database. After scaling
has been applied, the index frequency distribution is not uniform any more. Without knowing the
scaling factor used, it is not possible for the attacker to reconstruct the correspondence between
plaintext and index values.

The OPESS indexing method allows the evaluation of both equality and range conditions
appearing in the where clause. Moreover, being order preserving, it also allows the evaluation of
order by and group by clauses of SQL queries, and of most of the aggregate operators, directly
on the encrypted database. It is important to note that query execution becomes expensive, even
if it does not produce spurious tuples, due to the fact that the same plaintext value is mapped
into different index values and both splitting and scaling methods need to be inverted for query
evaluation.

2.3.5 Other approaches

In addition to the three main indexing methods previously presented, many other solutions have
been proposed to support queries on encrypted data. These methods try to better support SQL
clauses or to reduce the amount of spurious tuples in the result produced by the remote server.

Wang et al. [97, 98] propose a new indexing method, specific for attributes whose domain is
the set of all possible strings over a well defined set of characters, which adapts the hash-based
indexing methods to permit direct evaluation of like conditions. The index value associated with
any string s, composed of n characters c1c2 . . . cn, is obtained by applying a secure hash function
to each pair of subsequent characters in s. Given a string s = c1c2 . . . cn = s1s2 . . . sn/2, where
si = c2ic2i+1, the corresponding index is computed as i = h(s1)h(s2) . . . h(sn/2).

Hacigümüs et al. [57] study a method to remotely support aggregation operators, such as
count, sum, avg, min, and max. The method is based on the concept of privacy homomor-
phism [19], which exploits properties of modular algebra to allow the execution over index values
of sum, subtraction, and product operations, while not preserving the order relationship character-
izing the original domain. Evdokimov et al. [47] formally analyze the security of the method based
on privacy homomorphism, with respect to the degree of confidentiality assigned to the remote
server. The authors formally introduce a definition of intrinsic security for encrypted databases,
and it is proved that almost all indexing methods are not intrinsically secure. In particular, meth-
ods that do not cause spurious tuples to belong to the result of a query inevitably are exposed to
attacks coming from a malicious third party or from the service provider itself.

The Partition Plaintext and Ciphertext (PPC) is a new model for storing server-side outsourced
data [63]. This model proposes to outsource both plaintext and encrypted information that need
to be stored on the remote server. In this model, only sensitive attributes are encrypted and
indexed, while the other attributes are released in plaintext form. The authors propose an efficient
architecture for the DBMS to store together, and specifically in the same page of memory, both
plaintext and encrypted data.

Different working groups [16, 20, 51, 93, 99] introduce other approaches for searching keywords
in encrypted documents. These methods are based on the definition of a secure index data structure.
The secure index data structure allows the server to retrieve all documents containing a particular
keyword without the need to know any other information. This is possible because a trapdoor
is introduced when encrypting data, and such a trapdoor is then exploited by the client when
querying data. Other similar proposals are based on Identity Based Encryption techniques for the

2.4. Evaluation of inference exposure 21

Query
Index Equality Range Aggregation

Bucket-based [58] • ◦ –
Hash-based [35] • – ◦
B+ Tree [35] • • •
OPES [4] • • ◦
OPESS [96] • • •
Character oriented [97, 98] • ◦ –
Privacy homomorphism [57] • – •
PPC [63] • • •
Secure index data structures [16, 20, 51, 93, 99] • ◦ –
• fully supported; ◦ partially supported; – not supported

Figure 2.5 Indexing methods supporting queries

definition of secure indexing methods. Boneh and Franklin [17] present an encryption method
allowing searches over ciphertext data, while not revealing anything about the original data. This
method is shown to be secure through rigorous proofs. Although these methods for searching
keywords over encrypted data have been originally proposed for searching over audit logs or email
repositories, they are also well suited for indexing data in the outsourced database scenario.

Figure 2.5 summarizes the discussion by showing, for each indexing method discussed, what
type of query it (partially) supports. Here, an hyphen means that the query is not supported, a
black circle means that the query is fully supported, and a white circle means that the query is
partially supported.

2.4 Evaluation of inference exposure

Given a plaintext relation r over schema R(a1,a2,. . . ,an), it is necessary to decide which attributes
need to be indexed, and how the corresponding indexes can be defined. In particular, when defining
the indexing method for an attribute, it is important to consider two conflicting requirements: on
one side, the indexing information should be related to the data well enough to provide for an
effective query execution mechanism; on the other side, the relationship between indexes and data
should not open the door to inference and linking attacks that can compromise the protection
granted by encryption. Different indexing methods can provide different trade-offs between query
execution efficiency and data protection from inference. It is therefore necessary to define a measure
for the risk of exposure due to the publication of indexes on the remote server.

Although many techniques supporting different kinds of queries in the DAS scenario have
been developed, a deep analysis of the level of protection provided by all these methods against
inference and linking attacks is missing. In particular, exposure has been evaluated for a few
indexing methods only [24, 35, 37, 61].

Hore et al. [61] analyze the security issues related to the use of bucket-based indexing methods.
The authors consider data exposure problems in two situations: i) the release of a single attribute,
and ii) the publication of all the indexes associated with a relation. To measure the protection
degree granted to the original data by the specific indexing method, the authors propose to exploit

22 2. Related work

two different measures. The first measure is the variance of the distribution of values within a
bucket b. The second measure is the entropy of the distribution of values within a bucket b. The
higher is the variance, the higher is the protection level granted to the data. Therefore, the data
owner should maximize, for each bucket in the relation, the corresponding variance. Analogously,
the higher is the entropy of a bucket, the higher is the protection level granted to the data. The
optimization problem that the data owner has to solve, while planning the bucketization process
on a relation, is the maximization of minimum variance and minimum entropy, while maximizing
query efficiency. Since such an optimization problem is NP-hard, Hore et al. [61] propose an
approximation method, which fixes a maximum allowed performance degradation. The objective
of the algorithm is then to maximize both minimum variance and entropy, while guaranteeing
performances not to fall under an imposed threshold.

To the aim of taking into consideration also the risk of exposure due to associations, Hore et
al. [61] propose to adopt, as a measure of the privacy granted by indexes when posing a multi-
attribute range query, the well known k-anonymity concept [83]. Indeed, the result of a range
query operating on multiple attributes is exposed to data linkage with publicly available datasets.
k-Anonymity is widely recognized as a measure of the privacy level granted by a collection of
released data, where respondents can be re-identified (or the uncertainty about their identity lower
under a predefined threshold k) by linking private data with public data collections.

Damiani et al. [24, 35, 37] evaluate the exposure to inference due to the adoption of hash-based
indexing methods. Inference exposure is measured by taking into account the prior knowledge of
the attacker, thus introducing two different scenarios. In the first scenario, called Freq+DBk, the
attacker is supposed to know, in addition to the encrypted database (DBk), the domains of the
plaintext attributes and the distribution of plaintext values (Freq) in the original database. In
the second scenario, called DB+DBk, the attacker is supposed to know both the encrypted (DBk)
and the plaintext database (DB). In both scenarios, the exposure measure is computed as the
probability for the attacker to correctly map index values onto plaintext attribute values. The
authors show that, to guarantee a higher degree of protection against inference, it is convenient
to use a hash-based method that generates collisions. In case of a hash-based method where the
collision factor is equal to 1, meaning that there is no collision, inference exposure measure depends
only on the number of attributes used for indexing. In the DB+DBk scenario, the exposure grows
as the number of attributes used for indexing grows. In the Freq+DBk scenario, the attacker can
discover the correspondences between plaintext and indexing values by comparing their occurrence
profiles. Intuitively, the exposure grows as the number of attributes with a different occurrence
profile grows. For instance, considering relation Employee in Figure 2.2(a), we can notice that
both Salary and the corresponding index I5 have a unique value with one occurrence only, that
is, 20 and ρ, respectively. We can therefore conclude that the index value corresponding to 20 is
ρ, and that no other salary value is mapped into ρ as well.

Damiani et al. [37] extend the inference exposure measures presented in [24, 35] to produce an
inference measure that can be associated with the whole relation instead of with single attributes.
The authors propose two methods for aggregating the exposure risk measures computed at at-
tribute level. The first method exploits the weighted mean operator and weights each attribute ai
proportionally with the risk connected with the disclosure of the values of ai. The second one ex-
ploits the OWA (Ordered Weighted Averaging) operator, which allows the assignment of different
importance values to different sets of attributes, depending on the degree of protection guaranteed
by the indexing method adopted for the specific subset of attributes.

Agrawal et al. [4] evaluate the exposure to inference due to the adoption of OPESS as an index-

2.5. Integrity of outsourced data 23

ing method, under the Freq+DBk scenario. They prove that the solution they propose is intrinsi-
cally secure, due to the flat frequency distribution of index values and to the additional guarantee
given by scaling method, which avoids the combination of the attackers frequency knowledge with
the knowledge of the indexing method adopted.

2.5 Integrity of outsourced data

The database outsourcing scenario usually assumes the server to be “honest-but-curious”, and that
clients and data owners trust it to faithfully maintain outsourced data. However, this assumption
is not always applicable and it is also important to protect the database content from improper
modifications (data integrity). The approaches proposed in the literature have the main goal of
detecting unauthorized updates of remotely stored data [56, 73, 74, 92]. Hacigümüs et al. [56]
propose to add a signature to each tuple in the database. The signature is computed by digitally
signing, with the private key of the owner, a hash value obtained through the application of a
hash function to the tuple content. The signature is then added to the tuple before encryption.
When a client receives a tuple, as a result of its query, it can verify if the tuple has been modified
by an entity different from the data owner. The verification process consists in recomputing the
hash over the tuple content and checking whether there is a match with the value stored in the
tuple itself. In addition to tuple level integrity, also relation level integrity (i.e., absence of non
authorized insertions and deletions of tuples) needs to be preserved. Therefore, for each relation,
a signature computed on the basis of the tuples in the relation is added. An advantage of the
proposed method is that relation level signature does not need to be recomputed any time a tuple
is inserted or deleted because the old signature can be adapted to the new content, thus saving
computation time at the data owner side.

Since an integrity check performed on each tuple in the result set of a query can be quite
expensive, Mykletun et al. [73] propose methods for checking the signature of a set of tuples in a
single operation. The first method, called condensed RSA, works only if the tuples in the set have
been signed by the same user; the second method, which is based on bilinear mappings and is less
efficient than condensed RSA, is called BGLS (from the name of the authors who first proposed
this signature method [18]) and works even if the tuples in the set have been signed by different
users. A major drawback of these solutions is that they do not guarantee the immutability property.
Immutability means that it is difficult to obtain a valid aggregated signature from a set of other
aggregated signatures. To solve this problem, Mykletun et al. [72] propose alternative solutions
based on zero knowledge protocols.

Narasimha and Tsudik [74] present another method, called Digital Signature Aggregation and
Chaining (DSAC), that is again based on hash functions and signature. Here, the main goal is to
evaluate whether the result of a query is complete and correct with respect to the database content.
This solution builds over each relation chains of tuples, one for each attribute that may appear
in a query, that are ordered according to the attribute value. The signed hash associated with a
tuple is then computed by composing the hash value associated with the immediate predecessors
of the considered tuple in all the chains. This solution is quite expensive when there are different
chains associated with a relation.

Sion [92] proposes a method to ensure result accuracy and guarantee that the server correctly
executes the query on the remote data. The method works for batch queries and is based on
the pre-computation of tokens. Basically, before outsourcing the database, the data owner pre-

24 2. Related work

computes a set of queries on plaintext data and associates, with each query, a token computed
by using a one-way cryptographic hash function on the query results, concatenated with a nonce.
Any set of batch queries submitted to the server contains then a subset of pre-computed queries,
along with the corresponding tokens, and fake tokens. The server, when answering, has to indicate
which are the queries in the batch set that correspond to the given tokens. If the server correctly
individuates which tokens are fake, the client is guaranteed that the server has executed all the
queries in the set.

2.6 Privacy protection of databases

Often encryption of the whole database containing sensitive data is an overdo, since not all the
data are sensitive per se but only their association needs protection. To reduce the usage of
encryption in data outsourcing, thus improving query execution efficiency, it is convenient to
combine fragmentation and encryption techniques [2]. In [2] the authors propose an approach
where privacy requirements are modeled simply through confidentiality constraints (i.e., sets of
attributes whose joint visibility must be prevented) and are enforced by splitting information
over two independent database servers (so to break associations of sensitive information) and by
encrypting information only when strictly necessary. By assuming that only trusted clients know
the two service providers (each of which is not aware of the existence of the other server), sensitive
associations among data can be broken by fragmenting the original data. When fragmentation
is not sufficient for solving all confidentiality constraints characterizing the data collection, data
encryption can be exploited. In this case, the key used for encrypting the data is stored on one
server and the encrypted result on the other one. Alternatively, other data obfuscation methods can
be exploited; the parameter value is stored on one server and the obfuscated data on the other one.
Since the original data collection is divided on two non-communicating servers, the evaluation of
queries formulated by trusted users requires the presence of a trusted client for possibly combining
the results coming from the two servers. The original query is split in two subqueries operating
at each server, which results are then joined and refined by the client. The process of query
evaluation becomes therefore expensive, especially if fragmentation does not take into account the
query workload characterizing the system (i.e., when attributes frequently appearing in the same
query are not stored on the same server). After proving that identifying a fragmentation that
minimizes query execution costs at the client side is NP-hard (this problem can be reduced to the
hypergraph coloring problem), the authors propose a heuristic algorithm producing good results.

While presenting an interesting idea, the approach in [2] suffers from several limitations. The
main limitation is that privacy relies on the complete absence of communication between the two
servers, which have to be completely unaware of each other. This assumption is clearly too strong
and difficult to enforce in real environments. A collusion among the servers (or the users accessing
them) easily breaches privacy. Also, the assumption of two servers limits the number of associations
that can be solved by fragmenting data, often forcing the use of encryption. The solution presented
in Chapter 4 overcomes the above limitations: it allows storing data even on a single server and
minimizes the amount of data represented in encrypted format, therefore allowing for efficient
query execution.

A related line of work is represented by [13, 14], where the authors exploit functional dependen-
cies to the aim of correctly enforcing access control policies. In [14] the authors propose a policy
based classification of databases that, combined with restriction of the query language, preserves

2.7. Access control enforcement in the outsourcing scenario 25

the confidentiality of sensitive information. The classification of a database is based on the concept
of classification instance, which is a set of tuples representing the combinations of values that need
to be protected. On the basis of the classification instance, it is always possible to identify the
set of allowed queries, that is, the queries whose evaluation return tuples that do not correspond
to the combinations represented in the classification instance. In [13] the authors define a mech-
anism for defining constraints that reduce the problem of protecting the data from inferences to
the enforcement of access control in relational databases.

2.7 Access control enforcement in the outsourcing scenario

Traditional works on data outsourcing assume all users to have complete access to the whole
database by simply knowing the (unique) encryption key adopted for data protection. However,
this simplifying assumption does not fit current scenarios where different users may need to see
different portions of the data, that is, where selective access needs to be enforced, also because the
server cannot be delegated such a task. Adding a traditional authorization layer to the current
outsourcing scenarios requires that when a client poses a query, both the query and its result have
to be filtered by the data owner (who is in charge of enforcing the access control policy), a solution
that however is not applicable in a real life scenario. More recent researches [33, 70, 102] have
addressed the problem of enforcing selective access on outsourced encrypted data by combining
cryptography with authorizations, thus enforcing access control via selective encryption. Basically,
the idea is to use different keys for encrypting different portions of the database. These keys are
then distributed to users according to their access rights.

The naive solution for enforcing access control through selective encryption consists in using a
different key for each resource in the system, and in communicating to each user the set of keys
associated with the resources she can access. This solution correctly enforces the policy, but it
is very expensive since each user needs to keep a number of keys that depends on her privileges.
That is, users having many privileges and, probably, often accessing the system, will have a greater
number of keys than users having a few privileges and, probably, accessing only rarely the system.
To reduce the number of keys a user has to manage, access control mechanisms based on selective
encryption exploit key derivation methods. A key derivation method is basically a function that,
given a key and a piece of publicly available information, allows the computation of another key.
The basic idea is that each user is given a small number of keys from which she can derive all the
keys needed to access the resources she is authorized to access.

To the aim of using a key derivation method, it is necessary to define which keys can be derived
from another key and how. Key derivation methods proposed in the literature are based on the
definition of a key derivation hierarchy. Given a set of keys K in the system and a partial order
relation � defined on it, the corresponding key derivation hierarchy is usually represented as a pair
(K,�), where ∀ki, kj ∈ K, kj � ki iff kj is derivable from ki. Any key derivation hierarchy can be
graphically represented through a directed acyclic graph, having a vertex for each key in K, and a
path from ki to kj only if kj can be derived from ki. Depending on the partial order relationship
defined on K, the key derivation hierarchy can be: a chain (i.e., � defines a total order relation);
a tree; or a directed acyclic graph (DAG). The different key derivation methods can be classified
on the basis of the kind of hierarchy they are able to support, as follows.

◦ The hierarchy is a chain of vertices [85]. Key kj of a vertex is computed on the basis of key
ki of its (unique) direct ancestor (i.e., kj = f(ki)) and no public information is needed.

26 2. Related work

◦ The hierarchy is a tree [54, 85, 86]. Key kj of a vertex is computed on the basis of key ki of its
(unique) parent and on the publicly available label lj associated with kj (i.e., kj = f(ki, lj)).

◦ The hierarchy is a DAG [6, 8, 31, 59, 62, 67, 69, 87, 91]. Since each vertex in a DAG can
have more than one direct ancestor, key derivation methods are in general more complex
than the methods used for chains or trees. There are many proposals that work on DAGs;
typically they exploit a piece of public information associated with each vertex of the key
derivation hierarchy. In [8], Atallah et al. introduce a new class of methods that maintain a
piece of public information, called token, associated with each edge in the hierarchy. Given
two keys, ki and kj arbitrarily assigned to two vertices, and a public label lj associated with
kj , a token from ki to kj is defined as ti,j=kj ⊕ h(ki, lj), where ⊕ is the n-ary xor operator
and h is a secure hash function. Given ti,j , any user knowing ki and with access to public
label lj , can compute (derive) kj . All tokens ti,j in the system are stored in a public catalog.

It is important to note that key derivation methods operating on trees can be used for chains of
vertices, even if the contrary is not true. Analogously, key derivation methods operating on DAGs
can be used for trees and chains, while the converse is not true.

Key derivation hierarchies have also been adopted for access control enforcement in contexts
different from data outsourcing. For instance, pay-tv systems usually adopt selective encryption
for selective access enforcement and key hierarchies to easily distribute encryption keys [12, 79,
94, 95, 100]. Although these applications have some similarities with the DAS scenario, there
are important differences that do not make them applicable for data outsourcing. First, in the
DAS scenario we need to protect stored data, while in the pay-tv scenario streams of data are the
resources that need to be protected. Second, in the DAS scenario key derivation hierarchies are
used to reduce the number of keys each user has to keep secret, while in the pay-tv scenario a key
derivation hierarchy is exploited for session key distribution.

The main problem any solution adopting selective encryption suffers from is that they require
data re-encryption for policy updates, thus causing the data owner’s intervention any time the
policy is modified. The selective encryption solution proposed in Chapter 3 is organized to both
reduce the client burden in data access and the data owner intervention in policy updates.

2.8 Safe data integration

Data outsourcing scenarios typically assume data to be managed by a unique external server, man-
aging sensitive information. As already noted for solutions combining fragmentation and encryption
for privacy purposes, data may also be stored at different servers. Furthermore, emerging scenarios
often require different parties to cooperate with other parties to the aim of sharing information and
perform distributed computations. Cooperation for query execution implies data to flow among
parties. Therefore, it is necessary to provide the system with solutions able to enforce access con-
trol restrictions in data exchange for distributed query evaluation. Indeed, classical works on the
management of queries in centralized and distributed systems [11, 23, 26, 64, 68, 90, 101] cannot
be exploited in such a scenario. These approaches in fact describe how efficient query plans can be
obtained, but do not take into consideration constraints on attribute visibility for servers. However,
in light of the crucial role that security has in the construction of future large-scale distributed
applications, a significant amount of research has recently focused on the problem of processing
distributed queries under protection requirements. Most of these works [21, 46, 48, 52, 66, 75]

2.9. Chapter summary 27

are based on the concept of access pattern, a profile associated with each relation/view where
each attribute has a value that may either be i or o (i.e., input or output). When accessing a
relation, the values for all i attributes must be supplied, to obtain the corresponding values of
o attributes. Also, queries are represented in terms of Datalog, a query language based on the
logic programming paradigm. The main goal of all these works is that of identifying the classes of
queries that a given set of access patterns can support; a secondary goal is the definition of query
plans that match the profiles of the involved relations, while minimizing some cost parameter (e.g.,
the number of accesses to data sources [21]). In Chapter 5, we propose a complementary approach
to access patterns that can be considered a natural extension of the approach normally used to
describe database privileges in a relational schema; our approach introduces a mechanism to define
access privileges on join paths; while access patterns describe authorizations as special formulas in
a logic programming language for data access. Also, the model presented in Chapter 5 explicitly
manages a scenario with different independent subjects who may cooperate in the execution of a
query, whereas the work done on access patterns only considers two actors, the owner of the data
and a single user accessing the data.

In [80], the authors propose a model based on the definition of authorization views that implic-
itly define the set of queries that a user can view. A query is allowed if it can be answered using
only the information in the authorization views regulating the system. An interesting advantage
of this model is the exploitation of referential integrity constraints for the automatic identification
of security compliance of queries with respect to views. It is interesting to note that the approach
in [80] operates at a low level since it analyzes the integration with a relational DBMS optimizer
and focuses on the consideration of “instantiated” queries (i.e., queries that present predicates
that force attributes to assume specific values) aiming at evaluate compatibility of the instantiated
queries with the authorized views. The approach proposed in Chapter 5 operates at a higher level,
proposing an overall data-model characterizing views and focusing on the data integration scenario
at a more abstract level.

Sovereign joins [3] represent an interesting alternative solution for secure information sharing.
This method is based on a secure coprocessor, which is involved in query execution, and exploits
cryptography to grant privacy. The advantage of sovereign joins is that they extend the plans
that allow an execution in the scenario we present; the main obstacle is represented by their high
computational cost, due to the use of specific asymmetric cryptography primitives, that make them
currently not applicable when large collections of sensitive information must be combined.

2.9 Chapter summary

Database outsourcing is becoming an emerging data management paradigm that introduces many
research challenges. In this chapter, we focused on the solutions known in the literature for solving
problems related to query execution and access control enforcement. For query execution, different
indexing methods have been discussed. These methods mainly focus on supporting specific kind
of queries and on minimizing the client burden in query execution. Fragmentation has also been
proposed as a method for reducing encryption and improving query execution performance. Access
control enforcement is instead a relative new issue for the DAS scenario and has not been deeply
studied. The most important proposal for enforcing access control on outsourced encrypted data
is based on selective encryption and key derivation strategies. Finally, the evaluation of queries
when outsourced data are distributed at different servers requires a deeper collaboration among

28 2. Related work

servers as well as mechanisms regulating the exchange of data among the collaborating parties.
This problem has been addressed in some proposals that are based on the access pattern concept.

In the following of this thesis, we will analyze more in depth the access control, proposing a new
mechanism based on selective encryption, and we will study a solution to the well known problem
of dynamically manage access control updates. We will also focus on the usage of fragmentation for
reducing encryption, trying to overcome the limitations of the proposal in [2]. Furthermore, we will
address the problem related to the execution of queries on distributed data, modeling authorized
data flows among involved parties in a simple while powerful manner.

3

Selective encryption to enforce access control

Data outsourcing is emerging today as a successful paradigm allowing users and organizations to
exploit external services for the distribution of resources. A crucial problem to be addressed in
this context concerns the enforcement of selective authorization policies and the support of policy
updates in dynamic scenarios.

In this chapter, we present a novel solution for the enforcement of access control and the
management of its evolution. Encryption is the traditional way in which a third party can be
prevented from accessing information it would have otherwise access to, either because it controls
a channel transmitting it or because it reads its stored representation. Our proposal is based on
the application of selective encryption as a means to enforce authorizations. Also, the model here
proposed represents a first solution for efficiently managing policy updates, limiting the adoption
of expensive re-encryption techniques.

3.1 Introduction

Contrary to the vision of a few years ago, where many predicted that Internet users would have in a
short time exploited the availability of pervasive high-bandwidth network connections to activate
their own servers, users are today, with increasing frequency, resorting to service providers for
disseminating and sharing objects they want to make available to others.

The continuous growth of the amount of digital information to be stored and widely distributed,
together with the always increasing storage, support the view that service providers will be more
and more requested to be responsible for the storage and the efficient and reliable distribution
of content produced by others, realizing a “data outsourcing” architecture on a wide scale. This
important trend is particularly clear when we look at the success of services like YouTube, Flickr,
Blogger, MySpace, and many others in the “social networking” environment.

When storage and distribution do not involve publicly releasable objects, selective access tech-
niques must be enforced. In this context, it is legitimate for the data owner to demand the data
not to be disclosed to the service provider itself, which, while trustworthy to properly carry out
the object distribution functions, should not be allowed access to the object content.

30 3. Selective encryption to enforce access control

The problem of outsourcing object management to a “honest-but-curious” service has recently
received considerable attention by the research community and several advancements have been
proposed. The different proposals require the owner to encrypt the data before outsourcing them
to the remote server. Most proposals assume that the data are encrypted with a single key only [24,
55, 58]. In such a context, either authorized users are assumed to have the complete view on the
data or, if different views need to be provided to different users, the data owner needs to participate
in the query execution to possibly filter the result computed by the service provider.

A relatively limited research effort has been dedicated to the integration of access control and
encryption. A traditional observation of the community working on access control is indeed that
the two concepts have to be carefully kept distinct, following the classical principle of “Separation
between policy and mechanism”. Cryptography is traditionally a “mechanism” for the protection
of information, whereas access control focuses on the models and solutions for the representation
of “policies”. While the separation between authorization-based access control and cryptographic
protection has been beneficial, we maintain that in the data outsourcing scenario such a combina-
tion can prove successful.

In this chapter we present an approach merging permissions and encryption and allowing access
control to be outsourced together with the data. The significant advantage is that the data owner,
while specifying the policy, need not to be involved in its enforcement. The owner only defines
access permissions and generates the corresponding encryption keys, tuning the protection on
sensitive data. To give users different access rights, all the owner has to do is to ensure that each
user can compute the right set of decryption keys needed to access the objects she is authorized
to see.

The idea of using different encryption keys for different objects is in itself not new [12, 70, 79, 94],
but the problem of applying it in the data outsourced scenario introduces several challenges that
have not been investigated in previous proposals. First of all, it is desiderable to define an approach
to generate and distribute to each user a single encryption key, supporting fast and secure derivation
of the set of keys needed to access the set of data the user is authorized to access. Our basic
technique fulfills this requirement and is independent from any specific data model; also, it does
not rely on any specific authorization language, as the translation of the access control policy into
a key derivation scheme is completely transparent to the owners.

Building on the base model we propose a two-layer approach to enforce selective encryption
without requesting the owner to re-encrypt the objects every time there is a change in the autho-
rization policy. The first layer of encryption is applied by the data owner at initialization time
(when releasing the data for outsourcing), the second layer of encryption is applied by the service
provider itself to take care of dynamic policy changes. Intuitively, the two-layer encryption allows
the owner to outsource, besides the object storage and dissemination, the authorization policy
management, while not releasing data to the provider.

Finally, we provide a characterization of the different views of the objects by different users
and characterize potential risks of information exposures due to dynamic policy changes. The
investigation allows us to conclude that, while an exposure risk may exist, it is identifiable. This
allows the owner to address the problem and minimize it at design time.

An important strength of our solution is that it does not substitute the current proposals [35,
55, 58], rather it complements them, enabling them to support encryption in a selective form and
easily enforce dynamic policy changes.

3.2. Relational model 31

3.1.1 Chapter outline

The remainder of this chapter is organized as follows. Section 3.2 presents preliminary concepts
on relational databases that will be used in the following of the thesis. Section 3.3 proposes an
access control system based on selective encryption and key derivation techniques. Section 3.4
introduces the definition of minimal encryption policy and shows that the problem of computing a
minimal encryption policy is NP-hard, while Section 3.5 presents a heuristic algorithm for solving
this problem in polynomial time. Section 3.6 illustrates a solution for efficiently manage policy
updates in the model previously introduced. Section 3.7 proposes a solution based on two layers of
encryption for managing policy updates without resorting to re-encryption. Section 3.8 illustrates
the management of policy updates in this scenario. Section 3.9 presents an evaluation of the
collusion risk to which data are exposed. Section 3.10 presents the experimental results obtained
by the implementation of the heuristic algorithm proposed for computing a minimal encryption
policy. Finally, Section 3.11 presents our concluding remarks.

3.2 Relational model

In the rest of this thesis, for simplicity, we will refer our discussion to the well known relational
database model, while noting that all the discussions and results proposed also apply to other
models (e.g., XML). We note also that the emphasis on relational databases must not be considered
a limitation. First, relational database technology currently dominates the management of data
in most scenarios where collections of sensitive information have to be integrated over a network;
even if a system offers access to the data using Web technology, the data offered by the system
are extracted from a relational database and a description of the access policy in terms of the
underlying relational structure offers a high degree of flexibility. Second, for integrated solutions
based on Web technology, particularly systems relying on the use of Web services, it is always
possible to model the structure of the exported data in terms of a relational representation, and in
this situation a description of the access policy according to our model, rather than using a policy
description on services invocations, typically provides a more robust and flexible identification of
the security requirements of the application.

3.2.1 Basic concepts and notation

We use the standard notations of the relational database model. Formally, let A be a set of
attributes and D be a set of domains. At the schema level, a relation is characterized by a name
R and a set {a1, . . . , an} of attributes, where each ai is defined on a domain Di ∈ D, i = 1, . . . , n.
Notation R(a1,. . . ,an) represents a relation schema R over the set {a1,. . . ,an} of attributes; R .∗
refers to the set {a1, . . . , an} of attributes in the relation. At the schema level, a database is
characterized by a name R and a set {R1,. . . ,Rm} of relation schemas. At the instance level, a
relation r over schema R(a1,. . . ,an) is a set of tuples over set {a1,. . . ,an}. A tuple t over a set of
attributes {a1,. . . ,an} is a function that associates with each attribute ai a value v ∈ Di. Given
an attribute a and a set A of attributes, t [a] denotes the value of attribute a in t and t [A] the
sub-tuple composed of all values of attributes in A.

Each relation has a primary key which is the attribute, or the set of attributes, that uniquely
identifies each tuple in the relation. Given a relation Ri, Ki ⊆ Ri.∗ denotes Ri’s primary key
attributes. Primary key attributes cannot assume null values and two tuples in the relation

32 3. Selective encryption to enforce access control

cannot assume the same value for the primary key. This latter condition implies the existence
of a functional dependency between the primary key of a relation and any other attribute in the
relation. Given a relation R(a1,. . . ,an) and two non-empty subsets Ai and Aj of the attributes
{a1,. . . ,an}, there is a functional dependency on R between Ai and Aj if for each pair of tuples
t l, tm of r with the same values on attributes in Ai, t l and tm have also the same values on
attributes in Aj . Without loss of generality, we assume that only functional dependencies given
by the primary key hold in the relations. This assumption does not limit the applicability of our
solution since it is similar to the common database schema requirement that the relations satisfy
the Boyce-Codd Normal Form (BCNF), to avoid redundancies and undesirable side-effects during
update operations, and it is usually achievable using adequate decomposition procedures [49].

The primary key Ki of a relation Ri can also appear, or more precisely, be referenced by a set
of attributes FKj , in another relation Rj . In such a case, FKj , called foreign key , can assume only
values that appear for Ki in the instance of Ri. This is formalized by the definition of referential
integrity constraint which, assuming for simplicity absence of null values for the foreign key, is as
follows.

Definition 3.1 (Referential integrity). Given two relation schemas Ri,Rj ∈ R and a set of at-
tributes FKj ⊆ Rj .∗, there is a referential integrity constraint from FKj to Ki if and only if for
any possible instance ri of Ri and rj of Rj, ∀tj ∈ rj there exists a tuple t i ∈ ri such that tj [FKj]
= t i[Ki].

In the following, we use 〈FKj ,Ki〉 to denote a referential integrity constraint between FKj and
Ki. Also, I denotes the set of all referential integrity constraints defined over R.

3.3 Access control and encryption policies

Considering the data outsourcing scenario described in Section 2.2, we present a formal model for
representing access control and encryption polices along with the public catalog necessary for users
to compute the encryption keys necessary to access data and interacting with the server.

3.3.1 Access control policy

We assume that the data owner defines a discretionary access control policy to regulate access to
the distributed objects, which may be defined at different granularity (i.e., an object can be a cell,
a tuple, an attribute, or even a whole relation) without the need of any adaptation to the model
proposed in the following, which assumes that each tuple represents a distinct object. Consistently
with the scenario described, we assume access by users to the outsourced objects to be read-only
while write operations are to be performed at the owner’s site (typically by the owner itself).
Permissions that need to be enforced through encryption are of the form 〈user,object〉.1 Give a set
U of users and a set O of objects (i.e., resources), we define an authorization policy over U and O
as follows.

Definition 3.2 (Authorization policy). Let U and O be the set of users and objects in the system,
respectively. An authorization policy over U and O, denoted A, is a triple 〈U ,O,P〉, where P is
a set of permissions of the form 〈u, o〉, with u ∈ U and o ∈ O, stating the accesses to be allowed.

1For the sake of simplicity, we do not deal with the fact that permissions can be specified for groups of users and
groups of objects. Our approach supports dynamic grouping, thus subsuming any statically defined group.

3.3. Access control and encryption policies 33

o1o2o3o4o5o6o7o8o9

A 0 0 0 0 0 1 1 0 1
B 0 0 1 1 1 0 0 1 1
C 0 0 1 1 1 0 0 0 1
D 1 1 0 0 0 1 1 1 1
E 0 0 0 0 0 1 1 1 1
F 0 0 0 0 0 1 1 1 1

(a)

o1

A

��?
??

??
??

??
??

??
??

??
??

??
?

��8
88

88
88

88
88

88
88

88
88

88
88

88

��1
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

1 o2

B

��8
88

88
88

88
88

88
88

88
88

88
88

88

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

4
//

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO o3

C

��8
88

88
88

88
88

88
88

88
88

88
88

88

33ggggggggggggggg //

++WWWWWWWWWWWWWWW o4

o5

D //

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO

##GGGGGGGGGGGGGGGGGG

BB�������������������������

??����������������������
o6

E

33ggggggggggggggg //

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO o7

F

77oooooooooooooooo

33ggggggggggggggg //

++WWWWWWWWWWWWWWW o8

o9

(b)

Figure 3.1 An example of access matrix (a) and authorization policy graph (b)

The set of permissions can be represented through an access matrix MA, with a row for each user
u∈U and a column for each object o∈O [84]. Each entry MA[u,o] is set to 1 if u can access o; 0
otherwise. Given an access matrix MA over sets U and O, acl(o) denotes the access control list
of o (i.e., the set of users that can access o).

We model an authorization policy as a directed and bipartite graph GA having a vertex for each
user u ∈ U and for each object o ∈ O, and an edge from u to o for each permission 〈u, o〉 ∈ P to
be enforced. Since our modeling of the problem and its solution will exploit graphs, we explicitly
define GA as follows.

Definition 3.3 (Authorization policy graph). Let A = 〈U ,O,P〉 be an authorization policy. The
authorization policy graph over A, denoted GA, is a graph 〈VA, EA〉, where VA = U ∪ O and
EA = {(u, o) : 〈u, o〉 ∈ P}.

In the following, we will use
A
−→ to denote reachability of vertices in graph GA. Consequently,

we will use u
A
−→o and 〈u, o〉 ∈ P indistinguishably to denote that user u is authorized to access

object o according to policy A.
It is easy to see that the access matrix MA corresponds to the adjacency matrix2 of the autho-

rization policy graph GA. Figure 3.1 illustrates an example of authorization policy with 6 users,
9 objects, and 26 permissions, reporting the access matrix and the corresponding authorization
policy graph.

3.3.2 Encryption policy

Our goal is to represent the authorization policy by means of proper object encryption and key
distribution. We assume, for efficiency reasons, to adopt symmetric encryption. A naive solution

2Being the graph bipartite and directed, we consider the adjacency matrix to report only rows and columns that
correspond to users and objects, respectively.

34 3. Selective encryption to enforce access control

to our goal would consist in encrypting each object with a different key and assigning to each user
the set of keys used to encrypt the objects she can access. Such a solution is clearly unacceptable,
since it would require each user to manage as many keys as the number of objects she is authorized
to view.

To avoid users having to store and manage a huge number of (secret) keys, we exploit a key
derivation method . Among all the key derivation methods, the proposal in [8] minimizes the amount
of re-encrypting and re-keying that must be done following any change in the authorization policy.
The method is based on the definition and computation of public tokens. Let K be the set of
symmetric encryption keys in the system. Given two keys ki and kj in K, a token ti,j is defined
as ti,j=kj⊕h(ki,l j), where l j is a publicly available label associated with kj , ⊕ is the bitwise xor

operator, and h is a deterministic cryptographic function. The existence of a public token ti,j
allows a user knowing ki to derive key kj , through token ti,j and public label l j . Since keys need to
remain secret, while tokens are public, the use of tokens greatly simplifies key management. Key
derivation via tokens can be applied in chains: a chain of tokens is a sequence ti,l. . . tn,j of tokens
such that tc,d directly follows ta,b in the chain only if b = c.

A major advantage of using tokens is that they are public and allow the user to derive multiple
encryption keys, while having to worry about a single one. Exploiting tokens, the release to the
user of a set of keys K = {k1, . . . , kn} can be equivalently obtained by the release to each user of a
single key ki∈ K and the publication of a set of tokens allowing the (direct or indirect) derivation
of all keys kj∈ K, j 6= i. In the following, we use K to denote the set of symmetric keys in the
system, T to denote the set of tokens defined in the system, and L to denote the set of labels
associated with the keys in K and used for computing the tokens in T .

Since tokens are public information, we assume to store them on the remote server (just like the
encrypted data), so any user can access them. We model the relationships between keys through
tokens allowing derivation of one key from another, via a graph, called key and token graph. The
graph has a vertex for each pair 〈k, l〉 denoting key k and corresponding label l . There is an edge
from a vertex 〈ki, l i〉 to a vertex 〈kj , l j〉 if there exists a token ti,j allowing the derivation of kj
from ki. The graph is formally defined as follows.

Definition 3.4 (Key and token graph). Let K be a set of keys, L be a set of publicly available
labels, and T be a set of tokens defined on them. A key and token graph over K, L, and T , denoted
GK,T , is a graph 〈VK,T , EK,T 〉, where VK,T ={〈ki, l i〉 : ki ∈ K, l i ∈ L is the label associated with ki}
and EK,T = {(〈ki, l i〉, 〈kj , l j〉) : ti,j ∈ T }.

The graphical representation of keys and tokens nicely captures the derivation relationship
existing between keys, which can be either direct, by means of a single token, or indirect, via a
chain of tokens, corresponding to a path in the key and token graph.

The definition of tokens allows us to easily support the assumption that each user can be
released only a single key and that each object can be encrypted by using a single key. Note that
these are not simplifying or limiting assumptions, rather they are desiderata that we impose our
solution to satisfy. We then require our solution to operate under the following assumption.

Assumption 3.1. Each object can be encrypted with only one key. Each user can be released only
one key.

We also assume that each key is uniquely identified through the label associated with it. A key
assignment and encryption schema φ determines the labels of the keys assigned to users and of
the keys used for encrypting objects and is defined as follows.

3.3. Access control and encryption policies 35

�� ��

�� ��
k7, l7 // o1

A //�� ��

�� ��
k1, l1

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

��5
55

55
55

55
55

55
55

55
55

55
55

55
55

55
55

5

��/
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
/

�� ��

�� ��
k8, l8 // o2

B //�� ��

�� ��
k2, l2

��5
55

55
55

55
55

55
55

55
55

55
55

55
55

55
55

5

��2
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
//

**VVVVVVVVVVVVVVV

&&MMMMMMMMMMMMMMMMMMM
�� ��

�� ��
k9, l9 // o3

C //�� ��

�� ��
k3, l3

��5
55

55
55

55
55

55
55

55
55

55
55

55
55

55
55

5

44hhhhhhhhhhhhhhhh //

**VVVVVVVVVVVVVVV
�� ��

�� ��
k10, l10 // o4

�� ��

�� ��
k11, l11 // o5

D //�� ��

�� ��
k4, l4 //

**VVVVVVVVVVVVVVV

&&MMMMMMMMMMMMMMMMMMM

!!DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

DD																																

AA���������������������������
�� ��

�� ��
k12, l12 // o6

E //�� ��

�� ��
k5, l5

44hhhhhhhhhhhhhhh //

**VVVVVVVVVVVVVVV

&&MMMMMMMMMMMMMMMMMMM
�� ��

�� ��
k13, l13 // o7

F //�� ��

�� ��
k6, l6

88qqqqqqqqqqqqqqqqqqq

44hhhhhhhhhhhhhhh //

**VVVVVVVVVVVVVVV
�� ��

�� ��
k14, l14 // o8

�� ��

�� ��
k15, l15 // o9

Figure 3.2 An example of encryption policy graph

Definition 3.5 (Key assignment and encryption schema). Let U ,O,K,L be the set of users,
objects, keys, and labels in the system, respectively. A key assignment and encryption schema
over U ,O,K,L is a function φ : U ∪ O → L that associates with each user u∈ U the label l ∈
L identifying the (single) key k in K released to her and with each object o∈ O the label l ∈ L
identifying the (single) key k in K with which the object is encrypted.

We are now ready to introduce the definition of encryption policy as follows.

Definition 3.6 (Encryption policy). Let U and O be the set of users and objects in the system,
respectively. An encryption policy over U and O, denoted E, is a 6-tuple 〈U ,O,K,L, φ, T 〉, where
K is the set of keys defined in the system, L is the set of corresponding labels, φ is a key assignment
and encryption schema, and T is a set of tokens defined on K and L.

The encryption policy can be conveniently represented via a graph by extending the key and
token graph to include a vertex for each user and each object, and adding an edge from each user
vertex u to the vertex 〈k, l 〉 such that φ(u)=l and from each vertex 〈k, l 〉 to each object o such
that φ(o)=l . We can think of the encryption policy graph as a graph obtained by merging GA

with GK,T , where instead of directly linking each user u with each object o she can access, we pass
through the vertex 〈ki,l i〉 such that l i=φ(u), the vertex 〈kj ,l j〉 such that l j=φ(o), and possibly a
chain of keys/tokens connecting them. The encryption policy graph is formally defined as follows.

Definition 3.7 (Encryption policy graph). Let E = 〈U ,O,K,L, φ, T 〉 be an encryption policy.
The encryption policy graph over E, denoted GE , is a graph 〈VE , EE〉 where:

◦ VE = VK,T ∪ U ∪ O;

36 3. Selective encryption to enforce access control

◦ EE = EK,T ∪ {(u, 〈k, l 〉) : u ∈ U ∧ l = φ(u)} ∪ {(〈k, l 〉, o) : o ∈ O ∧ l = φ(o)},

where VK,T and EK,T are as in Definition 3.4, that is, VK,T ={〈ki, l i〉 : ki ∈ K ∧ l i ∈ L is the label
associated with ki} and EK,T = {(〈ki, l i〉, 〈kj , l j〉) : ti,j ∈ T }.

Figure 3.2 illustrates an example of encryption policy graph, where dotted edges represent the
key assignment and encryption schema (function φ) and solid edges represent the tokens (set T).

In the following, we will use
E

−→ to denote the reachability of vertices in graph GE (e.g., A
E

−→o6).
By the definition of tokens, a user can retrieve (via her own key and the set of public tokens) all
the keys of the vertices reachable from the vertex whose label l is equal to φ(u). The objects
accessible to a user according to an encryption policy are therefore all and only those reachable
from u in the encryption policy graph GE . Our goal is then to translate an authorization policy A
into an equivalent encryption policy E , meaning that A and E allow exactly the same accesses, as
formally defined in the following.

Definition 3.8 (Policy equivalence). Let A = 〈U ,O,P〉 be an authorization policy and E =
〈U ,O,K,L, φ, T 〉 be an encryption policy. A and E are equivalent, denoted A ≡ E, iff the following
conditions hold:

◦ ∀u ∈ U , o ∈ O : u
E

−→o =⇒ u
A
−→o

◦ ∀u ∈ U , o ∈ O : u
A
−→o =⇒ u

E
−→o

For instance, it is easy to see that the authorization policy in Figure 3.1 and the encryption
policy represented by the encryption policy graph in Figure 3.2 are equivalent.

3.3.3 Token management

To allow users to access the outsourced data, a portion of the encryption policy E must be made
publicly available and therefore stored on the server. The only component of the encryption policy
E that cannot be publicly released is the set K of keys while all the other components can be
released without compromising the protection of the outsourced data. The set T of tokens, the set
L of labels, and the key assignment and encryption schema φ(o) over O are therefore stored on
the server in the form of a catalog composed of two tables: Labels and Tokens. Table Labels

corresponds to the key assignment and encryption schema φ over O. For each object o in O, table
Labels maintains the correspondence between the identifier of o (attribute obj id) and the label
φ(o) (attribute label) associated with the key used for encrypting o. Table Tokens corresponds to
the set T of tokens. For each token ti,j in T , table Tokens includes a tuple characterized by three
attributes: source and destination are the labels l i and l j associated with ki and kj , respectively,
and token value is the token value computed as ti,j=kj⊕h(ki,l j). Figure 3.3 illustrates tables
Labels and Tokens corresponding to the encryption policy represented in Figure 3.2. Note that
the information about the key assignment and encryption schema φ(u) over U does not need to be
outsourced since each user knows the label associated with her key.

Whenever a user wishes to access an object o, she queries the catalog to follow a chain of tokens
that, starting from her own key k, allows the user to derive the key associated with the object.
Figure 3.4 illustrates the algorithm that receives as input the object identifier o, the key k of u,
and the label φ(u) associated with k, and computes the key kdest with which object o is encrypted.
The algorithm is basically composed of two steps.

3.3. Access control and encryption policies 37

Labels

obj id label

o1 l7
o2 l8
o3 l9
o4 l10
o5 l11
o6 l12
o7 l13
o8 l14
o9 l15

Tokens

source destination token value
l1 l12 k12⊕h(k1,l12)
l1 l13 k13⊕h(k1,l13)
l1 l15 k15⊕h(k1,l15)
l2 l9 k9⊕h(k2,l9)
l2 l10 k10⊕h(k2,l10)
l2 l11 k11⊕h(k2,l11)
l2 l14 k14⊕h(k2,l14)
l2 l15 k15⊕h(k2,l15)
l3 l9 k9⊕h(k3,l9)
l3 l10 k10⊕h(k3,l10)
l3 l11 k11⊕h(k3,l11)
l3 l15 k15⊕h(k3,l15)
l4 l7 k7⊕h(k4,l7)
l4 l8 k8⊕h(k4,l8)
l4 l12 k12⊕h(k4,l12)
l4 l13 k13⊕h(k4,l13)
l4 l14 k14⊕h(k4,l14)
l4 l15 k15⊕h(k4,l15)
l5 l13 k12⊕h(k5,l12)
l5 l14 k13⊕h(k5,l13)
l5 l15 k14⊕h(k5,l14)
l5 l15 k15⊕h(k5,l15)
l6 l12 k12⊕h(k6,l12)
l6 l13 k13⊕h(k6,l13)
l6 l14 k14⊕h(k6,l14)
l6 l15 k15⊕h(k6,l15)

Figure 3.3 Catalog for the encryption policy represented in Figure 3.2

The first step is performed server-side and consists in executing function FindPath that, given
a label φ(u) and an object o, retrieves the shortest token chain from φ(u) to φ(o) by querying
table Tokens. Function FindPath first determines φ(o) by querying table Labels and then
computes the shortest path in the key and token graph through a shortest path algorithm (an
improved version of Dijkstra working on DAGs), which exploits the topological order of vertices.
The function then builds backward the path from current=φ(o) to φ(u). At each iteration of the
while loop, the function follows pred[current], which is an array that contains the label of the
predecessor of vertex current in the path previously computed, and adds to stack chain the token
in Tokens from pred[current] to current.

The second step is evaluated client-side and consists in deriving keys following the chain of
tokens (if not empty) returned by FindPath and stored in stack chain, and terminating with
the computation of the key used for encrypting object o. For instance, consider the catalog in
Figure 3.3 and suppose that C, with φ(C) = l3, wants to access o4. Function FindPath(l3,o4)
first queries table Labels for retrieving the label associated with object o4, which is φ(o4) = l10,
and then finds the shortest path from l3 to l10. The returned chain is composed of one token only,
corresponding to tuple (l3,l10,k10⊕h(k3,l10)) of table Tokens. The algorithm then derives key k10

(i.e., the key used for encrypting o4) through user’s secret key k3 and the unique token extracted
from chain.

38 3. Selective encryption to enforce access control

INPUT
object o to be accessed
user’s key k
label φ(u) of the user’s key

OUTPUT
key kdest with which o is encrypted

MAIN
/* server-side query */
chain := FindPath(φ(u),o)
/* client-side computation */
ksource := k
if chain 6= ∅ then /* user u is authorized to access o */

t := pop(chain)
repeat

kdest := t[token value]⊕h(ksource,t[destination])
ksource := kdest

t := pop(chain)
until t=null

return(kdest)

FINDPATH(from,o)
Let t ∈ Labels : t[obj id]=o
to := t[label]
Topologically sort VK,T in GK,T

for each v∈VK,T do
dist[v] := ∞
pred[v] := null

dist[from] := 0
for each vi∈VK,T do /* visit vertices in topological order */

for each (vi,vj)∈EK,T do /* the weight of each arc is 1 */
if dist[vj]>dist[vi]+1 then

dist[vj] := dist[vi]+1
pred[vj] := vi

chain := ∅
current := to
while current 6=from ∧ current 6=null do

Let t ∈ Tokens : t[source]=pred[current] ∧ t[destination]=current
push(chain,t)
current := pred[current]

if current=null then
return(∅)

else
return(chain)

Figure 3.4 Key derivation process

3.4 Minimal encryption policy

A straightforward approach for translating an authorization policy A into an equivalent encryption
policy E consists in associating with each user a different key, encrypting each object with a different
key, and producing and publishing a token tu,o for each permission 〈u, o〉 ∈ P. The encryption
policy graph in Figure 3.2 has been generated by translating the authorization policy in Figure 3.1
with this approach. While simple, this translation generates as many keys as the number of users
and objects, and as many tokens as the number of permissions in the system. Even if tokens, being
public, need not to be remembered or stored by users, producing and managing a token for each
single permission can be unfeasible in practice. Indeed, each access to an encrypted object requires
a search across the catalog (see Section 3.3.3) and therefore the total number of tokens is a critical

3.4. Minimal encryption policy 39

o1

o2

�� ��
�� ��v5[AB] //

**UUUUUUUUUUU
�� ��
�� ��v11[ABC]

%%LLLLLLLLLLLLLLLL o3

A //�� ��
�� ��v1[A]

55jjjjjjjjjj //

))TTTTTTTTTT �� ��
�� ��v6[AC]

44iiiiiiiiiii

%%JJJJJJJJJJJJJJJ
�� ��
�� ��v12[ABD]

**UUUUUUUUUUUU o4

B //�� ��
�� ��v2[B]

::vvvvvvvvvvvvvv

))TTTTTTTTTT

$$HHHHHHHHHHHHHH
�� ��
�� ��v7[AD]

44iiiiiiiiiii

**UUUUUUUUUUU

--

,,

�� ��
�� ��v15[ABCD]

��

o5

C //�� ��
�� ��v3[C]

::vvvvvvvvvvvvvv //

$$HHHHHHHHHHHHHH
�� ��
�� ��v8[BC]

>>~~~~~~~~~~~~~~~~~~~

**UUUUUUUUUUU

44

22

11

�� ��
�� ��v13[ACD]

44iiiiiiiiiiii
o6

D //�� ��
�� ��v4[D]

::vvvvvvvvvvvvvv //

))TTTTTTTTTT

77

66

�� ��
�� ��v9[BD]

>>~~~~~~~~~~~~~~~~~~~ //

--

�� ��
�� ��v14[BCD]

99rrrrrrrrrrrrrrrr
o7

�� ��
�� ��v10[CD]

99ttttttttttttttt

44iiiiiiiiiii
o8

o9

Figure 3.5 An example of encryption policy graph over {A, B, C, D}

factor for the efficiency of accesses to remotely stored data.
This simple solution can be improved by grouping users with the same access privileges and

by encrypting each object with the key associated with the set of users that can access it. To this
purpose, we can exploit the hierarchy among sets of users induced by the partial order relation-
ship based on set containment (⊆) to create an encryption policy graph GE=〈VE ,EE〉, with VE=
VK,T ∪ U ∪ O, where VK,T includes a vertex for each possible subset U of U , and EE includes:

◦ an edge (vi,vj) for each possible pair of vertices vi,vj∈VK,T such that the set Ui of users
represented by vi is a subset of the set Uj of users represented by vj and the containment
relationship is direct;

◦ an edge (ui,vi) for each user ui∈U such that vi∈VK,T and the set of users represented by vi
is {ui};

◦ an edge (vj ,oj) for each object oj∈O such that vj∈VK,T and the set of users represented by
vj is acl(oj).

As an example, consider the portion of the authorization policy in Figure 3.1 that is defined
on the set {A, B, C, D} of users. Figure 3.5 illustrates the encryption policy graph over {A,
B, C, D} defined as previously described, where each vertex vi is marked with the set of users,
denoted vi.acl , that represents. It is interesting to note that the subgraph induced by VK,T has
the particularity of being a n-stratified graph, where n is the number of users in the system (i.e.,
n =| U |). Each strata, which we call level , contains all vertices that represent a set of users with
the same cardinality. For instance, in the encryption policy graph in Figure 3.5 the vertices at level
1 are v1, v2, v3, and v4. In the following, the level of a vertex v ∈ VK,T will be denoted level(v),
equal to |v.acl |.

40 3. Selective encryption to enforce access control

By assigning to each vertex v ∈ VK,T of the graph a pair 〈v.key ,v.label〉, corresponding to a
key and label, the authorization policy can be enforced by encrypting each object with the key
of the vertex corresponding to its access control list (e.g., object o5 should be encrypted with
the key associated with the vertex representing {B, C}) and by assigning to each user the key
associated with the vertex representing the user in the graph. This means that the encryption
policy corresponding to this graph is such that the sets K and L of keys and labels, respectively,
include all keys and labels associated with vertices in VK,T . The key assignment and encryption
schema φ is such that for each user u ∈ U , φ(u) = v.label , where v is the vertex representing
the user, (i.e., v.acl = {u}) and for each object o ∈ O, φ(o) = v.label , where v is the vertex
representing acl(oj) (i.e., v.acl = acl(oj)). Finally, for each edge (vi,vj) in EE , with vi,vj ∈ VK,T ,
there is a token in T that allows the derivation of key vj .key from key vi.key .

The advantage of this solution, with respect to the trivial one above-mentioned, is that poten-
tially a key can be used to encrypt more than one object. The disadvantage is that it defines more
keys than actually needed and requires the publication of a great amount of information on the
remote server, thus causing an expensive key derivation process at the user-side. For instance, in
the encryption policy graph in Figure 3.5 vertex v10 is not need for enforcing the authorization
policy since its key is not used for encrypting any object. The presence of such a vertex only
increases the size of table Tokens stored on the server without giving any benefit. We are then
interested in finding a minimal encryption policy equivalent to a given authorization policy and
that minimizes the number of tokens to be maintained by the server.

Definition 3.9 (Minimal encryption policy). Let A = 〈U ,O,P〉 be an authorization policy and
E = 〈U ,O,K,L, φ, T 〉 be an encryption policy such that A ≡ E. E is minimal with respect to A iff
6 ∃ E ′ = 〈U ,O,K′,L′, φ′, T ′〉 such that A ≡ E ′ and |T ′| ≤ |T |.

Given an authorization policy A, different minimal encryption policies may exist and our goal
is to compute one of them, as stated by the following problem definition.

Problem 3.1 (Min-EP). Given an authorization policy A = 〈U ,O,P〉, determine a minimal
encryption policy E = 〈U ,O,K,L, φ, T 〉.

Unfortunately, it turns out that Problem 3.1 is NP-hard , as the following theorem states.

Theorem 3.1. The Min-EP problem is NP-hard.

Proof. The considered problem is NP-hard since it can be reduced to the Minimum Set Cover
(MSC) problem, which can be formulated as follows: given a universal set Uset= {a1, . . . , an} and
a set of subsets of Uset, S = {S1,. . . ,Sm}, find the smallest subset C of S such that

⋃m
i=1 Si ∈

C =Uset .
Given a universal set Uset and a set S of its subsets, we define a corresponding authorization

policy A = 〈U ,O,P〉 in polynomial time. For each item ai in Uset, there is a user ui in U . For each
subset Sj = {aj,1, . . . , aj,mj

} in S, there is an object oj with acl(oj)=Sj and a set Rj of mj − 1
objects oj,k, k = 1, . . . ,mj − 1, with acl(oj,k)={aj,1, . . . , aj,k}. Finally, a further object o⊥ with
acl(o⊥)=Uset is added to O.

As an example, let Uset={A,B,C,D,E} and S = {S1 = {A,B,C}, S2 = {B,D}, S3 =
{B,D,E}}. The corresponding authorization policy is characterized by 5 users, A, B, C,
and D. Initially, 3 objects, o1 with acl(o1)={A,B,C}, o2 with acl(o2)={B,D}, and o3

with acl(o3)={B,D,E}, are added to O, followed by o1,1 with acl(o1,1)={A}, o1,2 with
acl(o1,2)={A,B}, and o2,1 with acl(o1,1)={B}, since duplicates are removed.

3.4. Minimal encryption policy 41

An encryption policy E=〈U ,O,K,L, φ, T 〉 equivalent to A is characterized by a key and token
graph with a vertex for each user, which key is known to the user itself, and a vertex for each acl
value, which key is used to encrypt the objects characterized by the represented acl . Therefore,
there is a path in the graph from each vertex representing a user u to each vertex representing
an acl value containing u. To this purpose, each vertex v∈GK,T , besides vertices v such that
φ(u)=v.label , must have at least two incoming edges in the graph (i.e., tokens). Specifically, the
staring point of these tokens must cover all users represented by v. By construction, for each
vertex v representing a set {u1, . . . , uk} of user, but the vertex representing U , there is a vertex v′

representing {u1, . . . , uk−1}. Therefore, v is covered by v′ and with the vertex representing {uk}.
The encryption policy minimal with respect to T is the encryption policy minimizing the number
of incoming tokens in vertex v⊥ representing U , since the addition of vertices would not produce
benefits.

The solution to the corresponding minimum set covering problem is obtained from the solution
to the corresponding Min-EP problem as follows. For each edge (v,v⊥) ending in v⊥, v can
either represent a subset of U belonging to S or not. In the latter case, v is substituted with its
nearest descendant representing a subset belonging to S. Such a descendant must exist since, by
construction, we generate additional vertices representing only subsets of items appearing in S.
Since the set of direct ancestors of v⊥ represents a cover for U , then the subsets they represent are
a minimum set cover for Uset .

We then propose a heuristic approach for solving Problem 3.1 that tries to reduce the user’s
overhead in deriving keys through a simplification of the encryption policy graph that consists in
removing non necessary vertices, while ensuring a correct key derivability. A further important
observation is that, beside the vertices needed for the enforcement of the authorization policy, other
vertices can be included if they are useful for reducing the size of the catalog, even if their keys are
not used for encrypting objects. We now discuss more in the details these two basic observations.

3.4.1 Vertices and edges selection

From the previous discussion, it is immediate to see that the vertices in VK,T strictly needed
for the enforcement of the authorization policy are the vertices representing: i) singleton sets of
users, whose keys are needed to derive all the other keys used for decrypting objects in the users’
capabilities; and ii) the acls of the objects, whose keys are needed for decrypting such objects. In
the following, we refer to these vertices as material . The material vertices must then be connected
in the graph in such a way that each user u ∈ U is able to derive the keys of all objects she is
entitled to access. This means that the encryption policy graph must include at least one path from
the vertex vi representing user u (i.e., vertex vi such that vi.acl = {u}) to all material vertices vj
such that u∈vj .acl . Since our main goal is to keep at minimum the number of tokens managed by
the server and since each edge in the encryption policy graph corresponds to a token, our problem
is then to connect the material vertices, thus creating an encryption policy equivalent to a given
authorization policy and with the minimum number of edges/tokens. To solve this problem, we
observe that the direct ancestors of a vertex must form a set covering for it. Indeed, since for
each user u the encryption policy graph must include a path from the vertex representing it and
all vertices vj such that u∈vj .acl and, by construction, there is an edge (vi,vj) iff vi.acl ⊂ vj .acl ,
vertex vj must have at least a direct ancestor vk such that u ∈ vk.acl . An encryption policy graph

42 3. Selective encryption to enforce access control

corresponding to an encryption policy equivalent to a given authorization policy satisfies therefore
the following local cover property.

Theorem 3.2 (Local cover). Let A be an authorization policy and E be an encryption policy. If
E is equivalent to A, the encryption policy graph GE= 〈VE ,EE〉 over E, with VE= VK,T ∪ U ∪ O,
satisfies the local cover property stating that ∀vi ∈ VK,T , with |vi.acl |> 1, vi.acl =

⋃

j {vj.acl :
(vj,vi) ∈ EE}.

Proof. By induction, we prove that ∀vi ∈ VK,T the local cover property is satisfied.

◦ For all vi such that |vi.acl |= 1, vi is correctly covered by definition.

◦ Let us suppose that for all vi such that |vi.acl |≤ n, vi is correctly covered. We now prove
that also all vertices vj with |vi.acl |= n + 1 are correctly covered.

By definition, ∀〈u,R〉 ∈ p, u
E

−→R , that is there exists a path in GE from u to R . This means
that there exists a path from the vertex vi, such that vi.acl={u}, to the vertex vj , such
that vj .acl=acl(R). Therefore, there exists an edge (v, vj) ∈ EK,T such that u∈v.acl . Also,
by construction, v.acl⊆vj .acl . As a consequence |v.acl |≤ n. By hypothesis, v is correctly
covered. We then conclude that vj is correctly covered.

Our approach to create an encryption policy graph works bottom up, starting from the vertices
at the highest level to the vertices at the lowest level. For each vertex v at level l, its possible
direct ancestors are first searched among the material vertices at level l − 1, then at level l − 2,
and so on, until all the material vertices directly connected to v form a set covering for v. The
rationale behind this bottom up strategy is that, in principle3, by searching first among the vertices
at higher levels, the number of direct ancestors and therefore of edges for connecting them to v
should be less than the number of direct ancestors needed for covering vertex v when such vertices
are chosen according to other approaches. As an example, consider the authorization policy in
Figure 3.1. Here, we have ten material vertices representing the following sets of users: {A}, {B},
{C}, {D}, {E}, {F}, {BC}, {ADEF}, {BDEF}, and {ABCDEF}. Consider now the material
vertex representing {ABCDEF} and suppose to compute a set covering for it by choosing the
appropriate direct ancestors from the given material vertices. If we apply the bottom up strategy
previously described, the possible direct ancestors for {ABCDEF} are first chosen among the
vertices at level: 5, which is empty; 4, where there are two material vertices (i.e., {ADEF},
{BDEF}) that can be chosen as direct ancestors for {ABCDEF}; 3, which is empty; and then
2, where vertex {BC} is chosen. The final set covering for {ABCDEF} is {{ADEF}, {BDEF},
{BC}}, which requires three edges for connecting the vertices in the set covering to the vertex
representing {ABCDEF}. Another possible set covering for {ABCDEF} is, for example, {{A},
{B}, {C}, {D}, {E}, {F}}, which instead requires six edges.

This simple approach for computing a set covering may however introduce redundant edges.
For instance, with respect to the previous example, since {ADEF} and {BDEF} are selected
before {BC}, it is easy to see that the edge from the vertex representing {BDEF} to the vertex

3Since this bottom up strategy is a heuristic that we apply for solving a NP-hard problem, the solution computed
through it may not be always the optimal solution. However, we will see in Section 3.10 that this heuristic produces
good results.

3.5. A2E algorithm 43

representing {ABCDEF} is redundant since each user in {BDEF} is also a member of at least
one of the other two direct ancestors of the vertex representing {ABCDEF}. The redundant edges
increase the number of tokens and are not useful for the enforcement of the authorization policy.
We are then interested in computing a non-redundant encryption policy graph defined as follows.

Definition 3.10 (Non-redundant encryption policy graph). Let A = 〈U ,O,P〉 be an authorization
policy and E = 〈U ,O,K,L, φ, T 〉 be an equivalent encryption policy. The encryption policy graph
GE= 〈VE ,EE〉, with VE= VK,T ∪ U∪ O, over E is non-redundant if ∀vi ∈ VK,T , with |vi.acl |> 1,
∀(vj , vi) ∈ EE , ∃ u ∈ vj.acl : ∀(vl, vi) ∈ EE , with vl 6= vj, u 6∈ vl.acl .

Section 3.5 will present in more details a heuristic algorithm for computing a non-redundant
encryption policy graph equivalent to a given authorization policy.

3.4.2 Vertices factorization

In addition to the material vertices, other vertices can be inserted into the graph whenever they
can reduce the number of tokens in the catalog. Consider, for example, the authorization policy in
Figure 3.1 and, in particular, the two material vertices representing {ADEF} and {BDEF}. The
sets covering these two material vertices can only be the sets including the vertices representing
singleton sets of users, since there are no material vertices representing subsets of {ADEF} or of
{BDEF}. The number of edges needed for connecting the vertices in the sets covering to {ADEF}
and {BDEF} are then eight. Suppose now to add a non material vertex representing {DEF}.
In this case, the set covering for {ADEF} is {{DEF}, {A}} and the set covering for {BDEF}
is {{DEF}, {B}}, which require four edges for connecting them to {ADEF} and {BDEF},
respectively, and three edges for covering {DEF} through {{D}, {E}, {F}} for a total of seven
edges against the eight edges of the previous case. Generalizing, it is easy to see that whenever
there are m vertices v1, . . . , vm that share n, with n > 2, ancestors v′

1, . . . , v
′
n, it is convenient to

factorize the common ancestors by inserting an intermediate vertex v′, with v′.acl=
⋃n
i=1v

′
i.acl ,

and to connect each vertex v′
i, i = 1, . . . , n, to v′, and v′ to vj , j = 1, . . . ,m, for saving tokens in

the catalog. In this way, the encryption policy graph includes n + m, instead of n · m, edges for
correctly covering vertices v1, . . . , vm. The advantage may appear small in this example, but the
experiments in Section 3.10 show that this optimization can produce significant gains in scenarios
with complex policies.

The factorization process is enforced during the construction of an encryption policy graph by
applying a bottom up strategy, starting from vertices at the highest level to the vertices at the
lowest level, and by comparing pairs of vertices at each time. The bottom up strategy guarantees
that the vertex added in the graph (if any) will appear at a level lower than the level of the current
pair of vertices and therefore it will be compared to the other vertices in the graph when the vertices
at that level will be analyzed. To limit the number of pairs of vertices analyzed, we consider only
pairs of vertices that have at least one common direct ancestor; the adaptation of the analysis
in [10] demonstrates that it is sufficient to consider these pairs, with a significant reduction in the
number of comparisons.

3.5 A2E algorithm

Our heuristic method for computing a minimal encryption policy is illustrated in Figure 3.6. The
algorithm takes an authorization policy A=〈U ,O,P〉 as input and returns an encryption policy E

44 3. Selective encryption to enforce access control

INPUT
authorization policy A=〈U ,O,P〉

OUTPUT
encryption policy E such that A ≡ E

MAIN
VK,T := ∅
EK,T := ∅

/* Initialization */
ACL := {acl(o):o∈O} ∪ {{u}:u∈U}
for acl∈ACL do
create vertex v
v.acl := acl
v.label := null

v.key := null

for each u∈v.acl do v.counter [u] := 0
VK,T := VK,T ∪ {v}

/* Phase 1: cover vertices without redundancies */
for l:=|U|. . . 2 do

for each vi∈{v:v∈VK,T ∧ level(v)=l} do
CoverVertex(vi,vi.acl)

/* Phase 2: factorize common ancestors */
for l:=|U|. . . 2 do

for each vi∈{v:v∈VK,T ∧ level(v)=l} do
Factorize(vi)

/* Phase 3: generate encryption policy */
GenerateEncryptionPolicy()

Figure 3.6 Algorithm for computing an encryption policy E equivalent to A

equivalent to A and that satisfies Definition 3.10. To this purpose, the algorithm first computes
a key and token graph 〈VK,T ,EK,T 〉 and then generates the corresponding encryption policy, by
computing the set T of tokens and by defining the key assignment and encryption schema φ. Each
vertex v in VK,T is associated with four variables: v.key represents the key of the vertex; v.label
represents the publicly available label associated with v.key ; v.acl represents the set of users who
can derive v.key ; v.counter [] is an array with one component for each user u in v.acl such that
v.counter [u] is equal to the number of direct ancestors of v whose acl contains user u (as we will
see, this information will be used to detect redundant edges).

The algorithm starts by creating the material vertices and by appropriately initializing the
variables associated with them. The algorithm is logically partitioned in three phases: i) cover
vertices that adds edges to the graph satisfying both local cover (Theorem 3.2) and non-redundancy
(Definition 3.10), ii) factorize common ancestors that adds non material vertices for reducing the
number of edges in the graph, and iii) generate encryption policy. We now describe these three
phases more in details.

Phase 1: Cover vertices

To grant local cover and non redundancy in the key and token graph, the algorithm proceeds
bottom up, starting from level l = |U| to 2, and for each material vertex v at level l, calls procedure
CoverVertex. Procedure CoverVertex takes a vertex v and a set tocover of users, corresponding
to v.acl , as input. The procedure first initializes two local variables: Eadded , representing the set
of edges that need to be added to the graph, is set to the empty set; and l, representing the level
of candidates direct ancestors for v, is set to level(v)−1.

3.5. A2E algorithm 45

COVERVERTEX(v,tocover)
Eadded := ∅
l := level(v) − 1
/* find a correct cover for users in tocover */
while tocover 6= ∅ do

Vl := {vi:vi∈ VK,T ∧ level(vi)=l ∧ vi.acl⊂v.acl}
while tocover 6= ∅ ∧ Vl 6= ∅ do

extract vi from Vl

if vi.acl∩tocover 6= ∅ then
tocover := tocover \ vi.acl
Eadded := Eadded ∪ {(vi,v)}
for each u∈vi.acl do

v.counter [u] := v.counter [u] + 1
l := l − 1

/* remove redundant edges */
for each (vi,v)∈Eadded do

if (6 ∃u:u∈vi.acl ∧ v.counter [u]= 1) then
Eadded := Eadded \ {(vi,v)}
for each u∈vi.acl do

v.counter [u] := v.counter [u] − 1
EK,T := EK,T ∪ Eadded

Figure 3.7 Procedure for covering material vertices and removing redundant edges

At each iteration of the outermost while loop, the procedure computes the set Vl of vertices at
level l whose acl is a subset of v.acl and the innermost while loop checks if there are vertices in
Vl that can be covered by v. To this purpose, the procedure randomly extracts a vertex vi from Vl
and if vi.acl has at least a user in common with tocover , it removes from tocover the set of users
appearing in vi.acl and adds edge (vi,v) to Eadded . Also, for each user u in vi.acl , the procedure
increases v.counter [u] by one. The innermost while loop terminates when tocover becomes empty
or when all vertices in Vl have been processed. Local variable l is then decreased by one and the
process is repeated, until tocover or Vl become empty.

The procedure then checks if Eadded contains redundant edges. For each edge (vi,v) in Eadded ,
if for all users in vi.acl , v.counter [u] is greater than one (remember that v.counter [u] keeps track
of the number of ancestors of v that include user u in their acls), then edge (vi,v) is redundant and
can be removed from Eadded . If this is the case, for each user u in vi.acl , the procedure decreases
v.counter [u] by one. The set Eadded of non redundant edges is then added to EK,T .

Phase 2: Factorize acls

As a result of the previous phase, we have a key and token graph that guarantees that each user is
able to derive the keys of the objects she is authorized to access. The goal of this phase is to verify
if it is possible to add some additional vertices to reduce the number of edges in the graph. To this
purpose, the algorithm works bottom up, starting from level l = |U| to 2. For each vertex vi at
level l, the algorithm calls procedure Factorize on vi. For each vertex vj having at least a common
direct ancestor with vi (first for loop), procedure Factorize first initializes two local variables:
Eadded and Eremoved , representing the set of edges that need to be added to and removed from
the graph, respectively, are both set to the empty set. Procedure Factorize then determines the
set CommonAnc of direct ancestors common to vi and vj . If CommonAnc contains more than
two vertices, it means that vi and vj can conveniently be factorized by a vertex v covering both
vi and vj instead of the vertices in CommonAnc. Vertex v is covered, if it does not satisfy local
cover property, by the vertices in CommonAnc. Therefore, 2 · |CommonAnc| edges are removed

46 3. Selective encryption to enforce access control

FACTORIZE(vi)
for each vj∈{v:∃va, (va,vi)∈EK,T ∧ (va,v)∈EK,T } do /* children of vi’s direct ancestors */

Eadded := ∅
Eremoved := ∅
CommonAnc := {va: (va,vi)∈EK,T ∧ (va,vj)∈EK,T } /* common direct ancestors */
if |CommonAnc| > 2 then

/* create a new common ancestor for vi and vj */
U :=

⋃

{va.acl:va∈CommonAnc}
find the vertex v∈VK,T with v.acl=U
case v of

6= vi ∧ 6= vj : Eadded := Eadded ∪ {(v,vi), (v,vj)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,vi),(va,vj)}

= vi: Eadded := Eadded ∪ {(vi,vj)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,vj)}

= vj : Eadded := Eadded ∪ {(vj ,vi)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,vi)}

undef: create vertex v′

v′.acl := U

v′.label := null

v′.key := null

for each u∈v′.acl do
v′.counter [u] := 0

VK,T := VK,T ∪ {v′}
Eadded := Eadded ∪ {(v′,vi),(v

′,vj)}
for each va∈CommonAnc do

Eadded := Eadded ∪ {(va,v′)}
Eremoved := Eremoved ∪ {(va,vi),(va,vj)}

/* update counters */
for each (vl,vh)∈Eadded do

for each u∈vl.acl do
vh.counter [u] := vh.counter [u] + 1

for each (vl,vh)∈Eremoved do
for each u∈vl.acl do

vh.counter [u] := vh.counter [u] − 1
EK,T := EK,T ∪ Eadded \ Eremoved

Figure 3.8 Procedure for factorizing the common ancestors between vertices

from the graph, while at most 2 + |CommonAnc| edges need to be added to the graph. Procedure
Factorize computes the union U among the acls associated with vertices in CommonAnc. The
procedure checks if the graph already includes a vertex v whose acl is equal to U and possibly
detects the set of edges that has to be added and removed from the graph. Three cases may then
occur. First, vertex v already exists and coincides neither with vi nor with vj . The two edges
from v to vi and from v to vj are inserted in Eadded , and all edges from the common ancestors
in CommonAnc to vi and to vj are inserted in Eremoved . Second, vertex v coincides with vi
(vj , resp.). The procedure inserts a new edge from vi to vj (from vj to vi, resp.) in Eadded and
all edges from the common ancestors in CommonAnc to vj (vi, resp.) are inserted in Eremoved .
Third, vertex v does not exist in the graph. The procedure creates a new vertex v′ and initializes
v′.acl to U and both v′.label and v′.key to null. The new vertex is then inserted in the graph
and the edges from the common ancestors in CommonAnc to v′ are inserted in Eadded along with
the two edges from the new vertex v′ to vi and to vj . The edges from all the common ancestors in
CommonAnc to vi and to vj are instead inserted in Eremoved . The procedure then appropriately
updates variables vh.counter [u] for all edges (vl,vh) in Eadded and Eremoved . Finally, the set

3.5. A2E algorithm 47

GENERATEENCRYPTIONPOLICY()
K := ∅
L := ∅
T := ∅
/* generate keys */
for each v ∈ VK,T do

generate key k
v.key := k
generate label l
v.label := l
K := K ∪ {v.key}
L := L ∪ {v.label}

/* compute tokens */
for each (vi,vj) ∈ EK,T do

ti,j := vj .key ⊕ h(vi.key,vj .label)
T := T ∪ {ti,j}
upload token ti,j on the server by adding it to table Tokens

/* define key assignment and encryption schema */
for each u ∈ U do

find the vertex v∈VK,T with v.acl={u}
φ(u) := v.label

for each o ∈ O do
find the vertex v∈VK,T with v.acl=acl(o)
encrypt o with key v.key

upload the encrypted version ok of o on the server
φ(o) := v.label
update table Labels on the server

Figure 3.9 Procedure for creating an encryption policy

EK,T of edges is updated by adding edges in Eadded and by removing edges in Eremoved .

Phase 3: Generate E

The last phase of the algorithm generates the encryption policy corresponding to the key and
token graph computed during the previous phases. To this purpose, the algorithm calls procedure
GenerateEncryptionPolicy. First, the procedure initializes the set K of keys, the set L of labels,
and the set T of tokens to the empty set. Then, for each vertex v in VK,T , the procedure generates
a key k and a label l and inserts them in K and L, respectively. Also, for each edge (vi,vj) in EK,T ,
procedure GenerateEncryptionPolicy computes token ti,j , which is inserted in T and uploaded
on the server by inserting a corresponding tuple in table Tokens. Finally, the procedure defines
the key assignment and encryption schema φ based on the labels previously generated. For each
user u, φ(u) is defined as the label of the vertex representing the singleton set {u}, and for each
object o, φ(o) is defined as the label of the vertex representing acl(o) in the graph. Also, each
object o is encrypted with the key of the vertex corresponding to φ(o) and uploaded on the server;
table Labels in the catalog is updated accordingly.

Example 3.1. Figure 3.10 presents the execution, step by step, of the algorithm in Figure 3.6,
applied to the authorization policy in Figure 3.1. The algorithm first generates 10 material vertices:
v1, . . . , v6 represent the singleton sets of users A, . . . ,F , respectively; v7 represents BC; v8

represents ADEF ; v9 represents BDEF ; and v10 represents ABCDEF .
Figure 3.10(a) illustrates the key and token graph obtained after the first phase of the algorithm.
Each vertex satisfies the local cover property and the graph does not include redundant edges. As
an example of how this graph has been obtained, consider vertex v10. Procedure CoverVertex first

48 3. Selective encryption to enforce access control

�� ��
�� ��v1[A] //�� ��

�� ��v8[ADEF]

%%KKKKKKKKKK
�� ��
�� ��v2[B] //

$$JJJJJJJJJJJJJJJJ
�� ��
�� ��v7[BC]

,,YYYYYYYYYYYYY

�� ��
�� ��v3[C]

77oooo
�� ��
�� ��v10[ABCDEF]

�� ��
�� ��v4[D]

,,XXXXXXXXXX

::tttttttttttttttt

�� ��
�� ��v5[E] //

=={{{{{{{{{{{{{{{{{{
�� ��
�� ��v9[BDEF]

�� ��
�� ��v6[F]

33ffffffffff

@@���������������������

(a) Phase 1

�� ��
�� ��v1[A] //�� ��

�� ��v8[ADEF]

%%KKKKKKKKKK
�� ��
�� ��v2[B] //

((RRRRRRRRRRRRRRRRRRRRRR
�� ��
�� ��v7[BC]

--[[[[[[[[[[[[[[[[[[[[[

�� ��
�� ��v3[C]

77oooo
�� ��
�� ��v10[ABCDEF]

�� ��
�� ��v4[D]

++XXXXXXXXXX

�� ��
�� ��v5[E] // v11[DEF] //

DD															
�� ��
�� ��v9[BDEF]

�� ��
�� ��v6[F]

33ffffffffff

(b) Phase 2

u φ(u)
A v1.label
B v2.label
C v3.label
D v4.label
E v5.label
F v6.label

Labels

obj id label

o1 v4.label
o2 v4.label
o3 v7.label
o4 v7.label
o5 v7.label
o6 v8.label
o7 v8.label
o8 v9.label
o9 v10.label

Tokens

source destination token value
v1.label v8.label t1,8

v2.label v7.label t2,7

v2.label v9.label t2,9

v3.label v7.label t3,7

v4.label v11.label t4,11

v5.label v11.label t5,11

v6.label v11.label t6,11

v7.label v10.label t7,10

v8.label v10.label t8,10

v11.label v8.label t11,8

v11.label v9.label t11,9

(c) Phase 3

Figure 3.10 An example of algorithm execution

inserts in Eadded edges (v8, v10), (v9, v10), and (v7, v10). Then, it removes edge (v9, v10), since all
users in v9.acl can derive v10.key through v7 or v9.
Figure 3.10(b) illustrates the graph obtained after the second phase of the algorithm. Note that
the graph has a new vertex, v11, which is inserted by procedure Factorize since vertices v8 and
v9 in the graph in Figure 3.10(a) have three common direct ancestors (i.e., v4, v5, and v6). Here,
material vertices are represented with solid lines, while non material vertices are represented with
dotted lines.
Finally, Figure 3.10(c) illustrates the key assignment and encryption schema for users in U and
tables Labels and Tokens uploaded on the server by procedure GenerateEncryptionPolicy.

3.5. A2E algorithm 49

3.5.1 Correctness and complexity

We first introduce some lemmas necessary to prove that the encryption policy created by the
algorithm in Figure 3.6 is equivalent to a given authorization policy.

First, we prove that users do not share encryption keys.

Lemma 3.1 (User key uniqueness). Given an authorization policy A=〈U ,O,P〉, the algorithm
in Figure 3.6 creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding encryption
policy E=〈U ,O,K,L, φ, T 〉 such that ∀ui, uj ∈ U , i 6= j =⇒ φ(ui) 6= φ(uj).

Proof. During the initialization phase, for each user u in the system, the algorithm creates a unique
vertex v and assigns {u} to v.acl . Since the algorithm never removes vertices from the graph, when
the algorithm calls procedure GenerateEncryptionPolicy the graph contains one vertex for each
user. Also, since we assume that procedure GenerateEncryptionPolicy correctly generates keys
(i.e., avoiding duplicates), at each iteration of the first for loop the procedure assigns a unique
key and a unique label to each vertex v in the graph, and therefore also to vertices representing
singleton sets of users. The key assignment and encryption schema function φ is then defined
based on the keys associated with the vertices representing singleton sets of users. For each user u,
the procedure sets φ(u) to v.key , where v is the unique vertex in the graph such that v.acl={u}.
Consequently, we have the guarantee that different users are associated with different labels and,
also, with different keys.

We also need to prove that both Theorem 3.2 and Definition 3.10 are satisfied by the encryption
policy graph generated by the algorithm in Figure 3.6.

Lemma 3.2 (Local cover and non-redundancy). Given an authorization policy A=〈U ,O,P〉, the
algorithm in Figure 3.6 creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding
encryption policy E=〈U ,O,K,L, φ, T 〉 such that GE satisfies local cover (Theorem 3.2) and is non
redundant (Definition 3.10).

Proof. We first prove that procedure CoverVertex(v,tocover) terminates and grants both Theo-
rem 3.2 and Definition 3.10. Then, we prove that procedure Factorize(vi) terminates and preserves
both local cover and non redundancy with respect to vertex v.

During the initialization phase, for each material vertex v created, the algorithm sets variable
v.counter [u] to 0 for each user u in v.acl .

Procedure CoverVertex. For each material vertex vi in VK,T the algorithm calls procedure
CoverVertex with vi and vi.acl as parameters, respectively.

The procedure is composed of two phases: the first phase finds a correct cover for v, and the
second removes redundant edges.

The first phase is composed of two nested while loops that in the worst case terminate when
variable tocover is empty. Variable tocover initially contains users in v.acl and no user is
inserted in tocover by the procedure. Also, the set of users in vi.acl , where vertex vi is
randomly extracted from the set Vl of vertices at level l such that vi.acl⊆v.acl , is removed
from tocover only if vi.acl∩tocover 6= ∅. Since l is decreased by one at each iteration of the
outermost while loop, l assumes also the value 1. When l becomes 1, Vl contains the set of
vertices vi in VK,T such that vi.acl={ui}, for all ui in U . Since v.acl⊆U , in the worst case
tocover becomes empty when l = 1 and the two while loops terminate. Since any time vi.acl

50 3. Selective encryption to enforce access control

is removed from tocover an edge (vi,v) is inserted in Eadded (and consequently in EK,T),
when the two loops terminate (i.e., tocover becomes empty) vertex v is correctly covered.
Indeed, for each user u in v.acl there exists an edge (vi,v) such that u belongs to vi.acl .
Also, for each edge (vi,v) inserted in Eadded , v.counter [u] is increased by one for each u in
vi.acl , meaning that v.counter [u] represents the number of edges (vi,v) in Eadded such that
u belongs to vi.acl .

The second phase is composed of a for each loop that processes each edge (vi,v) in Eadded .
Since the first phase of the procedure terminates, Eadded contains a finite number of edges
and also this second phase terminates. Edge (vi,v) is removed from Eadded (and therefore
not inserted in EK,T) only if v.counter [u] is greater than 1 for each user u belonging to
vi.acl , since there is at least another direct ancestor vj of v (besides vi) such that u belongs
to vj .acl . When (vi,v) is removed from Eadded , v.counter [u] is decreased by one for each
user u belonging to vi.acl , to keep v.counter [u] consistent with edges in Eadded . Since edge
(vi,v) is not removed if v.counter [u] is equal to 1 for at least a user, local cover of vertex v
is preserved. Also, since all edges incoming in v belong to Eadded and each edge in Eadded
is evaluated by the procedure, Definition 3.10 is satisfied for v.

Finally, Eadded is inserted in EK,T , which were empty. Therefore both local cover and non
redundancy are satisfied for vertex v.

Procedure Factorize. For each material vertex vi in VK,T the algorithm calls procedure Fac-
torize with vi as parameter.

The first for each loop composing the procedure evaluates each vertex vj in VK,T having at
least a common direct ancestor with vi. Also, the nested for each loops process each vertex
va in the set CommonAnc of the direct ancestors common to vi and vj . Since the number of
vertices in VK,T and then also in CommonAnc is finite, the loops terminates. Analogously,
the for each loops operating on Eadded and Eremoved sets of edges terminate, since both
Eadded and Eremoved are initially set to the empty set and the finite for each loops on
vertices in CommonAnc insert edges in the two sets. Given a pair of vertices vi and vj ,
procedure Factorize changes the set of direct ancestors of vi and vj iff they have at least
three or more common ancestors. In this case, the edges from the common ancestors, say
v1,. . .,vm, to vi and vj are removed and replaced by two edges from v′ to vi and vj , where v′

is a vertex such that v′.acl = v1.acl ∪ . . .∪ vm.acl . It immediately follows that local cover,
limited to vertices vi and vj , is satisfied. The same observation applies to vertex v′, which is
covered by v1,. . .,vm that, by definition, form a cover for v′. Note that the same discussion
applies when vertex v′ coincides with vi or vj .

We note here that variables v.counter [u] are updated according to inserted and removed
edges.

We conclude that, since both CoverVertex and Factorize procedures are called on each vertex
v in VK,T , GE satisfies both Theorem 3.2 and Definition 3.10.

By combining the results proved in Lemma 3.1 and in Lemma 3.2, we can conclude that the
encryption policy generated by the algorithm in Figure 3.6 is equivalent to a given authorization
policy.

3.5. A2E algorithm 51

Theorem 3.3 (Policy equivalence). Given an authorization policy A = 〈U ,O,P〉, the algorithm
in Figure 3.6 creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding encryption
policy E=〈U ,O,K,L, φ, T 〉 such that A ≡ E.

Proof.

E =⇒ A
Procedure GenerateEncryptionPolicy defines an encryption policy E that is based on
the key and token graph created by the first two phases of the algorithm in Figure 3.6.
In particular, the procedure defines an encryption policy such that: for each user u, φ(u)
corresponds to the label of vertex vi representing the singleton set {u} (i.e., vi.acl =
{u}); and for each object o, φ(o) corresponds to the label of vertex vj representing acl(o)
(i.e., vj .acl = acl(o)). Consider now the encryption policy graph corresponding to the
encryption policy E created by procedure GenerateEncryptionPolicy, and suppose

that u
E

−→o. This is equivalent to say that the key and token graph includes a path
from the vertex v with label equal to φ(u) to the vertex vj with label equal to φ(o).
Also, since the key and token graph satisfies Theorem 3.2 (Lemma 3.2), we know that u
belongs to vj .acl = acl(o) and therefore the authorization policy A includes permission 〈u,o〉.

E ⇐= A
Suppose that u

A
−→o. During the initialization phase, the algorithm inserts in the key and

token graph a vertex for each users in the systems and for each acl value for the objects in the
systems. Therefore, there is a material vertex vi such that vi.acl = {u}, and there is a material
vertex vj such that vj .acl = acl(o) in the key and token graph. Since the algorithm never
removes vertices and it creates a key and token graph that satisfies Theorem 3.2 (Lemma 3.2),
it is immediate to conclude that the key and token graph includes a path from vi to vj and
that the encryption policy graph obtained by defining an encryption policy complementing
the key and token graph, generated by procedure GenerateEncryptionPolicy, includes a
path from u to o.

The following theorem proves that the encryption policy generated by the algorithm in Fig-
ure 3.6 presents a total number of keys and tokens that is less than the number of users, resources,
and permissions composing a given authorization policy, thus greatly reducing the overhead on the
users in deriving the keys of the resources they are entitled to access (as also the experiments in
Section 3.10 show).

Theorem 3.4. Given an authorization policy A = 〈U ,O,P〉, the algorithm in Figure 3.6
creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding encryption policy
E=〈U ,O,K,L, φ, T 〉 such that | K ∪ T |<| U ∪ O ∪ P |.

Proof. Since all the sets involved in the union operations are disjoint, we need to prove that
|K | + |T |<|U | + |O | + |P |.

The number of keys created by the algorithm is equal to the number of vertices in the key
and token graph while the number of tokens is equal to the number of edges. With respect to the
vertices, the algorithm creates a vertex for each user in U , for each acl associated with objects in

52 3. Selective encryption to enforce access control

O, plus some additional vertices inserted during Phase 2. Since two or more objects may share the
same acl , it is easy to see that what we need to prove is that the number of vertices inserted in
Phase 2 plus the number of tokens is less than the number of permissions. First, consider the graph
created after Phase 1, where there is no additional vertex besides the material vertices. In this
case, it is easy to see that the number of edges (i.e., tokens) in the graph is less than the number
of permissions. Indeed, if there are m objects that share the same acl that is composed by n users,
the graph will include n tokens instead of n · m tokens. Consider now Phase 2. Here, procedure
Factorize adds a vertex iff the pair of vertices currently analyzed have n > 2 common parents. In
this case, 2 ·n edges are removed from the graph and at most n+2 edges are inserted. This means
that at least the number of tokens in the catalog decreases by one and therefore the number of
additional vertices plus the number of tokens remains lower than the number of permissions.

Finally, we prove that the time complexity of the proposed algorithm is polynomial in time.

Theorem 3.5 (Complexity). Given an authorization policy A = 〈U ,O,P〉, the algorithm in Fig-
ure 3.6 generates an encryption policy E = 〈U ,O,K,L, φ, T 〉, with A ≡ E, in O((|O|+|VK,T |2)·|U|).

Proof. The complexity of the algorithm is obtained by evaluating the complexity of the operations
performed during the initialization and of the two phases composing it.

Initialization. The for loop composing the initialization phase requires time proportional to
|U | + |O | · |U |, since the inner most for loop has constant cost for vertices representing
singleton sets of users.

Phase 1. The algorithm calls procedure CoverVertex for each material vertex v in VK,T .
In the worst case, the two nested while loops check all vertices vi in VK,T such that
level(vi)<level(v), with a computational cost proportional to |VK,T |2 · |U |.

The following for each loop checks each edge (vi,v)∈Eadded and evaluates and possibly
updates the value of variable v.counter [u] for each u belonging to acl(vi). In the worst case,
the cost of this loop is proportional to |EK,T | · |U |.

Since |EK,T | is upperbounded by |VK,T |2 in any graph, the overall complexity of the first
phase of the algorithm is proportional to |VK,T |2 · |U |.

Phase 2. The algorithm calls procedure Factorize for each vertex vi in VK,T . The first for each
loop checks all vertices with at least a common ancestor with vi, which in the worst case are
all vertices in VK,T . The procedure then finds the common direct ancestors by considering
the edges incident in vi and vj . Since the maximum number of direct ancestors of a vertex
vi is equal to |vi.acl |, the costs of this operation is proportional to |U|. The for each loops
nested in the case instruction evaluate all the vertices in CommonAnc, which are at most
|U|. Since both Eadded and Eremoved are filled in by these loops, they contain a number of
elements linear in |U|.

The overall complexity of the second phase of the algorithm is therefore proportional to
|VK,T |2 · |U |.

3.6. Policy updates 53

Phase 3. The algorithm finally calls procedure GenerateEncryptionPolicy, which is composed
of four for each loops, checking vertices, edges, users, and objects in the order.

The overall complexity of the third phase of the algorithm is therefore proportional to
|VK,T |

2 + |U| + |O|.

Overall, the time complexity is proportional to (|O| + |VK,T |
2) · |U|. If we assume that all

operations performed by procedures CoverVertex, Factorize and GenerateEncryptionPolicy
have a constant cost and cmax is the maximum cost, the time complexity is in O(cmax((|O| +
|VK,T |

2) · |U|)) = O((|O| + |VK,T |
2) · |U|).

3.6 Policy updates

Since the authorization policy is likely to change over time, the corresponding encryption pol-
icy needs to be re-arranged accordingly. The possible policy update operations are: 1) inser-
tion/deletion of a user; 2) insertion/deletion of an object; and 3) grant/revoke of an permission.
We note that the insertion/deletion of users has an impact on the encryption policy only when the
user gains permissions. In this case, inserting (deleting, resp.) a user implies granting (revoking,
resp.) all the permissions in which the user is involved. Analogously, the insertion/deletion of
objects has an impact on the encryption policy only when the object is made accessible to users.
Therefore, inserting (deleting, resp.) an object implies granting (revoking, resp.) all the permis-
sions in which the object is involved. For this reason, we focus on the grant and revoke operations.
Also, we assume that each operation always refers to a single user u and a single object o; extension
to sets of users and objects is immediate.

The grant and revoke operations on the authorization policy A are translated into operations
that appropriately update the encryption policy graph, to guarantee that E is equivalent to A
also after grant/revoke operations. Creating from scratch the encryption policy graph any time
a grant or revoke operation is executed obviously grants policy equivalence, but is too expensive,
since it requires to re-generate the whole set of keys and tokens and to re-encrypt all the objects in
the system. Therefore, we propose a strategy that updates the existing encryption policy graph,
changing only the portions of the graph that are affected by the grant or revoke operation.

3.6.1 Grant and revoke

Any grant/revoke request for a user u on an object o has the effect of changing the set of users
that can access o and always requires the data owner to decrypt and to re-encrypt the object with
a new key that should be (directly or indirectly) derivable only by the users that belong to the
new access control list. Figure 3.11 illustrates procedure GrantRevoke that implements both
grant and revoke operations. The procedure takes as input a user u, an object o, and the type
of operation that has to be executed, which can be either ‘grant’ or ‘revoke’, and modifies the
encryption policy accordingly. First, the procedure retrieves vertex vold whose acl corresponds to
the current acl of o and sets acl(o) to the old acl to which is added (grant) or removed (revoke) user
u. Since, according to our approach (see Section 3.4), each object has to be encrypted with the key
associated with the vertex that represents its acl , the procedure checks the existence of a vertex
vnew in the encryption policy graph representing the new value of acl(o). If such a vertex does
not exist, vertex vnew is created and inserted in the graph (procedure CreateNewVertex). The

54 3. Selective encryption to enforce access control

GRANTREVOKE(u,o,operation)
/* update the access control list of o */
find the vertex vold with vold.label = φ(o)
case operation of

‘grant’: acl(o) := vold.acl ∪ {u}
‘revoke’: acl(o) := vold.acl \ {u}

find the vertex vnew with vnew.acl = acl(o)
if vnew=undef then
vnew := CreateNewVertex(acl(o))

φ(o) := vnew.label
/* re-encrypt object o */

download the encrypted version ok of o from the server

decrypt ok with key vold.key to retrieve the original object o
encrypt o with key vnew.key

upload the new encrypted version ok of o on the server
update Labels on the server
DeleteVertex(vold)

Figure 3.11 Procedure for granting or revoking permission 〈u, o〉

CREATENEWVERTEX(U)
/* initial key and token graph vertices and edges */
V0 := VK,T

E0 := EK,T

/* create the new vertex */
create vertex v
v.acl := U
v.key := null

v.label := null

for each u ∈ v.acl do v.counter [u] := 0
/* connect v, remove redundancies, and factorize common ancestors */
CoverVertex(v,v.acl)
Factorize(v)
/* update encryption policy */
UpdateEncryptionPolicy(V0,E0)
for each vi∈{vj :(vj ,vh)∈(E0\EK,T)} do

DeleteVertex(vi)
return(v)

Figure 3.12 Function that inserts a new vertex representing U

procedure then downloads the object from the server, decrypts it through vold.key , re-encrypts it
through vnew.key , and uploads the new encrypted version of o on the server. Finally, the procedure
calls DeleteVertex on vertex vold that checks if vertex vold is still needed or if it can be removed
from the graph.

The insertion and removal of vertices in the encryption policy graph are realized through
function CreateNewVertex in Figure 3.12 and procedure DeleteVertex in Figure 3.13. Note
that function CreateNewVertex and procedure DeleteVertex are based on the same operations
(i.e., CoverVertex and Factorize) used by the algorithm in Figure 3.6 for initially creating the
encryption policy graph, but they operate locally to the vertex inserted in or removed from the
graph.

Function CreateNewVertex receives as input a set U of users and returns the vertex v inserted
in the graph and representing U . The function first copies the current sets VK,T of vertices and
EK,T of edges in two local variables V0 and E0, respectively. This copy is needed to determine the
updates in the set of vertices and edges in the graph in such a way to modify the encryption policy

3.6. Policy updates 55

DELETEVERTEX(v)
if (|v.acl| > 1)∧(6 ∃o∈O:φ(o)=v.label) then

/* direct ancestors and descendants of v */
Anc := {vi:(vi,v)∈EK,T }
Desc := {vi:(v,vi)∈EK,T }
if (|Desc| · |Anc|)≤(|Desc| + |Anc|)) then

/* initial key and token graph vertices and edges */
V0 := VK,T

E0 := EK,T

/* update the key and token graph */
EK,T := EK,T \ ({(v,vi)∈EK,T }∪{(vi,v)∈EK,T })
for each (v,vi)∈E0 do

for each u∈v.acl do
vi.counter [u] := vi.counter [u]−1

tocover := {u:u∈vi.acl ∧ vi.counter [u]=0}
CoverVertex(vi,tocover)
Factorize(vi)

VK,T := VK,T − {v}
/* update encryption policy */
UpdateEncryptionPolicy(V0,E0)
for each vi∈{vj :(vj ,vh)∈(E0\EK,T)} do

DeleteVertex(vi)

Figure 3.13 Procedure for deleting vertex v

accordingly. Indeed, the presence of a new vertex requires the generation of a new key and label
and the removal of a vertex requires the deletion of the corresponding key and label. Analogously, a
new edge requires the generation of the corresponding token, which is then stored in table Tokens,
and the removal of an edge requires the deletion of the corresponding token from table Tokens.
Function CreateNewVertex creates a new vertex v whose variable v.acl is set to Uwhile v.key
and v.label are both set to null. This new vertex is appropriately covered by other vertices in the
graph by calling: procedure CoverVertex on v and v.acl , thus ensuring that the vertex is inserted
without introducing redundant edges and in such a way that local cover (Theorem 3.2) is satisfied;
and procedure Factorize, which determines whether the new vertex has more than two direct
ancestors in common with other vertices in the graph. Function CreateNewVertex then calls
procedure UpdateEncryptionPolicy in Figure 3.14. This procedure takes as input the copies
of the old sets of vertices and edges stored in V0 and E0, respectively, and updates the encryption
policy by generating and adding the new keys and labels associated with the new vertices, by
computing and adding the new tokens corresponding to the new edges, and by removing the keys,
labels, and tokens that are not anymore needed. Finally, for each vertex vi that appears as starting
point of a removed edge, CreateNewVertex calls procedure DeleteVertex to check whether
vertex vi can be removed from the graph. Note that we do not call procedure DeleteVertex on
the vertices appearing as ending point of removed edges since, by definition, they correspond to
material vertices or have at least two incoming edges and therefore are always useful (or, in the
worst case, ineffective) for reducing the number of tokens in the encryption policy graph.

Procedure DeleteVertex receives as input a vertex v and removes it from the graph if it is
neither necessary for policy enforcement nor useful for reducing the size of T . Indeed, if the key
associated with v is no more used for encrypting any object and is no more needed for factorizing
common ancestors, vertex v and all its ingoing and outgoing edges are removed. At this point, the
direct descendants of v violate the local cover property since, by construction (see Lemma 3.2), the
graph has no redundant edges and therefore the removed edge was need to satisfy such a property.
For each direct descendant vi, procedure DeleteVertex first calls procedure CoverVertex on vi

56 3. Selective encryption to enforce access control

UPDATEENCRYPTIONPOLICY(V,E)
for each v∈(VK,T \V) do /* new vertices */

generate key k
v.key := k
generate label l
v.label := l
K := K ∪ {v.key}
L := L ∪ {v.label}

for each (vi,vj)∈(EK,T \E) do /* new edges */
ti,j := vj .key ⊕ h(vi.key,vj .label)
T := T ∪ {ti,j}
upload token ti,j on the server by adding it to table Tokens

for each v∈(V\VK,T) do /* vertices removed */
K := K \ {v.key}
L := L \ {v.label}

for each (vi,vj)∈(E\EK,T) do /* edges removed */
T := T \ {ti,j}
remove ti,j from the table Tokens on the server

Figure 3.14 Procedure for updating the encryption policy

and on the set of users that do not belong to any other ancestor of vi, and then calls procedure
Factorize on vi. Like for procedure CreateNewVertex, the encryption policy is appropriately
updated through procedure UpdateEncryptionPolicy. Finally, for each vertex vi that appears
as a starting point of a removed edge, DeleteVertex recursively calls itself to check whether or
not vertex vi can be removed from the graph.

Example 3.2. Consider the encryption policy depicted in Figures 3.10(b) and (c). Figure 3.15
illustrates the key and token graph and table Labels resulting from granting D access to o3 and
revoking F access to o8. (Note that for all users u in U , we do not report φ(u) since grant/revoke
operations do not change it.)

◦ GrantRevoke(D,o3,grant): first the procedure identifies the vertex whose key is necessary
for decrypting o3, that is, v7. Then, acl(o3) is updated by inserting D. Since there is not
a vertex with acl={BCD}, procedure CreateNewVertex is called with U={BCD} as a
parameter. It creates and inserts in the graph a new vertex v12, where v12.acl={BCD}.
Then, o3 is downloaded from the server, decrypted through v7.key, encrypted with v12.key,
and then uploaded on the server. Finally, procedure DeleteVertex is called with v7 as a
parameter and, since v7.key is used to encrypt o4 and o5, vertex v7 is not removed from the
graph.

◦ GrantRevoke(F ,o8,revoke): first the procedure identifies the vertex whose key is necessary
for decrypting o8, that is, v9. Then, acl(o8) is updated by removing F . Since there is not
a vertex with acl={BDE}, procedure CreateNewVertex is called with U={BDE} as a
parameter. It creates and inserts in the graph a new vertex v13, where v13.acl={BDE}.
Then, o8 is downloaded from the server, decrypted through v9.key, encrypted with v13.key,
and uploaded on the server. Then, procedure DeleteVertex is called with v9 as a parameter.
Since v9.key was only used for encrypting o8, v9 is no more a useful vertex and is removed
from the graph. The procedure recursively calls itself with v2 and with v11 as a parameter.
Vertex v2 is not removed since it corresponds to user B while vertex v11 is removed from the
graph.

3.6. Policy updates 57

�� ��
�� ��v1[A] //�� ��

�� ��v8[ADEF]

$$IIIIIIIIIII

�� ��
�� ��v2[B] //

((QQQQQQQQQQQQQQQQQQQQQQQQQ
�� ��
�� ��v7[BC]

--[[[[[[[[[[[[[[[[[[[[[[[

((QQQQQQ

�� ��
�� ��v3[C]

77ppppp
�� ��
�� ��v12[BCD] �� ��

�� ��v10[ABCDEF]

�� ��
�� ��v4[D]

++WWWWWWWWWWWW

33gggggggggggg

�� ��
�� ��v5[E] // v11[DEF] //

EE�����������������
�� ��
�� ��v9[BDEF]

�� ��
�� ��v6[F]

33gggggggggggg

Labels

obj id label

o1,o2 v4.label
o3 v12.label

o4,o5 v7.label
o6,o7 v8.label
o8 v9.label
o9 v10.label

(a) GrantRevoke(D,o3,grant)

�� ��
�� ��v1[A]

%%LLLLLLLLLLLLLLLLLLLLLLLLLLLL
�� ��
�� ��v7[BC] //

++WWWWWWWWWWWWWWWWWWWWWWWWWW �� ��
�� ��v12[BCD]

�� ��
�� ��v2[B]

77ppppp //�� ��
�� ��v13[BDE]

�� ��
�� ��v3[C]

@@���������
�� ��
�� ��v10[ABCDEF]

�� ��
�� ��v4[D]

;;vvvvvvvvvvvvvvvvvv

77nnnnnnnnnnnnnnn

--ZZZZZZZZZZZZZZZZZZZZZ

�� ��
�� ��v5[E]

;;vvvvvvvvvvvvvvvvvv //�� ��
�� ��v8[ADEF]

�� ��
�� ��v6[F]

11ddddddddddddddddddddd

Labels

obj id label

o1,o2 v4.label
o3 v12.label

o4,o5 v7.label
o6,o7 v8.label
o8 v13.label
o9 v10.label

(b) GrantRevoke(F ,o8, revoke)

Figure 3.15 Examples of grant and revoke operations

3.6.2 Correctness

We now prove that the procedure implementing the grant and revoke operations preserves policy
equivalence. To this aim, we first need to show that both vertex insertion and deletion are correct
(i.e., they preserve policy equivalence).

First, we prove that the updates to the encryption policy graph made by procedure DeleteV-
ertex do not affect policy equivalence.

Lemma 3.3. Let A = 〈U ,O,P〉 be an authorization policy and E=〈U ,O,K,L, φ, T 〉 be an encryp-
tion policy, such that A ≡ E. Procedure DeleteVertex in Figure 3.13 generates a new encryption
policy E ′=〈U ,O,K′,L′, φ′, T ′〉 such that A ≡ E ′.

Proof. Since we assume that A ≡ E when procedure DeleteVertex is called, we will consider
only keys and tokens updated by the procedure. Specifically, as already noted when proving
Theorem 3.3, the conditions necessary for granting policy equivalence between A and E are the
following:

1. for each user u, φ(u) corresponds to the label of vertex vi representing the singleton set {u}
(i.e., vi.acl = {u});

58 3. Selective encryption to enforce access control

2. for each object o, φ(o) corresponds to the label of vertex vj representing acl(o) (i.e., vj .acl
= acl(o));

3. the key and token graph satisfies Theorem 3.2 (local cover) and Definition 3.10 (non redun-
dancy).

We then prove that procedure DeleteVertex satisfies all these conditions.
Procedure DeleteVertex does not modify the key assignment and encryption schema and does

not remove a vertex v if there exists a user u or an object o such that φ(u)=v.label or φ(o)=v.label .
Therefore the first and the second conditions are satisfied.

For each descendant vi of the removed vertex v, procedure DeleteVertex calls procedures
CoverVertex on vi and tocover , where tocover contains the subset of users in vi.acl such that
vi.counter [u]=0. Since vi.counter [u] always represents the number of direct ancestors of vi such
that u belongs to their acl , it is not necessary to cover other users. Also, variables v.counter [u] are
updated on the basis of the edges incident in v removed from the graph. Procedure UpdateEn-
cryptionPolicy simply translates the updates on GK,T in the equivalent updates on E components,
therefore local cover and non redundancy are preserved by procedure DeleteVertex.

We then prove that also the updates to the encryption policy graph made by procedure Cre-
ateNewVertex do not affect policy equivalence.

Lemma 3.4. Let A = 〈U ,O,P〉 be an authorization policy and E=〈U ,O,K,L, φ, T 〉 be an en-
cryption policy, such that A ≡ E. Function CreateNewVertex in Figure 3.12 generates a new
encryption policy E ′=〈U ,O,K′,L′, φ′, T ′〉 such that A ≡ E ′.

Proof. Since we assume that A ≡ E when function CreateNewVertex is called, we will consider
only keys and tokens updated by the function. We then prove that function CreateNewVertex
satisfies all the conditions mentioned in the Proof of Lemma 3.3.

Function CreateNewVertex does not modify the key assignment and encryption function
and removes vertices only through procedure DeleteVertex, therefore the first and the second
conditions are satisfied.

Also, function CreateNewVertex calls procedures CoverVertex and Factorize on the new
vertex v, granting then that the key and token graph satisfies Theorem 3.2 and Definition 3.10
(Lemma 3.2). Procedure UpdateEncryptionPolicy simply translates the updates on GK,T in
the equivalent updates on E components, therefore the two properties are preserved by function
CreateNewVertex.

By combining the results proved by Lemma 3.3 and by Lemma 3.4, we conclude that the encryp-
tion policy modified by procedure GrantRevoke in Figure 3.11 is equivalent to the authorization
policy modified by the same procedure, on the basis of a grant or revoke operation.

Theorem 3.6. Let A = 〈U ,O,P〉 be an authorization policy and E=〈U ,O,K,L, φ, T 〉 be an en-
cryption policy, such that A ≡ E. Procedure GrantRevoke in Figure 3.11 generates a new
authorization policy A′ = 〈U ,O,P ′〉 and a new encryption policy E ′=〈U ,O,K′,L′, φ′, T ′〉 such that
A′ ≡ E ′.

Proof. Since we assume that A ≡ E when procedure GrantRevoke is called, we will consider only
users and objects for which the encryption and authorization policies change.

3.7. Two-layer encryption for policy outsourcing 59

Grant. E ′ =⇒ A′

Consider user u and object o. From the procedure, it is easy to see that o is encrypted
with a key such that from the key of the vertex with label φ′(u) it is possible to derive the
key of the vertex with label φ′(o) through T ′, since φ′(o) is set to vnew.key , which can be
reached from vertex v with v.acl={u} (for the correctness of function CreateNewVertex,

Lemma 3.4). Therefore, we have that u
A′

−→o.

E ′ ⇐= A′

Consider user u and object o. From the insertion of u in acl(o), we have that u
A′

−→o. Also, o
is encrypted with a key such that the key of the vertex with label φ′(o) can be derived from
the key of the vertex with label φ′(u), for the correctness of function CreateNewVertex

(Lemma 3.4). Therefore, we have that u
E′

−→o.

Revoke. E ′ =⇒ A′

Consider user u and object o. From the procedure, it is easy to see that o is encrypted with
a key such that from the key of the vertex with label φ′(u) it is not possible to derive the
key of the vertex with label φ′(o) through T ′, since φ′(o) is set to vnew.key , which can not
be reached from vertex v with v.acl={u} (for the correctness of procedure DeleteVertex,

Lemma 3.3). Therefore, we have that u
A′

6−→o.

E ′ ⇐= A′

Consider user u and object o. From the removal of u from acl(o), we have that u
A′

6−→o. Also,
o is encrypted with a key such that the key of the vertex with label φ′(o) can not be derived
from the key of the vertex with label φ′(u), for the correctness of procedure DeleteVertex

(Lemma 3.3). Therefore, we have that u
E′

6−→o.

3.7 Two-layer encryption for policy outsourcing

The model described in previous sections assumes keys and tokens are computed, on the basis
of the existing authorization policy, prior to sending the encrypted objects to the server. When
permissions are updated by the data owner, as described in Section 3.8, the data owner interacts
with the service provider for modifying the token catalog and for re-encrypting the objects involved
in the update. Even if the computation and communication overhead caused by policy updates
is limited, the data owner may not have the computational or bandwidth resource availability for
managing policy changes.

To further reduce the data owner’s overhead, we put forward the idea of outsourcing to the
server, besides the object storage, the authorization management as well. Note that this delegation
is possible since the server is considered trustworthy to properly carry out the service. Recall,
however, that the server is not trusted with confidentiality (honest-but-curious). For this reason,
our solution has been designed taking into account, and therefore minimizing, the risk that the

60 3. Selective encryption to enforce access control

server colludes with users to breach data confidentiality (see Section 3.9). The solution we propose
enforces policy changes on encrypted objects themselves (without the need of decrypting them),
and can then be performed by the server.

3.7.1 Two-layer encryption

To delegate policy changes enforcement to the server, avoiding re-encryption for the data owner,
we adopt a two layer encryption approach. The owner encrypts the objects and sends them to the
server in encrypted form; the server can impose another layer of encryption (following directions
by the data owner).

We then distinguish two layers of encryption.

◦ Base Encryption Layer (BEL), performed by the data owner before transmitting data
to the server. It enforces encryption on the objects according to the policy existing at
initialization time.

◦ Surface Encryption Layer (SEL), performed by the server over the objects already en-
crypted by the data owner. It enforces the dynamic changes over the policy.

Both layers enforce encryption by means of a set of symmetric keys and a set of public tokens
between these keys (see Section 3.3), although some adaptations are necessary, as explained below.

In terms of efficiency, the use of a double layer of encryption does not appear as a significant
computational burden; experience shows that current systems have no significant delay when man-
aging encryption on data coming from either the network or local disks, as also testified by the
widespread use of encryption on network traffic and for protecting the storage of data on local file
systems [89].

Base Encryption Layer. Compared with the model presented in previous sections, in the BEL

level we distinguish two kinds of keys: derivation keys and access keys. Access keys are actually
used to encrypt objects, while derivation keys are used to provide the derivation capability via
tokens, that is, tokens can be defined only with the derivation key as starting point. Each derivation
key k is always associated with an access key ka obtained by applying a secure hash function to k,
that is, ka = h(k). In other words, keys at the BEL level always go in pairs 〈k,ka〉. Note that both
the derivation and the access keys are associated with a unique label l and l a, respectively. The
rationale for this evolution is to distinguish the two roles associated with keys, namely: enabling
key derivation (applying the corresponding tokens) and enabling object access. The reason for
which such a distinction is needed will be clear in Section 3.8.

The BEL level is characterized by an encryption policy Eb=〈U ,O,Kb,Lb, φb, Tb〉, where U , O,
and Tb are as described in Section 3.3, Kb is the set of (derivation and access) keys defined at BEL

level, and Lb is the set of publicly available labels associated with both derivation and access keys.
The key assignment and encryption schema φb : U ∪ O → Lb associates with each user u∈ U the
label l corresponding to the derivation key released to the user by the data owner and with each
object o∈ O the label l a corresponding to the access key with which the object is encrypted by
the data owner.

Also at BEL level, the set Kb of keys and the set Tb of tokens can be graphically represented
through the corresponding key and token graph, which now has a vertex b for each pair of encryption

3.7. Two-layer encryption for policy outsourcing 61

�� ��
�� ��b1 //�� ���� ��b8

""EEEEEEEE
�� ��
�� ��b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR �� ��
�� ��b7

--[[[[[[[[[[[[[[[[[[[[[[

�� ��
�� ��b3

66mmmmmmm �� ��
�� ��b10

�� ��
�� ��b4

,,XXXXXXXXXXXXXX

�� ��
�� ��b5 //�� ��

�� ��b11 //

EE��������������
�� ��
�� ��b9

�� ��
�� ��b6

22ffffffffffffff

u φb(u)
A b1.label
B b2.label
C b3.label
D b4.label
E b5.label
F b6.label

o φb(o)
o1,o2 b4.labela

o3,o4,o5 b7.labela
o6,o7 b8.labela
o8 b9.labela
o9 b10.labela

(a) BEL

�� ��
�� ��s1[A]

�� ��
�� ��s2[B]

�� ��
�� ��s3[C]

�� ��
�� ��s4[D]

�� ��
�� ��s5[E]

�� ��
�� ��s6[F]

u φs(u)
A s1.label
B s2.label
C s3.label
D s4.label
E s5.label
F s6.label

o φs(o)
o1,. . . ,o9 null

(b) Delta SEL

�� ��
�� ��s1[A] //�� ��

�� ��s8[ADEF]

%%KKKKKKKKKK
�� ��
�� ��s2[B] //

((RRRRRRRRRRRRRRRRRRRRRR
�� ��
�� ��s7[BC]

--[[[[[[[[[[[[[[[[[[[[[

�� ��
�� ��s3[C]

77oooo
�� ��
�� ��s10[ABCDEF]

�� ��
�� ��s4[D]

++XXXXXXXXXX

�� ��
�� ��s5[E] // s11[DEF] //

DD															
�� ��
�� ��s9[BDEF]

�� ��
�� ��s6[F]

33ffffffffff

u φs(u)
A s1.label
B s2.label
C s3.label
D s4.label
E s5.label
F s6.label

o φs(o)
o1,o2 s4.label

o3,o4,o5 s7.label
o6,o7 s8.label
o8 s9.label
o9 s10.label

(c) Full SEL

Figure 3.16 An example of BEL and SEL combination (Delta SEL and Full SEL)

and access keys and labels 〈(k,l),(ka,l a)〉 and an edge (bi, bj) if there is a token in Tb allowing the
derivation of either kj or kja from ki. Graphically, a vertex is simply represented by b and tokens
leading to derivation keys are distinguished from tokens leading to access keys by using dotted lines
for the latter. Each vertex bi in the key and token graph is characterized by: a derivation key along
with the corresponding label, denoted bi.key and bi.label , respectively; an access key along with
the corresponding label, denoted bi.keya and bi.labela, respectively. The corresponding encryption
policy Eb is graphically represented by an encryption policy graph GEb

as described in Section 3.3,

where notation u
Eb−→o indicates that there exists a path connecting u to o, both following tokens

and applying secure hash function h. Note that dotted edges can only appear as the last step of a
path in the graph (since they allow the derivation of access keys only). Figure 3.16(a) illustrates
an example of BEL key and token graph and key assignment and encryption schema enforcing the
authorization policy in Figure 3.1.

62 3. Selective encryption to enforce access control

Surface Encryption Layer. At the SEL level there is no distinction between derivation and
access keys (intuitively a single key carries out both functions). The SEL level is therefore charac-
terized by an encryption policy Es=〈U ,O,Ks,Ls, φs, Ts〉 that is defined and graphically represented
as described in Section 3.3. This means that the set Ks of keys and the set Ts of tokens can be
graphically represented through a key and token graph having a vertex s for each pair 〈k,l 〉 defined
at SEL and an edge (si, sj) if there is a token in Ts allowing the derivation of kj from ki. Each
vertex s in the graph is characterized by: a key, denoted s.key, and corresponding label, denoted
s.label ; and the set of users, denoted s.acl , who can derive s.key . The corresponding encryption
policy Es is graphically represented by an encryption policy graph as described in Section 3.3,

where notation u
Es−→o indicates that there exists a path connecting u to o.

BEL and SEL combination. In the two-layer approach, each object can then be encrypted twice:
at the BEL level first, and at the SEL level then. Users can access objects only passing through
the SEL level. Each user u receives two keys: one to access the BEL and the other to access the
SEL.4 Users will be able to access objects for which they know both the keys (BEL and SEL) used
for encryption.

The consideration of the two levels requires to restate the definition of policy equivalence, which
is now defined as follows.

Definition 3.11 (Policy equivalence). Let A = 〈U ,O,P〉 be an authorization policy, Eb =
〈U ,O,Kb,Lb, φb, Tb〉 be a BEL level encryption policy, and Es = 〈U ,O,Ks,Ls, φs, Ts〉 be a SEL level
encryption policy. A and the pair 〈Eb, Es〉 are equivalent, denoted A ≡ 〈Eb, Es〉, iff the following
conditions hold:

◦ ∀u ∈ U , o ∈ O : (u
Eb−→o ∧ u

Es−→o)=⇒ u
A
−→o

◦ ∀u ∈ U , o ∈ O u
A
−→o =⇒ (u

Eb−→o ∧ u
Es−→o)

In principle, any encryption policy at BEL and SEL can be specified as long as their combination
is equivalent to the authorization policy. Let A be the authorization policy at the initialization
time and let Eb be the encryption policy at the BEL level, which is equivalent to A (i.e., A ≡ Eb).
We envision two basic approaches that can be followed in the construction of the two levels.

Full SEL. The SEL encryption policy is initialized to reflect exactly (i.e., to repeat) the BEL en-
cryption policy: for each derivation key in BEL a corresponding key is defined in SEL; for
each token in BEL, a corresponding token is defined in SEL. Note that the set Ks of keys
and the set Ts of tokens form a key and token graph which is isomorphic to the one existing
at the BEL level and, therefore, also GEs

is isomorphic to GEb
. The key assignment and en-

cryption policy assigns to each user u a unique label φs(u)=vs.label (and therefore a unique
key vs.key) corresponding to φb(u)=vb.label . Also, it assigns to each object o a unique label
φs(o)=vs.label (and therefore a unique key vs.key) corresponding to φb(o)=vb.labela. The
SEL encryption policy models exactly the BEL encryption policy, and hence, by definition, is
equivalent to the authorization policy (i.e., A ≡ Es).

4To simplify key management, the user key for SEL can be obtained by the application of a secure hash function
from the user key for BEL. In this case, the data owner needs to send in the initialization phase to the server the
list of SEL keys of each user.

3.8. Policy updates in two-layer encryption 63

Delta SEL. The SEL policy is initialized to not carry out any over-encryption. Each user u is
assigned a unique label φs(u)=vs.label , and therefore a unique key vs.key . No encryption is
performed on objects, that is, ∀o ∈ O, φs(o) = null. The SEL level itself does not provide
any additional protection at start time, but it does not modify the accesses allowed by BEL.

We note that a third approach could be possible, where the permission enforcement is com-
pletely delegated at the SEL level and the BEL simply applies a uniform over-encryption (i.e., with
the same key released to all users) to protect the plaintext content from the server’s eyes. We do
not consider this approach as it presents a significant exposure to collusion (see Section 3.9).

It is easy to see that all the approaches described produce a correct two layer encryption. In
other words, given a correct encryption policy at the BEL level, the approaches produce a SEL level
such that authorization policy A and the pair 〈Eb,Es〉 are equivalent.

The reason for considering both the Full SEL and Delta SEL approaches is the different perfor-
mance and protection guarantees that they enjoy. In particular, Full SEL always requires double
encryption to be enforced (even when permissions remain unvaried), thus doubling the decryption
load of users for each access. By contrast, the Delta SEL approach requires double encryption only
when actually needed to enforce a change in the permissions. However, as we will see in Section 3.9,
the Delta SEL is characterized by greater information exposure, which instead does not affect the
Full SEL approach. The choice between one or the other can then be a trade-off between costs and
resilience to attacks.

We close this section with a remark on the implementation. In the illustration of our approach,
we always assume over-encryption to be managed with a direct and complete encryption and
decryption of the object, as needed. We note however that the server can, at the SEL level,
apply a lazy encryption approach, similar to the copy-on-write (COW) strategy used by most
operating systems, and actually over-encrypt the object when it is first accessed (and then storing
the computed encrypted representation); the server may choose also to always store the BEL

representation and then dynamically apply the encryption driven by the SEL when users access
the object.

3.8 Policy updates in two-layer encryption

While in the basic model described in Section 3.3, policy updates are demanded and regulated by
the owner, the two-layer approach enables the enforcement of policy updates without the need for
the owner to re-encrypt, and to resend objects to the server. By contrast, the owner just adds (if
necessary) some tokens at the BEL level and delegates policy changes to the SEL level by possibly
requesting the server to over-encrypt the objects. The SEL level (enacted by the server) receives
over-encryption requests by the BEL level (under the control of the data owner) and operates
accordingly, adjusting tokens and possibly encrypting (and/or decrypting) objects.

Before analyzing grant and revoke operations in this new scenario, we first describe the working
of over-encryption at the SEL level.

3.8.1 Over-encrypt

The SEL level regulates the update process through over-encryption of objects. It receives from
the BEL requests of the form Over-encrypt(O,U) corresponding to the demand to the SEL to

64 3. Selective encryption to enforce access control

make the set O of objects accessible only to users in U . Note here that the semantics is different
in the two different encryption modes. In the Full SEL approach, over-encryption must reflect the
actual authorization policy existing at any given time. In other words, it must reflect, besides the
- dynamic - policy changes not reflected in the BEL, also the BEL policy itself. In the Delta SEL

approach, over-encryption is demanded only when additional restrictions (with respect to those
enforced by the BEL) need to be enforced. As a particular case, here, the set U of users may be all

when - while processing a grant operation - the BEL determines that its protection is sufficient and
therefore requests the SEL not to enforce any restriction and to possibly remove an over-encryption
previously imposed.

Let us then see how the procedure works. Procedure Over-encrypt takes a set O of objects
and a set U of users as input. First, it checks whether there exists a vertex s whose key s.key
is used to encrypt objects in O and the set of users that can derive s.key is equal to U , that is,
s.acl=U . If such a vertex exists, objects in O are over-encrypted with a key that reflects the current
acl of objects in O and the procedure terminates. Note that since all objects in O share the same
key, it is sufficient to check the above condition on any of the objects o′ in O. Otherwise, if the
objects in O are currently over-encrypted, they are first decrypted through the key of the vertex s
such that s.label=φs(o

′). Also, vertex s is possibly removed from GEs
by procedure DeleteVertex.

Then, if the set of users that should be allowed access to the objects in O by the SEL is not all,
over-encryption is necessary. (No operation is executed otherwise, since U=all is the particular
case of Delta SEL approach discussed above.) The procedure checks then the existence of a vertex
s such that the set of users that can derive key s.key (i.e., belonging to s.acl) corresponds to U .
If such a vertex does not exist, it is created and inserted into the encryption policy graph at the
SEL level by function CreateNewVertex. Then, for each object o in O, the procedure encrypts
o through s.key and updates φs(o) and table Labels accordingly.

3.8.2 Grant and revoke

Consider first procedure Grant in Figure 3.17, which handles a request to grant user u access to
object o. The BEL level starts and regulates the update process as follows. First, acl(o) is updated
to include u. Then, the procedure retrieves the vertex bj whose access key bj .keya is the key with
which o is encrypted. If the object’s access key cannot be derived by u, then a new token from
user’s key bi.key , where bi is a vertex such that φb(u)=bi.label , to bj .keya is generated and added
to the token catalog. Note that the separation between derivation and access keys for each vertex
allows us to add a token only giving u access to the key used to encrypt object o, thus limiting
the knowledge of each user to the information strictly needed to guarantee equivalence with the
authorization policy. Indeed, knowledge of bi.keya is a necessary condition to make o accessible by
u. However, there may be other objects o′ that are encrypted with the same key bi.keya and which
should not be made accessible to u. Since releasing bi.keya would make them accessible to u, they
need to be over-encrypted so to make them accessible to users in acl(o′) only. Then, the procedure
determines if such a set of objects O′ exists. If O′ is not empty, the procedure partitions O′ in
sets such that each set S ⊆ O′ includes all objects characterized by the same acl , denoted aclS .
For each set S, the procedure calls Over-encrypt(S, aclS) to demand SEL to execute an over-
encryption of S for users in aclS . In addition, the procedure requests the SEL level to synchronize
itself with the policy change. Here, the procedure behaves differently depending on the encryption
model assumed. In the case of Delta SEL, the procedure first controls whether the set of users that
can reach the object’s access key (i.e., the set of users u∈U such that bj .keya can be computed

3.8. Policy updates in two-layer encryption 65

BEL SEL

GRANT(u,o)

acl(o) := acl(o) ∪ {u}
find the vertex bj with bj .labela = φb(o)

if u
Eb
6−→o then

find the vertex bi with bi.label = φb(u)
ti,j := bj .keya ⊕ h(bi.key,bj .labela)
Tb := Tb ∪ {ti,j}
upload token ti,j on the server by storing it in table Tokens

O′ := {o′ :o′ 6=o∧φb(o’)=φb(o)∧∃u∈U :u
Eb−→o∧u 6∈acl(o′)}

if O′ 6= ∅ then
Partition O′ in sets such that each set S
contains objects with the same acl aclS

for each set S do
Over-encrypt(aclS ,S)

case encryption model of

Delta SEL: if {u:u∈U∧ u
Eb−→bi}=acl(o) then

Over-encrypt(all,{o})
else

Over-encrypt(acl(o),{o})
Full SEL: Over-encrypt(acl(o),{o})

REVOKE(u,o)

acl(o) := acl(o) − {u}
Over-encrypt(acl(o),{o})

OVER-ENCRYPT(U ,O)

let o′ be an object in R

if (∃ s :s.label=φs(o
′)∧s.acl=U) then

exit
else

if φs(o
′) 6= null then

find the vertex s with s.label=φs(o
′)

for each o∈O do
decrypt o with s.key

DeleteVertex(s)
if U 6=all then

find the vertex s with s.acl=U
if s=undef then

s := CreateNewVertex(U)
for each o∈O do

φs(o) := s.label
encrypt o with s.key
update Labels on the server

Figure 3.17 Procedures for granting and revoking permission 〈u,o〉

knowing bi.key , with φb(u)=bi.label) corresponds to acl(o). If so, the BEL encryption suffices and
no protection is needed at the SEL level, and therefore a call Over-encrypt({o},all) is requested.
Otherwise, a call Over-encrypt({o},acl(o)) requests the SEL to make o accessible only to users in
acl(o). In the case of Full SEL, this is done by always calling Over-encrypt(o,acl(o)), requesting
the SEL to synchronize its policy so to make o accessible only by the users in acl(o).

Consider now procedure Revoke in Figure 3.17, which revokes from user u access to object o.
The procedure updates acl(r) to remove user u and calls Over-encrypt({o},acl(o)) to demand
SEL to make o accessible only to users in acl(o).

In terms of performance, the grant and revoke procedures only require a direct navigation of
the BEL and SEL structures and they produce the identification of the requests to be sent to the
server in a time which, in typical scenarios, will be less than the time required to send the messages
to the server.

Example 3.3. Consider the two layer encryption policy depicted in Figure 3.16. Figures 3.18
and 3.19 illustrate the evolution of the corresponding key and token graphs and of both φb(o) and
φs(o) for objects in O when the following grant and revoke operations are executed. Note that we do
not report φb(u) and φs(u) for users in U since they never change due to grant/revoke operations.
Note also that the key and token graph at SEL level evolves exactly as described in Example 3.2.

◦ Grant(D,o3): first acl(o3) is updated by inserting D. Then, since access key b7.keya used
to encrypt o3 cannot be derived from the derivation key of vertex b4 corresponding to φb(D),
the data owner adds a BEL token allowing to compute b7.keya from b4.key. Since b7.keya is

66 3. Selective encryption to enforce access control

�� ��
�� ��b1 //�� ���� ��b8

""EEEEEEEE
�� ��
�� ��b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR �� ��
�� ��b7

--[[[[[[[[[[[[[[[[[[[[[[

�� ��
�� ��b3

66mmmmmmm �� ��
�� ��b10

�� ��
�� ��b4

,,XXXXXXXXXXXXXX

==

�� ��
�� ��b5 //�� ��

�� ��b11 //

EE��������������
�� ��
�� ��b9

�� ��
�� ��b6

22ffffffffffffff

o φb(o)
o1,o2 b4.labela

o3,o4,o5 b7.labela
o6,o7 b8.labela
o8 b9.labela
o9 b10.labela

Grant(D,o3)

�� ��
�� ��s1[A]

�� ��
�� ��s2[B]

''OOOO
�� ��
�� ��s3[C] //�� ��

�� ��s7[BC]

�� ��
�� ��s4[D]

�� ��
�� ��s5[E]

�� ��
�� ��s6[F]

o φs(o)
o1,. . . ,o3 null

o4,o5 s7.label
o6,. . . ,o9 null

Delta SEL - Over-encrypt(BC,{o4,o5})
Over-encrypt(all,o3)

�� ��
�� ��s1[A] //�� ��

�� ��s8[ADEF]

$$IIIIIIIIIII

�� ��
�� ��s2[B] //

((QQQQQQQQQQQQQQQQQQQQQQQQQ
�� ��
�� ��s7[BC]

--[[[[[[[[[[[[[[[[[[[[[[[

((QQQQQQ

�� ��
�� ��s3[C]

88ppppp
�� ��
�� ��s12[BCD] �� ��

�� ��s10[ABCDEF]

�� ��
�� ��s4[D]

++WWWWWWWWWWWW

33gggggggggggg

�� ��
�� ��s5[E] // s11[DEF] //

EE�����������������
�� ��
�� ��s9[BDEF]

�� ��
�� ��s6[F]

33gggggggggggg

o φs(o)
o1,o2 s4.label
o3 s12.label

o4,o5 s7.label
o6,o7 s8.label
o8 s9.label
o9 s10.label

Full SEL - Over-encrypt(BC,{o4,o5})
Over-encrypt(BCD,{o3})

Figure 3.18 An example of grant operation

also used to encrypt objects o4 and o5, which D is not authorized to view, these objects have
to be over-encrypted in such a way that they are accessible only to users B and C. In the
Delta SEL scenario, Over-encrypt creates a new vertex s7, with s7.acl=BC, for objects o4

and o5. The protection of object o3 at BEL level is instead sufficient and no over-encryption
is needed (i.e., procedure Over-encrypt is called with U=all). In the Full SEL scenario
objects o4 and o5 are already correctly protected, o3 is instead over-encrypted with the key
of vertex s12, which is created and inserted in the graph by function CreateNewVertex.
Finally, procedure DeleteVertex is called with s7 as a parameter and, since s7.key is used
to encrypt o4 and o5, vertex s7 is not removed from the graph.

3.8. Policy updates in two-layer encryption 67

�� ��
�� ��b1 //�� ���� ��b8

""EEEEEEEE
�� ��
�� ��b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR �� ��
�� ��b7

--[[[[[[[[[[[[[[[[[[[[[[

�� ��
�� ��b3

66mmmmmmm �� ��
�� ��b10

�� ��
�� ��b4

,,XXXXXXXXXXXXXX

==

�� ��
�� ��b5 //�� ��

�� ��b11 //

EE��������������
�� ��
�� ��b9

�� ��
�� ��b6

22ffffffffffffff

o φb(o)
o1,o2 b4.labela

o3,o4,o5 b7.labela
o6,o7 b8.labela
o8 b9.labela
o9 b10.labela

Revoke(F ,o8)

�� ��
�� ��s1[A]

�� ��
�� ��s2[B] //

((QQQQQQQQQQQQQ
�� ��
�� ��s7[BC]

�� ��
�� ��s3[C]

77oooo

�� ��
�� ��s4[D] //�� ��

�� ��s13[BDE]

�� ��
�� ��s5[E]

33ffffffffff

�� ��
�� ��s6[F]

o φs(o)
o1,. . . ,o3 null

o4,o5 s7.label
o6,o7 null

o8 s13.label
o9 null

Delta SEL - Over-encrypt(BDE,{o8})

�� ��
�� ��s1[A]

%%LLLLLLLLLLLLLLLLLLLLLLLLLLL
�� ��
�� ��s7[BC] //

++WWWWWWWWWWWWWWWWWWWWWWWWWW �� ��
�� ��s12[BCD]

�� ��
�� ��s2[B]

88ppppp //�� ��
�� ��s13[BDE]

�� ��
�� ��s3[C]

@@���������
�� ��
�� ��s10[ABCDEF]

�� ��
�� ��s4[D]

;;vvvvvvvvvvvvvvvvvv

77ooooooooooooooo

--ZZZZZZZZZZZZZZZZZZZZZ

�� ��
�� ��s5[E]

;;vvvvvvvvvvvvvvvvvv //�� ��
�� ��s8[ADEF]

�� ��
�� ��s6[F]

11ddddddddddddddddddddd

o φs(o)
o1,o2 s4.label
o3 s12.label

o4,o5 s7.label
o6,o7 s8.label
o8 s13.label
o9 s10.label

Full SEL - Over-encrypt(BDE,{o8})

Figure 3.19 An example of revoke operation

◦ Revoke(F ,o8): first acl(o8) is updated by removing F . Since now acl(o8) becomes {BEF},
object o8 has to be over-encrypted with a key that only this set of users can compute. Con-
sequently, both in the Delta SEL and in the Full SEL scenario, a new vertex s13 representing
BEF is created and its key is used to protect o8. Also, in the Full SEL scenario, procedure
DeleteVertex is called with s9 as a parameter. Since s9 is no more a useful vertex, it is
removed from the graph. The procedure recursively calls itself with s2 and with s11 as a pa-
rameter. Vertex s2 is not removed since it corresponds to user B while vertex s11 is removed
from the graph.

68 3. Selective encryption to enforce access control

3.8.3 Correctness

We now prove that the procedures implementing the grant and revoke operations preserve policy
equivalence.

Theorem 3.7. Let A = 〈U ,O,P〉 be an authorization policy, Eb=〈U ,O,Kb,Lb, φb, Tb〉 be an
encryption policy at the BEL level, and Es=〈U ,O,Ks,Ls, φs, Ts〉 be an encryption policy at the SEL

level such that A ≡ 〈Eb,Es〉. Procedures in Figure 3.17 generate a new Eb
′ = 〈U ,O,Kb

′,Lb
′, φb

′, Tb
′〉,

Es
′ = 〈U ,O,Ks

′,Ls
′, φs

′, Ts
′〉, and A′ such that A′ ≡ 〈Eb

′, Es
′〉.

Proof. Since we assume that A ≡ 〈Eb, Es〉 when procedures Grant and Revoke are called, we will
consider only users and objects for which the encryption and authorization policies change. Grant
and revoke are based on the correctness of over-encryption operations. We then examine it first.

Over-encrypt. We need to prove that over-encrypt(O,U) possibly encrypts all objects in
O with a key in such a way that a user u′ can derive such a key if and only if u′ ∈U .
The only case we need to consider is when the set of users U is different from all (when
U=all, objects in O are not needed to be over-encrypted). Then, if the condition in the
first if statement is evaluated to true, objects in O are already correctly protected and
since the procedure terminates, the result is correct. Otherwise, objects in O are first
possibly decrypted and then encrypted with the correct key s.key or with a key assigned to
vertex s created through function CreateNewVertex(U). The correctness is guaranteed
by the correctness of both function CreateNewVertex and procedure DeleteVertex
(Lemmas 3.4 and 3.3).

Grant. 〈Eb
′, Es

′〉 =⇒ A′

Consider user u and object o. From the procedures in Figure 3.17, it is easy to see that
φ′

b(o) = φb(o) and also that there is a (set of) token allowing to derive the key of the vertex
with label φ′

b(o) by knowing the vertex with label φ′
b(u). From the case instruction and

by the correctness of Over-encrypt, either φ′
s(o) = null or o is over-encrypted with a key

such that from the key of the vertex with label φ′
s(o) it is possible to derive the key of the

vertex with label φ′
s(o) through Ts

′ (user u is included in the current acl(o)). Since the key
of the vertex with label φ′

b(o) can be derived from the key of the vertex with label φ′
b(u) and

the key of the vertex with label φ′
s(o) can be derived from the key of the vertex with label

φ′
s(u), we have that u

A′

−→o.

Consider now the set of objects O′ and suppose that O′ is not empty. For each subset S
of O′, user u can now derive the key used to encrypt such a set of objects. This implies
that ∀o′ ∈ S, φ′

b(o
′) = φb(o

′), which corresponding key can be computed starting from the
key of the vertex with label φ′

b(u). However, by the correctness of Over-encrypt, a call
over-encrypt(S,aclS) guarantees that all objects o′ in S are over-encrypted with a key
such that ∀o′ ∈ S, the key of the vertex with label φ′

s(o
′) is not derivable from the key of the

vertex with label φ′
s(u) because aclS does not include user u.

〈Eb
′, Es

′〉 ⇐= A′

Consider user u and object o. From the first instruction in procedure Grant, we have that

u
A′

−→o. From the pseudocode in Figure 3.17, it is easy to see that φ′
b(o) = φb(o) and that the

3.9. Protection evaluation 69

corresponding key can be computed knowing the key of the vertex with label φ′
b(u). Also,

from the case instruction and by the correctness of Over-encrypt, either φ′
s(o) = null or

o is over-encrypted with the key of the vertex with label φ′
s(o) such that it can be derived

from the key of the vertex with label φ′
s(u).

Revoke. 〈Eb
′, Es

′〉 =⇒ A′

Consider user u and object o. A call Over-encrypt({o},acl(o)) is requested to de-
mand the SEL to make o accessible only to users in the current acl(o). We know

that u
E′

b−→o. Also, from the correctness of Over-encrypt, it is easy to see that the key
of the vertex with label φ′

s(o) cannot be computed from the key of the vertex with label φ′
s(u).

〈Eb
′, Es

′〉 ⇐= A′

Consider user u and object o. From the first instruction in the procedure we have that

u
A′

6−→o. The subsequent call over-encrypt({o},acl(o)) makes object o no more accessible to
user u because o is over-encrypted with a key that is no more derivable by u (this property
is a consequence of the correctness of Over-encrypt), that is, the key of the vertex with
label φ′

b(o) is still derivable from the key of the vertex with label φ′
b(u) but the key of the

vertex with label φ′
s(o) is not derivable from the key of the vertex with label φ′

s(u).

3.9 Protection evaluation

Since the BEL and SEL encryption policies are equivalent to the authorization policy at initialization
time, the correctness of the procedures in Figure 3.17 ensures that the authorization policy A and
the pair 〈Eb, Es〉 are equivalent. In other words, at any point in time, users will be able to access
only objects for which they have - directly or indirectly - the necessary keys both at the BEL and
at the SEL level.

The key derivation function adopted is proved to be secure [8]. We also assume that all
the encryption functions and the tokens are robust and cannot be broken, even combining the
information available to many users. Moreover, we assume that each user correctly manages her
keys, without the possibility for a user to steal keys from another user.

It still remains to evaluate whether the approach is vulnerable to attacks from users who access
and store all information offered by the server, or from collusion attacks, where different users (or
a user and the server) combine their knowledge to access objects they would not otherwise be able
to access. Note that for collusion to exist, both parties should gain in the exchange (as otherwise
they will not have any incentive in colluding).

To model exposure, we first examine the different views that one can have on an object o by
exploiting a graphical notation with object o in the center and with fences around o denoting the
barriers to the access imposed by the knowledge of the keys used for o’s encryption at the BEL

(inner fence) and at the SEL (outer fence). The fence is continuous if there is no knowledge of the
corresponding key (the barrier cannot be passed) and it is discontinuous otherwise (the barrier can
be passed). Figure 3.20 illustrates the different views that can exist on the object. On the left,
Figure 3.20(a), there is the view of the server itself, which knows the key at the SEL level but does

70 3. Selective encryption to enforce access control

Server’s view User’s view

o

BEL

SEL

o

BEL

SEL

o

BEL

SEL

o

BEL

SEL

o

BEL

SEL

open locked sel locked bel locked

(a) (b) (c) (d) (e)

Figure 3.20 Possible views on object o

not have access to the key at the BEL level. On the right, there are the different possible views of
users, for whom the object can be:

◦ open: the user knows the key at the BEL level as well as the key at the SEL level (Fig-
ure 3.20(b));

◦ locked: the user knows neither the key at the BEL level nor the key at the SEL level (Fig-
ure 3.20(c));

◦ sel locked: the user knows only the key at the BEL level but does not know the key at the
SEL level (Figure 3.20(d));

◦ bel locked: the user knows only the key at the SEL level but does not know the one at the
BEL level (Figure 3.20(e)). Note that this latter view corresponds to the view of the server
itself.

By the authorization policy and the encryption policy equivalence (Theorem 3.7), the open

view corresponds to the view of authorized users, while the remaining views correspond to the
views of non authorized users.

We now discuss possible information exposure, with the conservative assumption that users are
not oblivious (i.e., they have the ability to store and keep indefinitely all information they were
entitled to access).

3.9.1 Exposure risk: Full SEL

In the Full SEL approach, at initialization time, BEL and SEL are completely synchronized. For
each user, an object is then protected by both keys or by neither: authorized users will have
the open view, while non authorized users will have the locked view. Figure 3.21 summarizes the
possible view transitions starting from these two views.

Let us first examine the evolution of the open view. Since objects at the BEL level are not
re-encrypted, the view of an authorized user can change only if the user is revoked the permission.
In this case, the object is over-encrypted at the SEL level, then becoming sel locked for the user.
The view could be brought back to be open if the user is granted the permission again (i.e.,
over-encryption is removed).

Let us now examine the evolution of the locked view. For how the SEL is constructed and
maintained in the Full SEL approach, it cannot happen that the SEL grants a user an access that
is blocked at the BEL level, and therefore the bel locked view can never be reached. The view

3.9. Protection evaluation 71

o

BEL

SEL

o

BEL

SEL

o

BEL

SEL

open

locked

sel_locked

Figure 3.21 View transitions in the Full SEL

o o
’

BEL

SEL

BEL

SEL

open
locked
 sel_locked

o o
’

grant
(
u,o
’
)

Figure 3.22 From locked to sel locked views

can instead change to open, in case the user is granted the permission to access the object; or to
sel locked, in case the user is given the access key at the BEL level but she is not given that at the
SEL level. This latter situation can happen if the release of the key at the BEL level is necessary
to make accessible to the user another object o′ that is, at the BEL level, encrypted with the same
key as o. To illustrate, suppose that at initialization time objects o and o′ are both encrypted with
the same key and they are not accessible by user u (see the leftmost view in Figure 3.22). Suppose
then that u is granted the permission for o′. To make o′ accessible at the BEL level, a token is
added to make the key corresponding to label φb(o) derivable by u, where however φb(o)=φb(o

′).
Hence, o′ will be over-encrypted at the SEL level and the key corresponding to label φs(o

′) made
derivable by u. The resulting situation is illustrated in Figure 3.22, where o′ is open and o results
sel locked.

We now analyze what are the possible views of users that may collude. Users having the
open and the locked view need not be considered as they have nothing to gain in colluding. Also,
recall that in the Full SEL approach, for what said previously, nobody (but the server) can have a
bel locked view. This leaves us only with users having the sel locked view. Since users having the
same views will not gain anything in colluding, the only possible collusion can happen between
the server (who has a bel locked view) and a user who has a sel locked view. In this situation, the
knowledge of the server allows lowering the outer fence, while the knowledge of the user allows
lowering the inner fence: merging their knowledge, they would then be able to bring down both
fences and enjoy the open view on the object. The risk of collusion then arises on objects for which
a user holds a sel locked view and the user never had the permission to access the object (i.e., the
user never belonged to the acl of the object). Indeed, if a user would get access to an object she
previously had permission for, the user has no gain in colluding with the server.

Besides collusion between different parties, we also need to consider the risk of exposure due to
a single user merging her own views on an object at different points in time. It is easy to see that,
in the Full SEL approach, where all non authorized users start with a locked view on the object

72 3. Selective encryption to enforce access control

o

BEL

SEL

o

BEL

SEL

o

BEL

SEL

open

bel_locked

sel_locked

o

BEL

SEL

locked

Figure 3.23 View transitions in the Delta SEL

(and transitions are as illustrated in Figure 3.21), there is no risk of exposure. Trivially, if the user
is released the key at the SEL level (i.e., it is possible for her to bring down the lower fence) it is
because the user has the permission for o at some point in time and therefore she is (or has been)
authorized for the object. There is therefore no exposure risk.

3.9.2 Exposure risk: Delta SEL

In the Delta SEL approach, users not authorized to see an object have, at initial time, the bel locked

view on it. From there, the view can evolve to be open, sel locked, or locked. The view becomes
open in case the user is given the permission for o; it becomes sel locked in the case the user is
given the permission for an object o′ that is, at the BEL level, encrypted with the same key as o;
it becomes locked if another user is given the permission for an object o′ that is, at the BEL level,
encrypted with the same key as o, thus implying that both BEL and SEL level keys are not known
to the user. View transitions are illustrated in Figure 3.23. It is easy to see that, in this case,
a single user by herself can then hold the two different views: sel locked and bel locked. In other
words a (planning-ahead) user could retrieve the object at initial time, when she is not authorized,
getting and storing at her side o’s bel locked view. If, at a later point in time the user is released
the key corresponding to label φb(o) to make accessible to her another object o′, she will acquire
the sel locked view on o. Merging this with the past bel locked view, she can enjoy the open view
on o. Note that the set of objects potentially exposed to a user coincides with the objects exposed
to collusion between that user and the server in the Full SEL approach.

It is important to note that in both cases (Full SEL and Delta SEL), exposure is limited to
objects that have been involved in a policy split to make other objects, encrypted with the same
BEL key, available to the user. Exposure is therefore limited and well identifiable. This allows the
owner to possibly counteract it via explicit selective re-encryption or by proper design (as discussed
in the next section).

The collusion analysis clarifies why we did not consider the third possible encryption scenario
illustrated in Section 3.7. In this scenario, all users non authorized to access an object would
always have the sel locked view on it and could potentially collude with the server. The fact that
the BEL key is the same for all objects would make all the objects exposed (as the server would
need just one key to be able to access them all).

3.10. Experimental results 73

3.9.3 Design considerations

From the analysis above, we can make the following observations on the Delta SEL and the Full SEL

approaches.

◦ Exposure protection. The Full SEL approach provides superior protection, as it reduces the
risk of exposure, which is limited to collusion with the server. By contrast, the Delta SEL

approach exposes also to single (planning-ahead) users.

◦ Performance. The Delta SEL approach provides superior performance, as it imposes over-
encryption only when required by a change in permissions. By contrast, the Full SEL approach
always imposes a double encryption on the objects, and therefore an additional load.

From these observations we can draw some criteria that could be followed by a data owner
when choosing between the use of Delta SEL or Full SEL. If the data owner knows that:

◦ the access policy will be relatively static, or

◦ sets of objects sharing the same acl at initialization time represent a strong semantic rela-
tionship rarely split by policy evolution, or

◦ objects are grouped in the BEL in fine granularity components where most of the BEL vertices
are associated with a single or few objects,

then the risk of exposing the data to collusion is limited also in the Delta SEL approach, which can
then be preferred for performance reasons.

By contrast, if permissions have a more dynamic and chaotic behavior, the Full SEL approach
can be preferred to limit exposure due to collusion (necessarily involving the server). Also, the
collusion risk can be minimized by a proper organization of the objects to reduce the possibility
of policy splits. This could be done either by producing a finer granularity of encryption and/or
better identifying object groups characterized by a persistent semantic affinity (in both cases, using
in the BEL different keys for objects with identical acl).

3.10 Experimental results

An important issue for the success of the presented techniques is their scalability. The potential for
their adoption would be greatly compromised if they were not applicable in large-scale scenarios.
A natural verification of their adaptability to large configurations could start from the extraction
of a complex authorization policy from a large system, with the goal of computing an equivalent
encryption policy using the approach presented above. Unfortunately, there is no large scale
access control system available today producing a significant test for the techniques presented in
this chapter. The most structurally rich access policies are today those that characterize large
enterprise scenarios, but these policies typically exhibit a relatively poor structure, which can be
represented in our system with a limited number of tokens and almost no effort on the part of the
construction algorithm. We then need to follow a different strategy to obtain a robust guarantee
on the ability of the proposed system to scale well, building a simulated scenario exhibiting large
scale and articulated policies. As we describe later, a single experiment was not sufficient and we

74 3. Selective encryption to enforce access control

 3500

 3000

 2500

 2000

 1500
 2000 1750 1500 1250

N
um

be
r

of
 T

ok
en

s

Number of Users

only material vertices
with non material vertices

Figure 3.24 Number of tokens for the DBLP scenario

designed two series of experiments, covering different configurations that solicited the system in
two distinct ways.

The first scenario starts from the premise that data outsourcing platforms are used to support
the exchange and dissemination of objects among the members of a user community. The idea
then is to use a description of the structure of a large social network to derive a number of object
dissemination requests. We identified as a source for the construction of a large social network the
coauthor relationship represented within the DBLP bibliography index. DBLP [39] is a well-known
bibliographic database that currently indexes more than one million articles. The assumption at
the basis of the first series of experiments is that each paper represents an object that must be
accessible by all its authors.

The social network of DBLP coauthors has been the subject of several investigations, showing
that this network has a structure similar to that of other social networks, synthetically classified
as a power-law or self-similar structure. We implemented a C++ program that starts from a
random author and considers all his/her publications and coauthors; then, one of the coauthors is
randomly chosen and his/her publications and corresponding coauthors are iteratively retrieved,
extending the user population and the set of objects. We then built a token-based encryption
policy corresponding to the access policy where every author has access to all the papers that
he/she has authored or co-authored.

The first metric we considered in the experiments is the number of tokens required for the
representation of the access policy. The graph in Figure 3.24 presents how the number of tokens
increases with the number of users. We observe that the growth is linear and that the number of
tokens remains low (with 2000 authors, we have 3369 tokens).

Another important metric was the one evaluating the impact of the identification of candidate
non-material vertices. This optimization presented a very limited benefit in the DBLP scenario,
as visible from Figure 3.24 (18 tokens gained out of 3369, thanks to the introduction of 12 non-

3.10. Experimental results 75

 75000

 50000

 25000

 0
 2000 1500 1000 500

N
um

be
r

of
 T

ok
en

s

Number of Users

only material vertices
with non material vertices

Figure 3.25 Number of tokens for the championship scenario

material vertices). The rationale is that the structure of the social network is relatively sparse.
As it has been demonstrated by other investigations on the structure of self-similar networks, they
are characterized by a few nodes which present a high level of connectedness, whereas most of
the network nodes are loosely connected with a few other nodes and form small strictly connected
communities. Then, the construction of a token-based encryption policy for a situation like this
produces a relatively simple graph, with relatively few tokens. This is a positive and important
property, which demonstrates that our approach is immediately applicable to large social networks,
with an efficient construction.

Taking into account the behavior emerging from the above experimental scenario, it became
interesting to test the behavior of the system in a more difficult configuration, with a complex
access control policy. We were specifically interested in evaluating the benefit produced by the
application of the optimization introduced in this chapter. As representative of a potential selective
dissemination scenario, we consider the case study, also analyzed in [34, 40], of a sport news
database. The chosen service manages a system with t teams, where each team is composed by
pt players and is coordinated by one manager. The service is supposed to be used by s team
supporters, referred in the following as subscribers. Moreover, a set of reporters follows the league
and uses the service to work with tr teams. The reporters are grouped into sets of rm elements, each
of which coordinated by one manager. In the considered scenario, each subject (team manager,
reporter, reporter manager, and subscribers) can subscribe to any number of objects, partitioned
between player news and team news. Consistently with [34, 40], the set of permissions granted to
subscribers is modeled to be quite large to evaluate the algorithms in a significant scenario. The
number of team news accessed by each subscriber, along with the player news of the same team,
follows a Zipf distribution that increases with the number s of subscribers.

The novel results presented in Figure 3.24 (continuous line) show the number of tokens required
for the representation of the policy. It is immediate to observe that the number of tokens required

76 3. Selective encryption to enforce access control

per user is significantly higher, due to the more intricate structure of the policy in this experimental
setup. Still, the number of tokens after the application of the optimization techniques increases
linearly with the increase in the number of users, with no sign of divergence for extremely large
configurations. The graph in Figure 3.25 shows the advantage produced by the identification of
non-material vertices. It is immediate to observe that the advantage is significant, with a 82%
reduction on average on the number of tokens.

Overall, the experiments allow us to express two important claims. First, the approach pre-
sented in this chapter is able to manage large scenarios, particularly when the access policy presents
a structure analogous to that exhibited by social networks. Second, for complex access policies that
present a complex structure and would otherwise require a significant number of tokens per user,
the use of the optimization techniques introduced by this chapter is able to provide a significant
reduction in the complexity, keeping at a manageable level the total number of tokens required for
the representation of the policy.

3.11 Chapter summary

There is an emerging trend towards scenarios where data management is outsourced to an external
service providing storage capabilities and high-bandwidth distribution channels. In this context,
selective release requires enforcing measures to protect the data confidentiality from both unau-
thorized users as well as “honest-but-curious” servers. Current solutions provide protection by
exploiting encryption in conjunction with proper indexing capabilities, but suffer from limitations
requiring the involvement of the owner every time selective access is to be enforced or the access
policy is modified. This chapter presents a model that efficiently organizes the use of cryptographic
services for the management of an access control policy, while allowing efficient access to data by
optimizing the public catalog structure. Since the most important problem arising when using
cryptography as a way for enforcing access control is policy updates management, we introduced
the idea of enforcing the authorization policy by using a two-layer selective encryption. Our solu-
tion offers significant benefits in terms of quicker and less costly realization of authorization policy
updates and general efficiency of the system. We believe these benefits to be crucial for the success
of emerging scenarios characterized by a huge collection of data that have to be distributed in a
selective way to a variety of users.

4

Combining fragmentation and encryption to

protect data privacy

Traditional solutions for granting data privacy rely on encryption. However, dealing with encrypted
data makes query processing expensive. In this chapter, we propose a solution to enforce privacy
over data collections combining data fragmentation with encryption. We model privacy require-
ments as confidentiality constraints expressing the sensitivity of the content of single attributes
and of their associations. We then use encryption as an underlying (conveniently available) mea-
sure for making data unintelligible, while exploiting fragmentation to break sensitive associations
among attributes. We introduce both exact and heuristic algorithms computing a fragmentation
that tries to minimize the impact of fragmentation on query efficiency.

4.1 Introduction

Information is probably today the most important and valued resource. Private and governmental
organizations are increasingly gathering vast amounts of data, which are collected and maintained,
and often include sensitive personally identifiable information. In such a scenario guaranteeing the
privacy of the data, be them stored in the system or communicated to external parties, becomes a
primary requirement.

Individuals, privacy advocates, and legislators are today putting more and more attention on
the support of privacy over collected information. Regulations are increasingly being established
responding to these demands, forcing organizations to provide privacy guarantees over sensitive
information when storing, processing or sharing it with others. Most recent regulations (e.g.,
see [22] and [78]) require that specific categories of data (e.g., data disclosing health and sex life,
or data such as ZIP and date of birth that can be exploited to uniquely identify an individual [83])
to be either encrypted or kept separate from other personally identifiable information (to prevent
their association with specific individuals). Information privacy guarantees may also derive from
the need of preventing possible abuses of critical information. For instance, the “Payment Card
Industry (PCI) Data Security Standard” [77] forces all the business organizations managing credit

78 4. Combining fragmentation and encryption to protect data privacy

card information (e.g., VISA and MasterCard) to apply encryption measures when storing data.
The standard also explicitly forbids the use of storage encryption as natively offered by operating
systems, requiring access to the encryption keys to be separated from the operating system services
managing user identities and privileges.

This demand for encryption is luckily coupled today with the fact that the realization of cryp-
tographic functions presents increasingly lower costs in a computer architecture, where the factor
limiting system performances is typically the capacity of the channels that transfer information
within the system and among separate systems. Cryptography then becomes an inexpensive tool
that supports the protection of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted information represents a
burden since encryption makes it not always possible to efficiently execute queries and evaluate
conditions over the data. In fact, a straightforward approach to guarantee privacy to a collection
of data could consist in encrypting all the data. This technique is, for example, adopted in the
database outsourcing scenario [35, 55], as discussed in Chapters 2 and 3. The assumption under-
lying approaches applying such an encryption wrapper is that all the data are equally sensitive
and therefore encryption is a price to be paid to protect them. This assumption is typically an
overkill in many scenarios. As a matter of fact, in many situations data are not sensitive per se;
what is sensitive is their association with other data. As a simple example, in a hospital the list
of illnesses cured or the list of patients could be made publicly available, while the association
of specific illnesses to individual patients is sensitive and must be protected. Hence, there is no
need to encrypt both illnesses and patients if there are alternative ways to protect the association
between them.

A promising approach to protect sensitive data or sensitive associations among data is rep-
resented by the combined use of fragmentation and encryption. Fragmentation and encryption
provide protection of data in storage or when disseminated ensuring no sensitive information is
disclosed neither directly (i.e., present in the database) nor indirectly (i.e., derived from other in-
formation present in the database). With this design, the data can be outsourced and stored on an
untrusted server, typically obtaining lower costs, greater availability, and more efficient distributed
access. The advantage of having only part of the data encrypted is that all the queries that do not
require to reconstruct confidential information will be managed more efficiently and securely. Also,
the idea that the higher-level privilege is only used when strictly necessary represents a concrete
realization of the “least privilege” principle.

We frame our work in the context of relational databases. The reason for this choice is that
relational databases are by far the most common solution for the management of the data subject
of privacy regulations; also, they are characterized by a clear data model and a simple query
language that facilitate the design of a solution. We note, however, that our model could be easily
adapted to the protection of data represented with other data models (e.g., records in files or XML
documents).

As discussed in Chapter 2, the combined use of fragmentation and encryption to protect con-
fidentiality has been initially proposed in [2], where information is stored on two separate servers
and protection relies on the hypothesis that the servers cannot communicate. This assumption
is clearly too strong in any practical situation. Our solution overcomes the above limitations: it
allows storing data even on a single server and minimizes the amount of data represented only in
encrypted format, therefore allowing for efficient query execution.

This chapter, after introducing confidentiality constraints as a simple, yet powerful, way to
capture privacy requirements, presents three different approaches for the design of a fragmentation

4.2. Confidentiality constraints 79

that looks carefully at performance issues. The first approach tries to minimize the number of
fragments composing the solution, the second is based on the affinity between pairs of attributes,
and the third exploits a complete query workload profile of the system. Then, we introduce
a complete search algorithm that computes an optimal fragmentation satisfying confidentiality
constraints, which can be adapted to each of the three optimization models. Also, for each cost
model considered, we propose an ad hoc heuristic algorithm working in polynomial time. Our
approach also manages encrypted indexes, trying to analyze the vulnerability of sensitive data due
to their introduction. The experimental results support the quality of the solutions produced by
the three heuristics, with respect to the result computed by the complete search strategy.

4.1.1 Chapter outline

The remainder of the chapter is organized as follows. Section 4.2 formally defines confidentiality
constraints. Sections 4.3 presents our model for enforcing confidentiality constraints by combin-
ing fragmentation and encryption. Section 4.4 introduces the definition of minimal fragmentation
and shows that it is a NP-hard problem. Section 4.5 describes a complete search approach that
efficiently visits the solution space lattice. Section 4.6 introduces the definition of vector-minimal
fragmentation and presents a heuristic algorithm for computing a fragmentation satisfying such a
definition. Section 4.7 introduces the concept of attribute affinity. Section 4.8 presents a heuristic
algorithm for computing a fragmentation guided by the affinity. Section 4.9 introduces the cost
model based on query workload. Section 4.10 presents an algorithm for computing a fragmenta-
tion guided by the cost of query execution. Section 4.11 illustrates how queries formulated on the
original data are mapped into equivalent queries operating on fragments. Section 4.12 discusses
the introduction of indexes on encrypted attributes. Section 4.13 presents the experimental re-
sults obtained by the implementation of both complete search and heuristic algorithms. Finally,
Section 4.14 presents our concluding remarks.

4.2 Confidentiality constraints

We consider a scenario where, consistently with other proposals (e.g., [2, 83]) the data to be
protected are represented with a single relation r over a relation schema R(a1,. . . ,an), containing
all the information that need to be protected. For simplicity, when clear from the context, we will
use R to denote either the relation schema R or the set of attributes in R (instead of using R.∗).

We model in a quite simple and powerful way the privacy requirements through confidentiality
constraints, which are sets of attributes, as follows.

Definition 4.1 (Confidentiality constraint). Let A be a set of attributes, a confidentiality con-
straint c over A is:

1. a singleton set {a} ⊂ A, stating that the values of the attribute are sensitive (attribute
visibility); or

2. a subset of attributes in A, stating that the association among values of the given attributes
is sensitive (association visibility).

While simple, a confidentiality constraint supports the definition of different confidentiality
requirements that may need to be expressed, such as the following.

80 4. Combining fragmentation and encryption to protect data privacy

Patient

SSN Name Occupation Sickness ZIP

123-45-6789 A. Smith Nurse Latex al. 94140
987-65-4321 B. Jones Nurse Latex al. 94141
246-89-1357 C. Taylor Clerk Latex al. 94140
135-79-2468 D. Brown Lawyer Celiac 94139
975-31-8642 E. Cooper Manager Pollen al. 94138
864-29-7531 F. White Designer Nickel al. 94141

(a)

c0={SSN}
c1={Name,Occupation}
c2={Name,Sickness}
c3={Occupation,Sickness,ZIP}

(b)

Figure 4.1 An example of plaintext relation (a) and its well defined constraints (b)

◦ The values assumed by some attributes are considered sensitive and therefore cannot be stored
in the clear . For instance, phone numbers or email addresses can be considered sensitive
values (even if not associated with any identifying information).

◦ The association among values of given attributes is sensitive and therefore should not be
released . For instance, while the list of (names of) patients in a hospital as well as the list of
illnesses are by themselves not confidential, the association of patient’s names with illnesses
is considered sensitive.

Note that constraints specified on the association among attributes can derive from different
requirements: they can correspond to an association that explicitly needs protection (as in the
case of names and illnesses above) or to associations that could cause inference on other sensitive
information. As an example of the latter, consider a hospital database, suppose that the names of
patients are considered sensitive, and therefore cannot be stored in the clear, and that the associa-
tion of the Occupation together with the ZIP code can work as a quasi-identifier (i.e., Occupation
and ZIP can be used, possibly in association with external information, to help identifying patients
and therefore to infer, or reduce uncertainty about, their names) [30, 83]. This inference channel
can be simply blocked by specifying a constraint protecting the association of the Occupation

with the ZIP code. As another example, consider the case where attribute Name is not considered
sensitive, but its association with Sickness is. Suppose again that the Occupation together with
the ZIP code can work as a quasi-identifier (then potentially leaking information on names). In
this case, an association constraint will be specified protecting the association among Occupation,
ZIP, and Sickness, implying that the three attributes should never be accessible together in the
clear.

We are interested in enforcing a set of well defined confidentiality constraints, formally defined
as follows.

Definition 4.2 (Well defined constraints). A set of confidentiality constraints C = {c1,. . . ,cm} is
said to be well defined iff ∀ci, cj ∈ C, i 6= j, ci 6⊂ cj and cj 6⊂ ci.

According to this definition, a set of constraints C over A cannot contain a constraint that is a
subset of another constraint. The rationale behind this property is that, whenever there are two
constraints ci, cj and ci is a subset of cj (or vice versa), the satisfaction of constraint ci implies
the satisfaction of constraint cj (see Section 4.3), and therefore cj is redundant.

4.3. Fragmentation and encryption for constraint satisfaction 81

Example 4.1. Consider the Patient relation in Figure 4.1(a), containing the information about
the patients of a hospital. The privacy requirements that the hospital needs to enforce, either due
to legislative or internal restrictions, are illustrated in Figure 4.1(b):

◦ c0 is a singleton constraint stating that the list of SSN of patients is considered sensitive;

◦ c1 and c2 state that the association between Name and Occupation, and the association
between Name and Sickness, respectively, are considered sensitive;

◦ c3 states that the association among Occupation, ZIP, and Sickness is considered sensitive
(the rationale for this is that Occupation and ZIP are a quasi-identifier [83]).

Note that also the association of patients’ Name and SSN is sensitive and should be protected.
However, such a constraint is not specified since it is redundant, given that SSN by itself has been
declared sensitive (c0). As a matter of fact, protecting SSN as an individual attribute implies
automatic protection of its associations with any other attribute.

4.3 Fragmentation and encryption for constraint satisfac-

tion

Our approach to satisfy confidentiality constraints is based on the use of two techniques: encryption
and fragmentation.

◦ Encryption. Consistently with how the constraints are specified, encryption applies at the
attribute level, that is, it involves an attribute in its entirety. Encrypting an attribute
means encrypting (tuple by tuple) all its values. To protect encrypted values from frequency
attacks [88], we assume that a salt, which is a randomly chosen value, is applied to each
encryption (similarly to the use of nonces in the protection of messages from replay attacks).

◦ Fragmentation. Fragmentation, like encryption, applies at the attribute level, that is, it
involves an attribute in its entirety. Fragmenting means splitting sets of attributes so that
they are not visible together, that is, the associations among their values are not available
without access to the encryption key.

It is straightforward to see that attribute visibility constraints can be solved only by encryption.
By contrast, an association visibility constraint could be solved by either: i) encrypting any (one
suffices) of the attributes involved in the constraint, so to prevent joint visibility, or ii) fragmenting
the attributes involved in the constraint so that they are not visible together. Given a relation r
over schema R and a set of confidentiality constraints C on it, our goal is to fragment R granting
constraints satisfaction. However, we must also ensure that no constraint can be violated by
recombining two or more fragments. In other words, there cannot be attributes that can be
exploited for linking. Since encryption is differentiated by the use of the salt, the only attributes
that can be exploited for linking are the plaintext attributes. Consequently, ensuring that fragments
are protected from linking translates into requiring that no attribute appears in clear form in more
than one fragment. In the following, we use the term fragment to denote any subset of a given set
of attributes. A fragmentation is a set of non overlapping fragments, as captured by the following
definition.

82 4. Combining fragmentation and encryption to protect data privacy

f̂ 1

salt enc Name

s1 α A. Smith
s2 β B. Jones
s3 γ C. Taylor
s4 δ D. Brown
s5 ε E. Cooper
s6 ζ F. White

(a)

f̂ 2

salt enc Occupation

s7 η Nurse
s8 θ Nurse
s9 ι Clerk
s10 κ Lawyer
s11 λ Manager
s12 µ Designer

(b)

f̂ 3

salt enc Sickness ZIP

s13 ν Latex al. 94140
s14 ξ Latex al. 94141
s15 π Latex al. 94140
s16 ρ Celiac 94139
s17 σ Pollen al. 94138
s18 τ Nickel al. 94141

(c)

Figure 4.2 An example of physical fragments for the relation in Figure 4.1(a)

Definition 4.3 (Fragmentation). Let R be a relation schema, a fragmentation of R is a set of
fragments F={F 1,. . .,Fm}, where F i ⊆ R, for i = 1, . . . ,m, such that ∀F i,F j ∈ F , i 6= j :
F i ∩ F j = ∅ (fragments do not have attributes in common).

In the following, we denote with F j
i the i-th fragment in fragmentation F j (the su-

perscript will be omitted when the fragmentation is clear from the context). For in-
stance, with respect to the plaintext relation in Figure 4.1(a), a possible fragmentation is
F={{Name},{Occupation},{Sickness,ZIP}}.

At the physical level, a fragmentation translates to a combination of fragmentation and encryp-
tion. Each fragment F is mapped into a physical fragment containing all the attributes of F in the
clear, while all the other attributes of R are encrypted. The reason for reporting all the original
attributes (in either encrypted or clear form) in each of the physical fragments is to guarantee
that any query can be executed by querying a single physical fragment (see Section 4.11). For
the sake of simplicity and efficiency, we assume that all attributes not appearing in the clear in a
fragment are encrypted all together (encryption is applied on subtuples). Physical fragments are
then defined as follows.

Definition 4.4 (Physical fragment). Let R be a relation schema, and F={F 1,. . .,Fm} be a frag-
mentation of R. For each F i={ai1 , . . . , ain} ∈ F , the physical fragment of R over F i is a relation
schema F̂ i(salt,enc,ai1 , . . . , ain), where salt is the primary key, enc represents the encryption of all
the attributes of R that do not belong to the fragment, XORed (symbol ⊕) before encryption with
the salt.

At the level of instance, given a fragment F i={ai1 , . . . , ain}, and a relation r over schema R,

the physical fragment F̂ i of F i is such that each plaintext tuple t ∈ r is mapped into a tuple t̂ ∈ f̂ i
where f̂ i is a relation over F̂ i and:

◦ t̂ [enc] = Ek(t [R − Fi] ⊕ t̂ [salt])

◦ t̂ [aij] = t [aij], for j = 1, . . . , n

Figure 4.2 illustrates an example of physical fragments for the relation schema in Figure 4.1(a)
that does not violate the well defined constraints in Figure 4.1(b).

The algorithm in Figure 4.3 shows the construction and population of physical fragments. When
the size of the attributes exceeds the size of an encryption block, we assume that encryption of
the protected attributes uses a Cipher Block Chaining (CBC) mode [88], with the salt used as the
Initialization Vector (IV); in the CBC mode, the clear text of the first block is actually encrypted

4.4. Minimal fragmentation 83

INPUT
A relation r over schema R
C = {c1, . . . , cm} /* well defined constraints */

OUTPUT

A set of physical fragments {F̂1,. . . ,F̂ i}

A set of relations {f̂ 1,. . . ,f̂ i} over schemas {F̂1,. . . ,F̂ i}

MAIN
Cf := {c∈C : |c | >1} /* association visibility constraints */
Af := {a∈R: {a}6∈C}
F := Fragment(Af , Cf)
/* define physical fragments */
for each F={ai1

,. . . ,ail
} ∈F do

define relation F̂ with schema: F̂ (salt, enc, ai1
,. . . ,ail

)
/* populate physical fragments instances */

for each t∈r do
t̂ [salt] := GenerateSalt(F ,t)
t̂ [enc] := Ek(t [aj1

. . . ajp] ⊕t̂ [salt]) /* {aj1
. . . ajp}=R−F */

for each a∈F do t̂ [a] := t [a]

insert t̂ in f̂

Figure 4.3 Algorithm that correctly fragments R

after it has been combined in binary XOR with the IV. Note that the salts, which we conveniently
use as primary keys of physical fragments (ensuring no collision in their generation), need not be
secret, because knowledge of the salts does not help in attacking the encrypted values as long as
the encryption algorithm is secure and the key remains protected.

4.4 Minimal fragmentation

We first formally discuss the properties we require to candidate fragmentations to ensure efficient
query execution.

4.4.1 Correctness

Given a schema R and a set of confidentiality constraints C on it, a fragmentation satisfies all
constraints if no fragment contains in the clear all the attributes which visibility is forbidden by a
constraint. The following definition formalizes this concept.

Definition 4.5 (Fragmentation correctness). Let R be a relation schema, F be a fragmentation
of R, and C be a set of well defined constraints over R. F correctly enforces C iff ∀F ∈ F ,∀c ∈ C :
c 6⊆ F (each individual fragment satisfies the constraints).

Note that this definition, requiring fragments not to be a superset of any constraint, implies
that attributes appearing in singleton constraints do not appear in any fragment (i.e., they are
always encrypted). Indeed, as already noted, singleton constraints require the attributes on which
they are defined to appear only in encrypted form.

In this chapter, we specifically address the fragmentation problem and therefore focus only on
the association visibility (i.e., non singleton) constraints Cf ⊆ C and on the corresponding set Af

of attributes to be fragmented, defined as Af= {a ∈ R : {a} 6∈ C}.

84 4. Combining fragmentation and encryption to protect data privacy

4.4.2 Maximal visibility

The availability of plaintext attributes in a fragment allows an efficient execution of queries. There-
fore, we aim at minimizing the number of attributes that are not represented in the clear in any
fragment, because queries using those attributes will be generally processed inefficiently. In other
words, we prefer fragmentation over encryption whenever possible and always solve association
constraints via fragmentation.

The requirement on the availability of a plain representation for the maximum number of
attributes can be captured by imposing that any attribute not involved in a singleton constraint
must appear in the clear in at least one fragment. This requirement is formally represented by the
definition of maximal visibility as follows.

Definition 4.6 (Maximal visibility). Let R be a relation schema, F be a fragmentation of R, and
C be a set of well defined constraints over R. F maximizes visibility iff ∀a∈Af : ∃F ∈ F such that
a∈F .

Note that the combination of maximal visibility together with the definition of fragmentation
(Definition 4.3) imposes that each attribute that does not appear in a singleton constraint must
appear in the clear in exactly one fragment (i.e., at least for Definition 4.6, at most for Defini-
tion 4.3). In the following, we denote with F the set of all possible fragmentations maximizing
visibility. Therefore, we are interested in determining a fragmentation in F that satisfies all the
constraints in the system.

4.4.3 Minimum number of fragments

Another important aspect to consider when fragmenting a relation to satisfy a set of constraints is
to avoid excessive fragmentation. In fact, the availability of more attributes in the clear in a single
fragment allows a more efficient execution of queries on the fragment. Indeed, a straightforward
approach for producing a fragmentation that satisfies the constraints while maximizing visibility
is to define as many (singleton) fragments as the number of attributes not appearing in singleton
constraints. Such a solution, unless demanded by the constraints, is however undesirable since it
makes any query involving conditions on more than one attribute inefficient.

A simple strategy to find a fragmentation that makes query execution efficient consists in
finding a minimal fragmentation, that is, a correct fragmentation that maximizes visibility, while
minimizing the number of fragments. This problem can be formalized as follows.

Problem 4.1 (Minimal fragmentation). Given a relation schema R, a set C of well defined con-
straints over R, find a fragmentation F of R such that all the following conditions hold:

1. F correctly enforces C (Definition 4.5);

2. F maximizes visibility (Definition 4.6);

3. ∄F ′ satisfying the two conditions above such that the number of fragments composing F ′ is
less than the number of fragments composing F .

The minimal fragmentation problem is NP-hard , as formally stated by the following theorem.

Theorem 4.1. The minimal fragmentation problem is NP-hard.

4.4. Minimal fragmentation 85

Proof. The proof is a reduction from the NP-hard problem of minimum hypergraph coloring [50],
which can be formulated as follows: given a hypergraph H(V,E), determine a minimum coloring
of H, that is, assign to each vertex in V a color such that adjacent vertices have different colors,
and the number of colors is minimized .

Given a relation schema R and a set C of well defined constraints, the correspondence between
the minimal fragmentation problem and the hypergraph coloring problem can be defined as fol-
lows. Any vertex vi of the hypergraph H corresponds to an attribute ai ∈ Af . Any edge ei in
H, which connects vi1 , . . . , vic , corresponds to a constraint ci={ai1 ,. . . ,aic}, ci ∈ Cf . A fragmen-
tation F={F 1(a11

, . . . , a1k
), . . . ,F p(ap1 , . . . , apl

)} of R satisfying all constraints in C corresponds
to a solution S for the corresponding hypergraph coloring problem. Specifically, S uses p colors
and {v11

, . . . , v1k
}, corresponding to the attributes in F 1, are colored using the first color, vertices

{vi1 , . . . , vij}, corresponding to the attributes in F i, are colored with the i-th color, and vertices
{vp1 , . . . , vpl

}, corresponding to the attributes in F p, are colored using the p-th color. As a conse-
quence, any algorithm finding a minimal fragmentation can be exploited to solve the hypergraph
coloring problem.

The hypergraph coloring problem has been extensively studied in the literature, reaching in-
teresting theoretical results. In particular, assuming NP 6= ZPP , there are no polynomial time
approximation algorithms for coloring k-uniform hypergraphs with approximation ratio O(n1−ǫ)
for any fixed ǫ > 0 [60, 65].1

4.4.4 Fragmentation lattice

To characterize the space of possible fragmentations and the relationships among them, we first
introduce the concept of fragment vector as follows.

Definition 4.7 (Fragment vector). Let R be a relation schema, C be a set of well defined constraints
over R, and F= {F 1, . . . ,Fm} be a fragmentation of R maximizing visibility. The fragment vector
VF of F is a vector of fragments with an element VF [a] for each a ∈ Af , where the value of VF [a]
is the unique fragment F j∈F containing attribute a .

Example 4.2. Let F = {{Name},{Occupation},{Sickness,ZIP}} be a fragmentation of the rela-
tion schema in Figure 4.1(a). The fragment vector is the vector VF such that:

◦ VF [Name]={Name};

◦ VF [Occupation]={Occupation};

◦ VF [Sickness]=VF [ZIP]={Sickness,ZIP}.

Fragment vectors allow us to define a partial order between fragmentations as follows.

Definition 4.8 (Dominance). Let R be a relation schema, C be a set of well defined constraints
over R, and F , F ′ be two fragmentations of R maximizing visibility. We say that F ′ dominates
F , denoted F�F ′, iff VF [a]⊆VF ′ [a], ∀ a ∈ Af . We say F ≺ F ′ iff F�F ′ and F 6= F ′.

1In a minimization framework, an approximation algorithm with approximation ratio p guarantees that the cost
C of its solution is such that C/C∗ ≤ p, where C∗ is the cost of an optimal solution [50]. On the contrary, we
cannot perform any evaluation on the result of a heuristic.

86 4. Combining fragmentation and encryption to protect data privacy

N|O|S|Z

iiiiiiiiiiiiiiiiii

nnnnnnnnnnnn

}}
}}

}}
}}

BB
BB

BB
BB

PPPPPPPPPPPP

UUUUUUUUUUUUUUUUUU

NO|S|Z

AA
AA

AA
A

PPPPPPPPPPPP NS|O|Z

}}
}}

}}
}

PPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUU NZ|O|S

}}
}}

}}
}

BB
BB

BB
BB

UUUUUUUUUUUUUUUUUUU N|OS|Z

gggggggggggggggggggggggggg

AA
AA

AA
A

PPPPPPPPPPPP N|OZ|S

}}
}}

}}
}

AA
AA

AA
A

gggggggggggggggggggggggggg N|O|SZ

iiiiiiiiiiiiiiiiii

gggggggggggggggggggggggggg

NOS|Z NOZ|S NO|SZ NSZ|O NS|OZ NZ|OS N|OSZ

NOSZ

UUUUUUUUUUUUUUUUUUU

PPPPPPPPPPPP

BBBBBBBB

||||||||

nnnnnnnnnnnn

iiiiiiiiiiiiiiiiiii

Figure 4.4 An example of fragmentation lattice

Definition 4.8 states that fragmentation F ′ dominates fragmentation F if F ′ can be computed
from F by merging two (or more) fragments composing F .

Example 4.3. Let F1={{Name,ZIP}, {Occupation,Sickness}} and F2={{Name},
{Occupation,Sickness}, {ZIP}} be two fragmentations of the relation schema in Figure 4.1(a).
Since F1 can be obtained from F2 by merging fragments {Name} and {ZIP}, it results that F2≺F1.

The set F of all possible fragmentations maximizing visibility, together with the dominance
relationship just introduced, form a lattice, as formally stated in the following definition.

Definition 4.9 (Fragmentation lattice). Let R be a relation schema, and C be a set of well defined
constraints over R. The fragmentation lattice is a pair (F,�), where F is the set of all fragmen-
tations of R maximizing visibility and � is the dominance relationship among them, as defined in
Definition 4.8.

The top element F⊤ of the lattice represents a fragmentation where each attribute in Af appears
in a different fragment. The bottom element F⊥ of the lattice represents a fragmentation composed
of a single fragment containing all attributes in Af . As an example, Figure 4.4 illustrates the
fragmentation lattice for the example in Figure 4.1, with Af={Name, Occupation, Sickness, ZIP}.
Here, attributes are represented with their initials and fragments are divided by a vertical line.
Furthermore, fragmentations that correctly enforce (Definition 4.5) constraints in Figure 4.1(b)
appear as solid boxes, while fragmentations that violate at least a constraint appear as dotted
boxes.

An interesting property of the fragmentation lattice is that given a non correct fragmentation
F i, any fragmentation F j such that F j�F i is non correct.

Theorem 4.2. Given a fragmentation lattice (F,�), ∀F i,F j ∈ F such that Fj�F i, F i non cor-
rect =⇒ Fj non correct.

Proof. If F i is not correct, then ∃c∈Cf and ∃F i∈F i such that c⊆F i. Since F j�F i, by Defini-
tion 4.8, ∃F j∈Fj such that F i⊆F j . Then c⊆F i⊆F j , and F j is not correct.

By construction, each path in the lattice is characterized by a locally minimal fragmentation,
which is the fragmentation such that all its descendants in the path correspond to non correct
fragmentations. Intuitively, such locally minimal fragmentations can be determined either via a

4.5. A complete search approach to minimal fragmentation 87

N|O|S|Z

hhhhhhhhhhhhhhhhhh

qqqqqqqqq

==
==

==

NNNNNNNNNN

TTTTTTTTTTTTT

NO|S|Z

;;
;;

;;

��
��

��
NS|O|Z

;;
;;

;;
NZ|O|S N|OS|Z N|OZ|S N|O|SZ

NOS|Z NOZ|S NO|SZ NSZ|O NS|OZ NZ|OS N|OSZ

NOSZ

Figure 4.5 A fragmentation tree for the fragmentation lattice in Figure 4.4

top-down visit or via a bottom-up visit of the lattice. The number of fragmentations at level i
(i.e., the solutions composed of (n − i) + 1 fragments) of the lattice is

{

n
n−i

}

, which is the number

of Stirling of the second kind [53]. As a consequence, |F| =
∑

i = 0n
{

n
n−i

}

= Bn, which is the
Bell number [53]. The second level of the lattice then contains a quadratic number of solutions
(O(n2)), and an exponential number of fragmentations (O(2n)) resides in the first to last level.
The top-down strategy, exploiting the fact that the number of fragments increases while going
down in the lattice, seems then to be more convenient. In the following section, we then propose
an exact algorithm that performs a top-down tree traversal of the lattice (i.e., each fragmentation
is visited at most once) and that generates only a subset of all possible fragmentations.

4.5 A complete search approach to minimal fragmentation

Although the number of possible fragmentations in F is exponential in |Af |, the set of attributes
to be fragmented is usually limited in size and therefore a complete search evaluating the different
fragmentations maximizing visibility could be acceptable. To ensure the evaluation of each correct
fragmentation maximizing visibility exactly once, we define a fragmentation tree as follows.

Definition 4.10 (Fragmentation tree). Let (F,�) be a fragmentation lattice. A fragmentation
tree of the lattice is a spanning tree of (F,�) rooted in F⊤.

We propose here a method for building a fragmentation tree over a given fragmentation lattice.
To this aim, we assume the set Af of attributes to be totally ordered, according to a relation-
ship, denoted <A, and assume that in each fragment F attributes are maintained ordered, from
the smallest, denoted F.first , to the greatest, denoted F.last. We then translate the order re-
lationship among attributes into an order relationship among fragments within a fragmentation,
by considering fragments to be ordered according to the order dictated by their smallest (.first)
attribute. Since, within a fragmentation, each attribute appears in exactly one fragment, the frag-
ments in each fragmentation are totally ordered. Each fragmentation F is then a sequence, denoted
F = [F1, . . . , Fn], of fragments, where ∀i, j = 1, . . . , n : i < j, Fi.first <A Fj .first. In this case, we
say that fragment Fi precedes fragment Fj in fragmentation F . Given two fragments Fi, Fj with
i < j, we say that Fi fully precedes Fj iff all attributes of Fi are smaller than all attributes in Fj ,
that is, Fi.last <A Fj .first. Note that full precedence is only a partial ordering.

To ensure tree traversal and therefore to avoid computing a fragmentation twice, we exploit the
precedence relationship among fragments and associate with each fragmentation F = [F1, . . . , Fn]

88 4. Combining fragmentation and encryption to protect data privacy

a marker Fi that is the non singleton fragment such that ∀j > i, Fj is a singleton fragment. For
the root, the marker is its first fragment. Intuitively, the marker associated with a fragmentation
denotes the starting point for fragments to be combined to obtain children of the fragmentation
(as a combination with any fragment preceding it will produce duplicate fragmentations). We then
define an order-based cover for the lattice as follows.

Definition 4.11 (Order-based cover). Let (F,�) be a fragmentation lattice. An order-based cover
of the lattice, denoted T (V,E), is an oriented graph, where V = F, and ∀Fp,Fc ∈ V , (Fp,Fc)
∈ E iff, being F p

m the marker of Fp, there exists i, j with m ≤ i and F p
i fully preceding F p

j , such
that:

◦ ∀l < j , l 6= i , F c
l = F p

l ;

◦ F c
i = F p

i F p
j ;

◦ ∀l ≥ j , F c
l = F p

l+1.

As an example, consider the order-based cover in Figure 4.5, where <A is the lexicographic
order. It is built on the fragmentation lattice in Figure 4.4 and the underlined fragments are the
markers. Given fragmentations Fp=[N|O|S|Z] and Fc=[N|OS|Z], edge (Fp,Fc) belongs to T since
for i = 2 and j = 3 we have that F c

1=F p
1 =N; F c

2=F p
2 F p

3 =OS; and F c
3=F p

3+1=Z. The order-based
cover so defined corresponds to a fragmentation tree for the lattice, as stated by the following
theorem.

Theorem 4.3. The order-based cover T of a lattice (F,�) is a fragmentation tree for (F,�) with
root F⊤.

Proof. T is a fragmentation tree for (F,�) if: (1) each vertex at level i (but the root F⊤) has
exactly one parent at level i − 1, and (2) each edge of T is an edge in (F,�).

1. Each vertex has at most one parent. Suppose, by contradiction, that a vertex
F=[F1,. . . ,Fn−1] is a child of two different vertices in T , say F1=[F 1

1 ,. . . ,F 1
n] and

F2=[F 2
1 ,. . . ,F 2

n]. Therefore, there exists a fragment Fi1 in F obtained as F 1
i1

F 1
j1

. Analo-

gously, there exists a fragment Fi2 in F obtained as F 2
i2

F 2
j2

.
Suppose also, without loss of generality, i1 < i2. By Definition 4.11, for each Fk in F , k 6= i1,
there exists a fragment F 1

k1
in F1 such that F 1

k1
=Fk and k1 ≥ k (either k1 = k or k1 = k+1).

Therefore, there exists a non singleton fragment F 1
l =Fi2 with l ≥ i2. As a consequence,

l > i1, thus the marker for F1 must be greater than or equal to i1, by definition. This
generates the contradiction.

Each vertex has at least one parent. Let F be a vertex at level i (i 6= 1) in T (F6=F⊤),
Fm be its marker, and Fm.last be the highest attribute in Fm. Consider fragmentation Fp,
containing all the fragments in F but Fm and the two fragments obtained by splitting Fm
into Fm−{Fm.last} and {Fm.last}. The marker of Fp precedes m, since all the fragments
following Fm in F are singleton in Fp as well. Also, the additional fragment {Fm.last} is
singleton and it follows F p

m, according to relationship <A (since it is the maximum attribute).
Therefore, by Definition 4.11, there is an edge (Fp,F) in T , then Fp is parent of F and Fp

has exactly one fragment more than F (i.e., Fp is at level i − 1).

4.5. A complete search approach to minimal fragmentation 89

FRAGMENT(Af ,Cf)

for each ai∈Af do F⊤
i := {ai} /* root of the search tree F⊤ */

marker[F⊤] := 1
Min := F⊤ /* current minimal fragmentation */
MinNumFrag := Evaluate(Min)
SearchMin(F⊤) /* recursive call that builds the search tree */
return(Min)

SEARCHMIN(Fp)
localmin := true /* minimal fragmentation */
for i:=marker[Fp]. . . (|Fp|-1) do

for j :=(i+1). . . |Fp| do
if Fp

i .last<AF
p
j .first then /* Fp

i fully precedes Fp
j */

for l:=1. . . |Fp| do
case:

(l<j ∧ l 6=i): F c
l := Fp

l
(l>j): F c

l−1 := Fp

l

(l=i): F c
l := Fp

i F
p
j

marker[Fc] := i
if SatCon(F c

i) then
localmin := false
SearchMin(Fc) /* recursive call on correct fragmentation */

if localmin then
nf := Evaluate(Fp)
if nf<MinNumFrag then

MinNumFrag := nf
Min := Fp

SATCON(F)
for each c∈Cf do

if c⊆F then return(false)
return(true)

Figure 4.6 Function that performs a complete search

2. Each edge in T is an edge in (F,�). Let (Fp,Fc) be an edge in T . By Definition 4.11 it
follows that Fp�Fc, then (Fp,Fc) is an edge of (F,�).

4.5.1 Computing a minimal fragmentation

Our complete search function, function Fragment in Figure 4.6, performs a depth first search on
the fragmentation tree T built as an order-based cover. Besides exploiting the tree structure, our
proposal takes advantage of the result of Theorem 4.2 by pruning the fragmentation tree to avoid
the visit of subtrees composed only of fragmentations violating constraints (i.e., the children of a
non correct parent).

The function takes as input the set Af of attributes to be fragmented and the set Cf of well
defined non singleton constraints. The function uses variables: marker[F], representing the position
of the marker within fragmentation F ; Min, representing the current minimal fragmentation; and
MinNumFrag , representing the number of fragments composing Min. First, the function initializes
variable Min to F⊤ and variable MinNumFrag to the number of fragments in F⊤. Then, it calls
function SearchMin on F⊤ that iteratively builds the children of F⊤ according to Definition 4.11.
Function SearchMin(Fp) is then recursively called on each fragmentation Fc, child of Fp, only
if Fc satisfies all the constraints (i.e., if function SatCon returns true). The function exploits
the fact that the number of fragments decreases while going down the lattice and compares Min

90 4. Combining fragmentation and encryption to protect data privacy

SearchMin(Fp) Fp
i Fp

j Fc SatCon(F c
i) SearchMin(Fc) Evaluate(Fp) Min

N|O|S|Z N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true NZ|O|S

O S N|OS|Z true N|OS|Z
Z N|OZ|S true N|OZ|S

S Z N|O|SZ true N|O|SZ
NZ|O|S NZ O – – –

S – – –
O S NZ|OS true NZ|OS

NZ|OS – – – – – 2 NZ|OS
N|OS|Z OS Z N|OSZ false – 3
N|OZ|S OZ S – – – 3
N|O|SZ – – – – – 3

(a)

N|O|S|Z

lllllllllll

xx
xx

xx
x

FF
FF

FF
F

RRRRRRRRRRR

WWWWWWWWWWWWWWWWWW4

NO|S|Z NS|O|Z NZ|O|S N|OS|Z
3

N|OZ|S
3

N|O|SZ
3

NZ|OS
2

N|OSZ

(b)

Figure 4.7 An example of the execution of function Fragment in Figure 4.6

with a fragmentation only if it does not have correct children (i.e., it is a candidate minimal
fragmentation).

It is interesting to note that, by substituting the definition of the Evaluate function with
any other cost function monotonic with respect to the dominance relationship, the given function
Fragment can determine the minimum cost/maximum gain fragmentation in F.

The fragmentation tree generated by function Fragment in Figure 4.6 according to the order-
based cover introduced in Definition 4.11 is not balanced. Indeed, the fragmentation tree is built
by inserting the vertices in a specific order, starting from F⊤ and inserting, at each level of the
tree, the vertices from left to right. This implies that each vertex in the tree at the i-th level has,
as parent, the leftmost vertex in the (i − 1)-th level that satisfies Definition 4.11. Consequently,
as it is visible from Figure 4.5 the length of the paths from F⊤ to the leaves of the fragmentation
lattice decreases when moving from the left to the right in the tree.

Example 4.4. Figure 4.7 illustrates the execution, step by step, of function SearchMin applied
to Example 4.1. The columns of the table in Figure 4.7(a) represent the call to SearchMin with its
parameter Fp; the fragments F p

i and F p
j merged; the resulting fragmentation Fc; the value of Sat-

Con on F c
i ; the possible recursive call to SearchMin(Fc); the result of function Evaluate(Fp)

(i.e., the number of fragments in Fp), when computed; the updates to Min. Figure 4.7(b) il-
lustrates the tree built by the recursive calls of function SearchMin on the considered example,
with the number of fragments necessary for comparison with Min at the right of the corresponding
fragmentations. At the beginning, variable Min is initialized to [N|O|S|Z] and the corresponding
MinNumFrag is set to 4. The function then calls function SearchMin on [N|O|S|Z]. At the
first iteration of the two for loops in SearchMin([N|O|S|Z]), fragments F p

1 =N and F p
2 =O are

4.5. A complete search approach to minimal fragmentation 91

merged, thus generating the fragmentation [NO|S|Z] that violates constraint c1. The second frag-
mentation generated is [NS|O|Z], which violates c3. The third fragmentation [NZ|O|S] is correct
and SearchMin([NZ|O|S]) is recursively called, which in turn calls SearchMin([NZ|OS]). Since
the two fragments in [NZ|OS] cannot be merged (Z 6<A O), SearchMin is not further called.
Therefore, the function compares the number of fragments composing [NZ|OS], which is 2, with
MinNumFrag and updates Min accordingly. The recursive calls on the other fragmentations are
processed in an analogous way. The final minimal fragmentation computed by the function is
[NZ|OS] with 2 fragments only.

4.5.2 Correctness and complexity

Before proving the complexity of function Fragment in Figure 4.6, we introduce a lemma, proving
that function Fragment computes all correct fragmentations, while it never generates more than
once the same solution.

Lemma 4.1. Function Fragment in Figure 4.6 visits all correct fragmentations in T exactly
once.

Proof. The function starts from the root of T and recursively visits it with a depth-first strategy.
At each call of SearchMin(Fp) it generates all the children of Fp, according to Definition 4.11,
by the first two for loops and the following if instruction. Since SearchMin is recursively called
only on correct solutions, the subtrees rooted at non correct children are not visited. However, by
Theorem 4.2, no correct solution belongs to these subtrees.

Theorem 4.4 (Correctness). Function Fragment in Figure 4.6 terminates and finds a minimal
fragmentation (Problem 4.1).

Proof. Function Fragment in Figure 4.6 always terminates since, at each recursive call, it combines
two of the fragments in the parent to compute its children. Therefore, the maximum reachable
depth is |Af |.

We now prove that a solution F computed by this function over Af and Cf is a minimal
fragmentation. According to Problem 4.1, a fragmentation F is minimal if and only if (1) it is
correct, (2) it maximizes visibility, and (3)∄F ′ composed of less fragments than F and satisfying
the two conditions above. A fragmentation F computed by function Fragment in Figure 4.6
satisfies these three properties.

1. The computed fragmentation F is correct since function SearchMin is recursively called only
on correct fragmentations Fp (i.e., when SatCon is true). Therefore only correct solutions
are assigned to the returned solution F (i.e., Min).

2. F is a fragmentation of R maximizing visibility, since any solution generated by the function
is obtained by merging fragments in F⊤. F⊤ is a fragmentation maximizing visibility, since
it contains all attributes in Af and each a∈Af appears exactly in one fragment. The merge
operation in the SearchMin function simply concatenates two fragments into a single one,
thus producing a fragmentation F such that the condition of maximal visibility is satisfied.

3. F has minimum number of fragments, since the function visits all the correct solutions in
T and compares MinNumFrag with the number of fragments in solutions having only non

92 4. Combining fragmentation and encryption to protect data privacy

correct children. By Definition 4.8, the correct solutions that are not compared with F have
a number of fragments greater or equal than F .

Therefore the solution F computed by function Fragment in Figure 4.6 is a minimal fragmenta-
tion.

Theorem 4.5 (Complexity). Given a set C={c1,. . . ,cm} of constraints and a set A={a1,. . . ,an}
of attributes the complexity of function Fragment(A, C) in Figure 4.6 is O(Bn · m) in time.

Proof. The proof comes directly from Lemma 4.1. In the worst case, each fragmentation in F,
which are O(Bn) in number, is generated exactly once by function Fragment in Figure 4.6. Also,
function SatCon is called once for each solution generated and checks if all constraints, which are
m in number, are satisfied. The overall time complexity is therefore O(Bn · m).

4.6 A heuristic approach to minimize fragmentation

In this section, we present a heuristic algorithm for Problem 4.1 to be applied when the number of
attributes in the schema does not allow a complete exploration of the solution space. The heuristic
is based on the definition of vector minimality, which is then exploited to efficiently find a correct
fragmentation maximizing visibility.

A vector-minimal fragmentation is formally defined as a fragmentation F that is correct, maxi-
mizes visibility, and all fragmentations that can be obtained from F by merging any two fragments
in F violate at least one constraint.

Definition 4.12 (Vector-minimal fragmentation). Let R be a relation schema, C be a set of well
defined constraints, and F be a fragmentation of R. F is a vector-minimal fragmentation iff all
the following conditions are satisfied:

1. F correctly enforces C (Definition 4.5);

2. F maximizes visibility (Definition 4.6);

3. ∄F ′ satisfying the two conditions above such that F≺F ′.

According to this definition of minimality, it easy to see that while a minimal fragmentation is
also vector-minimal, the vice versa is not necessarily true.

Example 4.5. Consider fragmentations F1 and F2 of Example 4.3, and the set of constraints in
Figure 4.1(b). Since F2≺F1, F2 is not vector-minimal. By contrast, F1 is vector-minimal. As
a matter of fact, F1 contains all attributes of relation schema Patient in Figure 4.1(a) but SSN
(maximal visibility); satisfies all constraints in Figure 4.1(b) (correctness); and no fragmentation
obtained from it by merging any pair of fragments satisfies the constraints.

4.6.1 Computing a vector-minimal fragmentation

The definition of vector-minimal fragmentation allows us to design a heuristic approach for Prob-
lem 4.1 that works in polynomial time and computes a fragmentation that, even if it is not nec-
essarily a minimal fragmentation, it is however near to the optimal solution, as the experimental
results show (see Section 4.13).

4.6. A heuristic approach to minimize fragmentation 93

FRAGMENT(Af ,Cf)

A ToPlace := Af

C ToSolve := Cf

Min := ∅
for each a∈A ToPlace do /* initialize arrays Con[] and N con[] */

Con[a] := {c ∈ C ToSolve: a ∈ c}
N con[a] := |Con[a]|

repeat
if C ToSolve 6= ∅ then

let attr be an attribute with the maximum value of N con[]
for each c ∈ (Con[attr] ∩ C ToSolve) do

C ToSolve := C ToSolve − {c} /* adjust the constraints */
for each a ∈ c do N con[a] := N con[a]−1 /* adjust array N con[] */

else /* since all the constrains are satisfied, choose any attribute in A ToPlace */
let attr be an attribute in A ToPlace

A ToPlace := A ToPlace − {attr}
inserted := false /* try to insert attr into the existing fragments */
for each F ∈ Min do /* evaluate if F ∪ {attr} satisfies the constraints */

satisfies := true
for each c ∈ Con[attr] do

if c ⊆ (F ∪ {attr}) then
satisfies := false /* choose the next fragment */
break

if satisfies then
F := F ∪ {attr} /* attr has been inserted into F */
inserted := true
break

if not inserted then /* insert attr into a new fragment */
add {attr} to Min

until A ToPlace = ∅
return(Min)

Figure 4.8 Function that finds a vector-minimal fragmentation

Our heuristic method starts with an empty fragmentation and, at each step, selects the attribute
involved in the highest number of unsolved constraints. The rationale behind this selection criterion
is to bring all constraints to satisfaction in a few steps. The selected attribute is then inserted into
a fragment that is determined in such a way that there is no violation of the constraints involving
the attribute. If such a fragment does not exist, a new fragment for the selected attribute is
created. The process terminates when all attributes have been inserted into a fragment. Figure 4.8
illustrates function Fragment that implements this heuristic method. The function takes as input
the set Af of attributes to be fragmented, and the set Cf of well defined non singleton constraints,
used to initialize variables A ToPlace and C ToSolve, respectively. It computes a vector-minimal
fragmentation Min of Af as follows.

First, the function initializes Min to the empty set and creates two arrays Con[] and N con[]
that contain an element for each attribute a in A ToPlace. Element Con[a] contains the set of con-
straints on a , and element N con[a] is the number of non solved constraints involving a (note that,
at the beginning, N con[a] coincides with the cardinality of Con[a]). The function then executes
a repeat until loop that, at each iteration, places an attribute attr into a fragment as follows. If
there are constraints still to be solved (C ToSolve 6= ∅) attr is selected as an attribute appearing in
the highest number of unsolved constraints. Then, for each constraint c in Con[attr]∩C ToSolve,
the function removes c from C ToSolve and, for each attribute a in c , decreases N con[a] by
one. Otherwise, that is, if all constraints are solved (C ToSolve= ∅), the function chooses attr
by randomly extracting an attribute from A ToPlace and removes it from A ToPlace. Then, the

94 4. Combining fragmentation and encryption to protect data privacy

function looks for a fragment F in Min in which attr can be inserted without violating any con-
straint including attr . If such a fragment F is found, attr is inserted into F , otherwise a new
fragment {attr} is added to Min. Note that the search for a fragment terminates as soon as a
fragment is found (inserted=true). Also, the control on constraint satisfaction terminates as soon
as a violation to constraints is found (satisfies=false).

Example 4.6. Figure 4.9 presents the execution, step by step, of function Fragment in Figure 4.8
applied to the example in Figure 4.1. The left hand side of Figure 4.9 illustrates the evolution of
variables attr , Min, C ToSolve, and A ToPlace, while the right hand side graphically illustrates the
same information through a matrix with a row for each attribute and a column for each constraint.
If an attribute belongs to an unsolved constraint ci, the corresponding cell is set to ×; otherwise,
if ci is solved, the cell is set to X. At the beginning, Min is empty, all constraints are unsolved,
and all attributes need to be placed. In the first iteration, function Fragment chooses attribute
Name, since it is one of the attributes involved in the highest number of unsolved constraints.
The constraints in Con[Name] become now solved, N con[ai] is updated accordingly (for all the
attributes in the relation), and fragment {Name} is added to Min. Function Fragment proceeds
in an analogous way by choosing attributes Occupation, Sickness, and Zip. The final solution is
represented by fragmentation Min={{Name,ZIP}, {Occupation,Sickness}}, which corresponds to
the one computed by the complete search function in Figure 4.6.

4.6.2 Correctness and complexity

The correctness and complexity of function Fragment in Figure 4.8 are stated by the following
theorems.

Theorem 4.6 (Correctness). Function Fragment in Figure 4.8 terminates and finds a vector-
minimal fragmentation (Definition 4.12).

Proof. Function Fragment in Figure 4.8 terminates since each attribute is considered only once,
and the repeat until loop is performed till all the attributes are extracted from A ToPlace (which
is initialized to Af).

We now prove that a solution F computed by this function over Af and Cf is a vector-minimal
fragmentation. According to Definition 4.12, a fragmentation F is vector-minimal if and only if
(1) it is correct, (2) it maximizes visibility, and (3) ∄F ′:F≺F ′ that satisfies the two conditions
above. A fragmentation F computed by function Fragment in Figure 4.8 satisfies these three
properties.

1. Function Fragment inserts attr into a fragment F if and only if F∪{attr} satisfies the
constraints in Con[attr]. By induction, we prove that if F∪{attr} satisfies constraints in
Con[attr], it satisfies all constraints in C.

If {attr} is the first attribute inserted into F , F∪{attr}={attr}. Since attr ∈ Af , then the
set {attr} satisfies all constraints in C. Otherwise, if we suppose that F already contains
at least one attribute and that it satisfies all constraints in C, then, by adding attr to F
the constraints that may be violated are only the constraints in Con[attr]. Consequently, if
F∪{attr} satisfies all these constraints, it satisfies all constraints in C.

We can therefore conclude that F is a correct fragmentation.

4.6. A heuristic approach to minimize fragmentation 95

Min=∅
C ToSolve={c1,c2,c3}
A ToPlace={Name,Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name × × 2
Occupation × × 2
Sickness × × 2
ZIP × 1
ToSolve yes yes yes

attr = Name

Con[Name]={c1,c2}

Min = {{Name}}
C ToSolve = {c3}
A ToPlace = {Occupation,Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X × 1
Sickness X × 1
ZIP × 1
ToSolve X X yes

attr = Occupation

Con[Occupation]={c1,c3}

Min = {{Name},{Occupation}}
C ToSolve = ∅
A ToPlace = {Sickness,ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Sickness

Con[Sickness]={c2,c3}

Min = {{Name},{Occupation,Sickness}}
C ToSolve = ∅
A ToPlace = {ZIP}

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

attr = Z
Con[Z]={c3}

Min = {{Name,ZIP},{Occupation,Sickness}}}
C ToSolve = ∅
A ToPlace = ∅

c1 c2 c3 N con[ai]
Name X X 0
Occupation X X 0
Sickness X X 0
ZIP X 0
ToSolve X X X

Figure 4.9 An example of the execution of function Fragment in Figure 4.8

2. Since each attribute a in Af is inserted exactly into one fragment, function Fragment
produces a fragmentation F such that the condition of maximal visibility is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in Cf , maximizes vis-
ibility, and such that F ≺ F ′. Let VF and VF ′ be the fragment vectors associated with F

96 4. Combining fragmentation and encryption to protect data privacy

and F ′, respectively.

First, we prove that F ′ contains a fragment VF ′ [ai] that is the union of two different frag-
ments, VF [ai] and VF [aj], of F . Second, we prove that function Fragment cannot generate
two different fragments whose union does not violate any constraint. These two results gen-
erate a contradiction since VF ′ [ai], which contains VF [ai]∪VF [aj], is a fragment of F ′, and
thus it does not violate the constraints.

(a) Since F ≺ F ′, there exists a fragment such that VF [ai] ⊂ VF ′ [ai], and then there exists
an attribute aj (with j 6= i) such that aj ∈ VF ′ [ai] and aj 6∈VF [ai]. Note that aj 6=ai
because, by definition, ai ∈ VF [ai] and ai ∈ VF ′ [ai].

VF [aj] and VF ′ [aj] are the fragments that contain aj . We now show that, not
only aj∈VF ′ [ai], but also the whole fragment VF [aj]⊂VF ′ [ai]. Since, aj∈VF ′ [aj] and
aj∈VF ′ [ai] we have that VF ′ [aj] = VF ′ [ai], but since VF [aj] ⊂ VF ′ [aj] we have that
VF [aj]⊂VF ′ [ai] and therefore (VF [ai] ∪ VF [aj]) ⊆ VF ′ [ai].

(b) Let Fh and F k be the two fragments computed by function Fragment, corresponding
to VF [ai] and VF [aj], respectively. Assume, without loss of generality, that h < k
(since the proof in the case h > k immediately follows by symmetry). Let ak1 be the
first attribute inserted into F k by the function. Recall that the function inserts an
attribute into a new fragment if and only if the attribute cannot be inserted into the
already-existing fragments (e.g., Fh) without violating constraints. Therefore, the set
of attributes Fh∪{ak1} violates a constraint as well as the set VF [ai] ∪ VF [aj] that
contains Fh∪{ak1}.

This generates a contradiction.

Therefore the solution F computed by function Fragment in Figure 4.8 is a vector-minimal
fragmentation.

Theorem 4.7 (Complexity). Given a set C={c1,. . . ,cm} of constraints and a set A={a1,. . . an}
of attributes the complexity of function Fragment(A,C) in Figure 4.8 is O(n2m) in time.

Proof. To choose attribute attr from A ToPlace, in the worst case function Fragment in Figure 4.8
scans array N con[], and adjusts array N con[] for each attribute involved in at least one constraint
with attr . This operation costs O(nm) for each chosen attribute. After the choosing phase, each
attribute is inserted into a fragment. Note that the number of fragments is O(n) in the worst case.
To choose the right fragment that will contain attr , in the worst case the function tries to insert it
into all fragments F∈F , and compares F∪{attr} with the constraints in Con[attr]. Since the sum
of the number of attributes in all the fragments is O(n), then O(n) attributes will be compared
with the O(m) constraints containing attr , giving, in the worst case, a O(nm) complexity for each
attr . Thus, the complexity of choosing the right fragment is O(n2m). We can then conclude that
the overall time complexity is O(n2m).

4.7 Taking attribute affinity into account

The computation of a minimal fragmentation exploits the basic principle according to which the
presence of a high number of plaintext attributes permits an efficient execution of queries. Although

4.7. Taking attribute affinity into account 97

N O S Z
N 10 15 5
O 5 10
S 20
Z

Figure 4.10 An example of affinity matrix

this principle may be considered acceptable in many situations, other criteria can also be applied for
computing a fragmentation. Indeed, depending of the use of the data, it may be useful to preserve
the associations among some attributes. As an example, consider the fragmentation in Figure 4.2
and suppose that the data need to be used for statistical purposes. In particular, suppose that
physicians should be able to explore the link between a specific Sickness and the Occupation

of patients. The computed fragmentation however does not make visible the association between
Sickness and Occupation, thus making the required analysis not possible (as it would violate the
constraints). In this case, a fragmentation where these two attributes are stored in clear form in
the same fragment is preferable to the computed fragmentation. The need for keeping together
some specific attributes in the same fragment may not only depend on the use of the data but
also on the queries that need to be frequently executed on the data. Indeed, given a query Q
and a fragmentation F , the execution cost of Q varies according to the specific fragment used
for computing the query. This implies that, with respect to a specific query workload, different
fragmentations may be more convenient than others in terms of query performance.

To take into consideration both the use of the data and the query workload in the fragmentation
process, we exploit the concept of attribute affinity traditionally applied to express the advantage
of having pairs of attributes in the same fragment in distributed DBMSs [76] and that is therefore
adopted by schema design algorithms using the knowledge of a representative workload for com-
puting a suitable partition. In our context, attribute affinity is also a measure of how strong the
need of keeping the attributes in the same fragment is. By considering the total order relationship
<A among attributes in Af and assuming ai to denote the i-th attribute in the ordered sequence,
the affinity between attributes is represented through an affinity matrix . The matrix, denoted M ,
has a row and a column for each attribute appearing in non singleton constraints, and each cell
M [ai,aj] represents the benefit obtained by having attributes ai and aj in the same fragment.
Clearly, the affinity matrix contains only positive values and is symmetric with respect to its main
diagonal. Also, for all attributes ai, M [ai, ai] is not defined. The affinity matrix can then be
represented as a triangular matrix, where only cells M [ai, aj], with i < j (i.e., ai<Aaj), are rep-
resented. Figure 4.10 illustrates an example of affinity matrix for relation Patient in Figure 4.1,
where <A is the lexicographic order.

The consideration of attribute affinity naturally applies to fragments and fragmentations. Frag-
mentations that maintain together attributes with high affinity are to be preferred. To reason about
this, we define the concept of fragmentation affinity . Intuitively, the affinity of a fragment is the
sum of the affinities of the different pairs of attributes in the fragment; the affinity of a frag-
mentation is the sum of the affinities of the fragments in it. This is formalized by the following
definition.

Definition 4.13 (Fragmentation affinity). Let R be a relation schema, M be an affinity matrix for

98 4. Combining fragmentation and encryption to protect data privacy

R, C be a set of well defined constraints over R, and F={F 1,. . . ,Fn} be a correct fragmentation
of R. The affinity of F , denoted affinity(F), is computed as:

affinity(F) =
∑n
k=1 aff(F k), where aff(F k) =

∑

ai,aj∈Fk,i<j
M [ai, aj] is the affinity of fragment

F k, k = 1 . . . n.

As an example, consider the affinity matrix in Figure 4.10 and fragmentation F={{Name,ZIP},
{Occupation,Sickness}}. Then, affinity(F) = aff ({Name,ZIP}) + aff ({Occupation,Sickness) =
M [N,Z] + M [O,S] = 5+5 = 10. With the consideration of affinity, the problem becomes therefore
to determine a correct fragmentation that has maximum affinity. This is formally defined as follows.

Problem 4.2 (Maximum affinity). Given a relation schema R, a set C of well defined constraints
over R, and an affinity matrix M , find a fragmentation F of R such that all the following conditions
hold:

1. F correctly enforces C (Definition 4.5);

2. F maximizes visibility (Definition 4.6);

3. ∄F ′ satisfying the conditions above such that affinity(F ′) > affinity(F).

Like Problem 4.1, the maximum affinity problem is NP-hard , as formally stated by the following
theorem.

Theorem 4.8. The maximum affinity problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50], which can
be formulated as follows: given a collection C of subsets of a set S, find the smallest subset S′ of
S such that S′ contains at least one element from each subset in C.

The reduction of the hitting set problem to the maximum affinity problem can be defined as
follows. Let S′ be the solution of the minimum hitting set problem, and let R = S ∪ {ac} be a
relation, where ac is an attribute different from any other element in S.

We consider only the sets in C with cardinality greater than 1, since any singleton set s in C
corresponds to an element that must be inserted into the solution S′, and we can directly put it
in. Moreover, if si, sj ∈ C and si ⊂ sj , sj is redundant and can be removed from C, since if S′

contains an element of si, then it also contains an element of sj . Thus, let Cf = {s ∈ C: |s| > 1
and ∀s′ ∈ C, s′ 6⊂ s} be the set of association constraints, and let Af = {a∈R: {a}6∈ C} be the
set of attributes to be fragmented. We note that the construction of the set of constraints Cf is
polynomial in C, and that, by construction, Cf is a set of well defined association constraints.
Also, ac is not contained in any constraint in Cf . Consider now an affinity matrix that contains
the value 0 in every cell but the cells corresponding to ac, which are set to 1 (i.e., M [ai, aj]= 1 iff
ai = ac or aj = ac; M [ai, aj]= 0, otherwise).

Since only the affinity between attribute ac and any other attribute is greater than 0, a frag-
mentation algorithm with the goal of maximizing the affinity computes a fragmentation where
fragment F c containing ac includes the maximum number of attributes that can be inserted into
a single fragment without violating the constraints. The affinity of the computed fragmentation
corresponds to the cardinality of F c. Since a constraint is violated only if all its attributes be-
long to the same fragment, a fragment may include all attributes composing a constraint but one.
Therefore, maximizing the number of attributes composing F c is equivalent to minimizing the size

4.8. A heuristic approach to maximize affinity 99

F1 F2 F3 F4 F5 F6 F7 F8

F3 F4 F5 F6 F7 F8F1

F4 F6 F7 F8F1 F3

F4 F7F1 F3 F6

F7F1 F3 F6

F7F1 F6

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 4.11 Graphical representation of the working of the function in Figure 4.12

of the set S′ of attributes that contains at least one attribute from each constraint. S′ is the
solution of the minimum hitting set problem. Consequently, a maximal affinity fragmentation F of
R, with respect to M , satisfying all constraints in Cf , corresponds to a solution for the minimum
hitting set problem. In particular, given fragment F c that contains attribute ac, the solution for
the minimum hitting set problem is S′ = R − F c.

In the following, we describe a heuristic approach for Problem 4.2.

4.8 A heuristic approach to maximize affinity

Our heuristic approach to determine a fragmentation that maximizes affinity exploits a greedy
approach that, at each step, combines fragments that have the highest affinity. The heuristic
starts by putting each attribute to be fragmented into a different fragment. The affinity between
pairs of fragments is the affinity between the attributes contained in their union (as dictated by the
affinity matrix). Then, the two fragments with the highest affinity, let call them F i and F j , are
merged together (if this does not violate constraints) and F i is updated by adding the attributes of
F j , while F j is removed. The affinity of the new version of F i with respect to any other fragment
F k is the sum of the affinities that F k had with the old version of F i and F j . The heuristic
proceeds in a greedy way iteratively merging, at each step, the fragments with highest affinity
until no more fragments can be merged without violating the constraints. Figure 4.11 gives a
graphical representation of our heuristic approach; at each step, light grey boxes denote the pair
of fragments with highest affinity. The correctness of the heuristics lies in the fact that, at each
step, the affinity of the resulting fragmentation can only increase. As a matter of fact, it is easy
to see that affinity is monotonic with respect to the dominance relationship (see Lemma 4.2 in
Section 4.8.2).

The following subsection describes the function implementing this heuristic approach. In the
function, instead of controlling constraints to determine whether two fragments can be merged, we

100 4. Combining fragmentation and encryption to protect data privacy

FRAGMENT(Af ,Cf)

/* initial solution with a fragment for each attribute */
C ToSolve := Cf

Max := ∅
FragmentIndex := ∅
for i=1. . . |Af | do

F i := {ai}
Max := Max ∪ {F i}
FragmentIndex := FragmentIndex ∪ {i}

/* cells in M corresponding to constraints are invalidated */
for each {ax,ay} ∈ C ToSolve do

M [Fmin(x,y),Fmax(x,y)] := −1
C ToSolve := C ToSolve − {{ax,ay}}

/* extract the pair of fragments with maximum affinity */
Let [F i,F j], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
while |FragmentIndex| > 1 ∧ M [F i,F j] 6= −1 do /* merge the two fragments */

F i := F i∪F j

Max := Max − {F j}
FragmentIndex := FragmentIndex − {j}
/* update the affinity matrix */
for each k∈FragmentIndex : k 6=i do

if M [Fmin(i,k),Fmax(i,k)]=−1 ∨ M [Fmin(j ,k),Fmax(j ,k)]=−1 then
M [Fmin(i,k),Fmax(i,k)] := −1

else
for each c∈C ToSolve do

if c⊆(F i∪Fk) then
M [Fmin(i,k),Fmax(i,k)] := −1
C ToSolve := C ToSolve − {c}

if M [Fmin(i,k),Fmax(i,k)] 6= −1 then
M [Fmin(i,k),Fmax(i,k)] := M [Fmin(i,k),Fmax(i,k)] + M [Fmin(j ,k),Fmax(j ,k)]

Let [F i,F j], i<j and i, j ∈ FragmentIndex, be the pair of fragments with maximum affinity
return(Max)

Figure 4.12 Function that finds a vector-minimal fragmentation with maximal affinity

exploit the affinity matrix and set to −1 the affinity of fragments whose merging would violate the
constraints (thus ignoring them in the evaluation of fragments to be merged).

4.8.1 Computing a vector-minimal fragmentation with the affinity ma-

trix

Function Fragment in Figure 4.12 takes as input the set Af of attributes to be fragmented and a
set Cf of well defined non singleton constraints. It computes a vector-minimal fragmentation Max
of Af , where at each step the fragments to be merged are chosen according to their affinity. In
the following, with a slight abuse of notation, we use M [F i,F j] to denote the cell in the affinity
matrix identified by the smallest attribute in F i and F j (i.e., F i.first and F j .first), according to
the order relationship <A on attributes in Af .

First, the function initializes the set of constraints C ToSolve to be solved with Cf , Max to
a fragmentation having a fragment F i for each of the attributes ai in Af , and creates a set
FragmentIndex that contains the index i of each fragment F i∈Max . The function also checks all
constraints in C ToSolve composed of two attributes only, and sets to −1 the corresponding cells in
the affinity matrix. These constraints are removed from C ToSolve. In general, at each iteration of
the algorithm, for each i < j, M [F i,F j] is equal to −1 if the fragment obtained as F i∪F j violates
some constraints.

Function Fragment in Figure 4.12 then executes a while loop that, at each iteration, merges

4.8. A heuristic approach to maximize affinity 101

F 1={N}
F 2={O}
F 3={S}
F 4={Z}

F 1 F 2 F 3 F 4

F 1 10 15 5
F 2 5 10
F 3 20
F 4

c1 c2 c3

N × ×
O × ×
S × ×
Z ×

F 1={N}
F 2={O}
F 3={S}
F 4={Z}

F 1 F 2 F 3 F 4

F 1 -1 -1 5
F 2 5 10
F 3 20
F 4

c1 c2 c3

N X X

O X ×
S X ×
Z ×

[F i,F j] = [F 3,F 4]

F 1={N}
F 2={O}
F 3={S, Z}

F 1 F 2 F 3 F 4

F 1 -1 -1
F 2 -1
F 3

F 4

c1 c2 c3

N X X

O X X

S X X

Z X

Figure 4.13 An example of the execution of function Fragment in Figure 4.12

two fragments in Max as follows. If there are still pairs of fragments that can be merged, that
is, there are still cells in M different from −1, the function identifies the cell [F i,F j] (with i<j)
with the maximum value in M . Then, F i is updated to the union of the two fragments and F j is
removed from Max . Also, j is removed from FragmentIndex, since the corresponding fragment is
no more part of the solution. The function, in the end, updates M . In particular, for each fragment
F k, k∈(FragmentIndex−{i}), cell M [F i,F k] is set to −1 if either cell M [F i,F k] or cell M [F j ,F k] is
−1, or if F i∪F k violates at least one constraint still in C ToSolve. In this latter case, the violated
constraints {cx,. . . ,cy} are removed from C ToSolve. Otherwise, cell M [F i,F k] is summed with
the value in cell M [F j ,F k].

Example 4.7. Figure 4.13 presents the execution, step by step, of function Fragment in Fig-
ure 4.12, applied to the example in Figure 4.1 and considering the affinity matrix in Figure 4.10.
The left hand side of Figure 4.13 illustrates the evolution of fragments and of the chosen pair F i,
F j. The central part of Figure 4.13 illustrates the evolution of matrix M , where dark grey columns
represent fragments merged with other fragments, and thus removed from the set of fragments.
The right hand side of Figure 4.13 illustrates the set C ToSolve of constraints to be solved: if an
attribute belongs to constraint ci in C ToSolve, the corresponding cell is set to ×; if ci is removed
from C ToSolve, the cell is set to X. At the beginning, all constraints are not solved and there is
a fragment F for each attribute in Af . First, M is updated by setting to −1 the cells representing
constraints involving only two attributes, that is, constraints c1 and c2, which are then removed
from C ToSolve. Function Fragment chooses the cell in M with the highest affinity, that is,
M [F 3,F 4] = 20. Consequently, F 4 is merged with F 3 (the 4th column becomes dark grey to denote

102 4. Combining fragmentation and encryption to protect data privacy

that fragment F 4 does not exist anymore). Then, values in the affinity matrix are updated: cell
M [F 1,F 3] is set to −1, since M [F 1,F 3] were −1 before the merge operation; M [F 2,F 3] should
be set to M [F 2,F 3] + M [F 2,F 4] = 5 + 10 = 15, but it represents fragment {O,S,Z} that violates
constraint c3, therefore the cell is set to −1 and c3 is removed from C ToSolve. The final solution
is Max={{Name}, {Occupation}, {Sickness,ZIP}}, with affinity equal to 20. (Note that the solu-
tion computed by function Fragment in Figure 4.8, and represented in Figure 4.9, has 2 fragments
only, but its affinity is 10.)

We note that function Fragment in Figure 4.12 can be used to simulate function Fragment
in Figure 4.8 by sorting the attributes in the order with which they are considered by the function
in Figure 4.12 and considering an initial affinity matrix containing 0 as affinity value between each
pair of attributes. The ordering of attributes can be simply computed by iteratively calculating the
number of unsolved constraints N con[a] involving each attribute a , and inserting, as next element
of the ordered list, the attribute that maximizes N con[a]. Since the affinity matrix contains values
0 and −1 only, the order for choosing pair of fragments as the next maximum affinity pair is the
same of function Fragment in Figure 4.8.

4.8.2 Correctness and complexity

Before proving the correctness and complexity of our heuristic, we introduce two lemmas proving
the monotonicity property of fragmentation affinity with respect to the dominance relationship �
and the correctness of the matrix computation, respectively.

Lemma 4.2 (Monotonicity). Let R be a relation, M be an affinity matrix for R, C be a set of
well defined constraints over R, and F and F ′ be two correct fragmentations for R. If F�F ′ =⇒
affinity(F)≤affinity(F ′).

Proof. By definition, given two fragmentations F={F 1,. . . ,Fn} and F ′ = {F 1
′, . . . ,Fm

′} such that
F ≺ F ′, then VF [a]⊆VF ′ [a], ∀a ∈ Af . Therefore, for each a such that VF [a]=VF ′ [a], the affinity
of the two fragments F and F ′ containing a in F and F ′ respectively, is the same. On the contrary,
for all attributes a such that VF [a]⊂VF ′ [a], the affinity of the two fragments F and F ′ containing
a in F and F ′ respectively, is such that aff (F)≤aff (F ′). In fact, aff (F ′)=aff (F)+

∑

M [ai, aj],
∀ai ∈ F ′, aj ∈ (F ′ − F) with i < j. Since M [ai, aj] is always a non negative value, it holds that
if F ≺ F ′, then affinity(F)≤affinity(F ′).
If F = F ′ it is straightforward to see that affinity(F)=affinity(F ′).

Lemma 4.3. At the beginning of each iteration of the while loop in function Fragment in
Figure 4.12, M [F i,F j] = −1 ⇐⇒ ∃c ∈ C:c⊆(F i∪F j).

Proof. At initialization, function Fragment checks constrains involving exactly two attributes
{ax,ay} and sets to −1 the cell in M corresponding to the pair of fragments Fx={ax} and
F y={ay}. Also, these constraints are removed from C ToSolve.

When function Fragment merges two fragments F i and F j (i<j), j is removed from Frag-
mentIndex. For each k in FragmentIndex but i , cell M [Fmin(i,k),Fmax(i,k)] is set to −1 if either
M [Fmin(i,k),Fmax(i,k)] or M [Fmin(j ,k),Fmax(j ,k)] were −1 before the update. Indeed, if either
F i∪F k or F j∪F k violated a constraint before merging F i with F j , also F i∪F k (i.e., ∃c∈C such
that c⊆F i or c⊆F j) since F i is set to F i∪F j after the update. Note that constraints removed from
C ToSolve are represented by −1 being always kept in M . Also, when F i∪F k is checked against

4.8. A heuristic approach to maximize affinity 103

constraints, the algorithm looks for constraints representing a subset of F i∪F k in C ToSolve, and
the corresponding constraints are removed from C ToSolve, since there is a −1 in M representing
it.

Theorem 4.9 (Correctness). Function Fragment in Figure 4.12 terminates and finds a vector-
minimal fragmentation (Definition 4.12).

Proof. Function Fragment always terminates. In fact, the while loop terminates because at
each iteration the number of indexes in FragmentIndex decreases by one, and the iterations are
performed only if FragmentIndex contains at least two indexes.

We now prove that a solution F computed by this function over Af and Cf is a vector-minimal
fragmentation. According to Definition 4.12 of minimality, a fragmentation F is vector-minimal if
and only if (1) it is correct, (2) it maximizes visibility, and (3) ∄F ′:F ≺ F ′ that satisfies the two
conditions above. A fragmentation F computed by function Fragment in Figure 4.12 satisfies
these three properties.

1. Function Fragment starts with a simple correct fragmentation (F i := {ai}, for all ai∈Af),
and it iteratively merges only fragments that form a correct fragment, since the pair of
fragments to be merged is extracted as the pair with maximum affinity and the fragments
are merged only if their affinity is a positive value. By Lemma 4.3, only fragments whose
union does not violate constraints are merged. We can therefore conclude that F correctly
enforces C.

2. Since each attribute in Af is initially inserted exactly into one fragment, and when two
fragments are merged only the result of their union is kept in F , function Fragment produces
a fragmentation F such that the condition of maximal visibility is satisfied.

3. By contradiction, let F ′ be a fragmentation satisfying the constraints in Cf and maximizing
visibility, such that F ≺ F ′. Let VF and VF ′ be the fragment vectors associated with F and
F ′, respectively.

As already proved for Theorem 4.6, F ′ contains a fragment VF ′ [ai] that is the union of two
different fragments, VF [ai] and VF [aj], of F . We need then to prove that function Fragment
cannot terminate with two different fragments whose union does not violate any constraint.

Let Fh and F k be the two fragments computed by function Fragment, corresponding to
VF [ai] and VF [aj], respectively. Assume, without loss of generality, that h < k (since the
proof in the case h > k immediately follows by symmetry). By Lemma 4.3, M contains non-
negative values only for pairs of fragments whose union generates a correct fragment, and
therefore function Fragment cannot terminate with fragmentation F since M still contains
a non negative value to be considered (M [Fh, Fk]). This generates a contradiction.

Therefore the solution F computed by Fragment in Figure 4.12 is a vector-minimal fragmentation.

Theorem 4.10 (Complexity). Given a set of constraints C={c1,. . . ,cm} and a set of attributes
A={a1,. . . an} the complexity of function Fragment(A,C) in Figure 4.12 is O(n3m) in time.

104 4. Combining fragmentation and encryption to protect data privacy

Proof. The first for and for each loops of function Fragment cost O(n + m). The while loop is
performed O(n) times, since at each iteration an element from FragmentIndex is extracted. The
for each loop nested into the while loop updates the cells corresponding to fragments F i and F j

in the affinity matrix. While j is simply removed from FragmentIndex, and the column F j in the
matrix is simply ignored, the update of the cells corresponding to F i, which are O(n) in number,
costs O(n2m) because all the constraints in C ToSolve containing F i∪F j are considered. Each
extraction of the pair of fragments with maximum affinity from M simply scans (in the worst case)
the affinity matrix, and its computational cost is O(n2) in time. The overall time complexity is
therefore O(n3m).

4.9 Query cost model

The standard approach to physical database design considers a representative set of queries as the
starting point for the concrete identification of a satisfying solution. The same approach can also
be applied for fragmenting data by taking into consideration the gain due to sets of attributes
with more than two plaintext attributes appearing in the same fragment. To this purpose, we first
introduce the following query cost function.

Given a fragmentation F for R, any query Q can be evaluated on each of the fragments
composing F because the corresponding physical fragment contains all the attributes of R, either
in encrypted or in clear form. However, the execution cost of a query varies depending on the
schema of the fragment used for query computation. Overall, with respect to a given query
workload, some fragmentations can exhibit a lower cost than others. We are then interested in
identifying a correct fragmentation with maximal visibility characterized by the minimum cost. To
this purpose, we introduce a query cost model for query execution on a fragmented schema.

We describe a query workload Q as a set {Q1,. . . ,Qm} of queries, where each query Q i, i =
1, . . . ,m, is characterized by an execution frequency freq(Q i) and is of the form:

select ai1 ,. . . ,ain
from R
where

∧k
j=1 (aj in Vj)

where Vj is a set of values in the domain of attribute aj . Given a fragment Fl ∈ F and a query
Q i ∈ Q, the cost of executing query Q i over Fl depends on the set of attributes appearing in
clear form in Fl and on their selectivity; the availability of more attributes in clear form in a
fragment permits a more efficient execution of queries on the fragment. We therefore estimate the
selectivity of query Q i on Fl in terms of the percentage of tuples in Fl that are returned by the
execution of query Q i on Fl. First, we evaluate the selectivity of each single condition in query Q i

as follows. The selectivity of the j-th condition is computed as the ratio of the number of tuples in
the fragment such that the value of attribute aj is a value in Vj , over the number of tuples in Fl,

which corresponds to the number of tuples in the original relation R:

∑

v∈Vj
num tuples(aj ,v)

|R| , where

num tuples(aj ,v) denotes the number of tuples whose value for attribute aj is v. Since we assume
that the values of different attributes are distributed independently of each other, the selectivity
of

∧k
j=1 (aj in Vj) in query Q i on fragment Fl, denoted S (Q i,Fl), is the product of the selectivity

of each single condition. In particular, the j-th condition contributes to the computation of the
selectivity if and only if the corresponding attribute aj appears in clear form in Fl; otherwise the

4.9. Query cost model 105

condition cannot be evaluated on the fragment and it is therefore not useful to select the tuples
to be returned in response to the query (this restriction will be relaxed when we will consider in
Section 4.12 the introduction of indexes on encrypted attributes).

The cost of evaluating query Q i on fragment Fl, denoted Cost(Q i,Fl), is then estimated by the
size of the information returned, which is computed by multiplying S (Q i,Fl) (i.e., the selectivity
of Q i on Fl) by the number of tuples in the considered fragment, and by the size in bytes, denoted
size(tl), of the result tuples:

Cost(Q i, Fl) = S (Q i, Fl) · |R| · size(tl)

This is a common assumption in cost models for query optimizers, particularly in systems where
information has to be exchanged among different components, where the computational cost of
queries is considered less important. We note that in the architecture only symmetric encryption
is used, which current processors are typically able to apply even on high-rate transfers. It is
reasonable then to build a cost model that does not consider this aspect.

Note that both the set of attributes in the select clause and the set of attributes in the where

clause of query Q i determine the size in bytes of each result tuple. Indeed, size(tl) is obtained
by summing the size in bytes of each attribute in the select clause that appears in clear form in
Fl and the size in bytes of the enc attribute of the fragment, if there exists at least one attribute
in the select or where clauses that does not appear in clear form in Fl. The rationale is that
the encrypted portion of the fragment is needed to subsequently retrieve the desired attribute by
decrypting it. The final cost of evaluating query Q i on F is therefore the minimum among the
costs of evaluating the query on each of the fragments in F . In other words, given F = {F1,. . . ,Fr},
the cost of evaluating query Q i on F is:

Cost(Q i,F) = Min(Cost(Q i, F1), . . . ,Cost(Q i, Fr))

The cost of fragmentation F with respect to Q is the sum of the costs Cost(Q i,F) of each
single query Q i weighted by its frequency, as formally stated in the following definition.

Definition 4.14 (Fragmentation cost). Let R be a relation schema, C be a set of well defined
constraints over R, F be a fragmentation of R maximizing visibility, and Q={Q1,. . . ,Qm} be a
query workload for R. The fragmentation cost of F with respect to Q, denoted Cost(Q,F), is
computed as:

Cost(Q,F) =

m
∑

i=1

(freq(Q i) · Cost(Q i,F))

Example 4.8. Consider the fragmentation of the Patient relation in Figure 4.2. Given query Q :

select ∗
from Patient

where Sickness=‘Latex al.’ and Occupation=‘Nurse’

the selectivity of the fragments is: S(Q ,F1)=1, since neither Sickness nor Occupation are plain-
text represented in F1; S(Q ,F2)=2/6, since Occupation belongs to F2 and there are 2 nurses
out of 6 patients; S(Q ,F3)=3/6, since Sickness belongs to F3 and there are 3 patients suffer-
ing from Latex allergy. Supposing, for simplicity, that size(t1)=size(t2)=size(t3)=1, we have that
Cost(Q ,F)=Min(6, 2, 3). Cost(Q ,F2)=2.

The cost function here defined enjoys a nice property. Indeed, it is monotonic with respect to
the dominance relationship �, as proved by the following lemma.

106 4. Combining fragmentation and encryption to protect data privacy

Lemma 4.4 (Monotonicity). Given a relation schema R, a set C of well defined constraints over
R, the set Af ⊆ R of attributes to be fragmented, and a query workload Q for R, ∀F i,F j ∈ F:
F i�Fj =⇒ Cost(Q,Fj)≤Cost(Q,F i).

Proof. Consider two fragmentations F i and F j such that F i�Fj , F i={F i
1,. . . ,F

i
n}, and

Fj={F j
1 ,. . . ,F j

n−1}. By Definition 4.8, Fj is obtained by merging two fragments in F i, say
F i
a and F i

b , into F j
c . Therefore, ∀F j

x , x 6= c there exists a fragment F i
y=F j

x , and then

∀Qk ∈ Q, S (Qk,F
j
x)=S (Qk,F

i
y). Considering now fragment F j

c , we conclude that ∀Qk ∈ Q,

S (Qk,F
j
c)≤S (Qk,F

i
a) and S (Qk,F

j
c)≤S (Qk,F

i
b), since F j

c=F i
a∪F i

b and the selectivity of any con-
dition (a in V) is between 0 and 1. Also, since F j

c has more attributes in clear from than F i
a

(and F i
b), the evaluation of any query Qk can be more precise in projecting attributes. Therefore,

size(ta)≥size(tc) and size(tb)≥size(tc). As a consequence, ∀Qk ∈ Q, Cost(Q ,F j
c)≤Cost(Qk,F

i
a)

and Cost(Q ,F j
c)≤Cost(Qk,F

i
b).

Since ∀Qk ∈ Q, Cost(Qk,F) is computed as the minimum among Cost(Qk,F), all the queries
assigned to F i

a and F i
b by F i are assigned to F j

c by F j , thus Cost(Qk,F j)≤Cost(Qk,F i) for these
queries. Queries not assigned by F i to F i

a and F i
b may be assigned by F j to F j

c . This happens only
if Cost(Qk,F

j
c) is lower than Cost(Qk,F

i
x) for the previously chosen fragment F i

x. Consequently,
∀Qk ∈ Q, Cost(Qk,F j)≤Cost(Qk,F i). Since the frequency of queries is the same for both F i and
Fj , we conclude that Cost(Q,F j)≤Cost(Q,F i).

This property is easily extended to any pair of fragmentations F i and F j , F i�Fj . Considering
(F,�), there is a path from F i to F j . Each solution Fa in the path dominates the solution
Fb preceding it in the path. Therefore, Cost(Q,Fa)≤Cost(Q,Fb). By inductively applying this
observation along all the path from F i to Fj , we obtain that Cost(Q,F j)≤Cost(Q,F i).

We are now interested in finding a correct fragmentation F with maximal visibility that mini-
mizes the cost associated with a specific query workload, meaning that there does not exist another
fragmentation satisfying constraints, maximizing visibility, and such that its cost is less than the
cost associated with F . This problem can be formalized as follows.

Problem 4.3 (Minimum cost). Given a relation schema R, a set C of well defined constraints
over R, and a query workload Q={Q1,. . . ,Qm} for R, find a fragmentation F of R such that all
the following conditions hold:

1. F correctly enforces C (Definition 4.5);

2. F maximizes visibility (Definition 4.6);

3. ∄F ′ satisfying the conditions above and such that Cost(Q,F ′)<Cost(Q,F).

Like Problems 4.1 and 4.2, the minimum cost problem is NP-hard , as formally stated by the
following theorem

Theorem 4.11. The minimum cost problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50], which can
be formulated as follows: given a collection C of subsets of a set S, find the smallest subset S′ of
S such that S′ contains at least one element from each subset in C.

The reduction of the hitting set problem to the minimum cost problem can be defined as follows.
Let S′ be the solution of the minimum hitting set problem, let R = S be a relation composed of only

4.10. A heuristic approach to minimize query cost execution 107

heuristic search

complete search

solution space

d

2d

3d

4d

solutions
ps

Figure 4.14 Depiction of the search spaces

binary attributes where 0 and 1 values are equally distributed, and let Q be the query workload
of the system.

As for the proof of Theorem 4.8, we consider only the sets si in C with cardinality greater than
1 and such that there does not exists sj ∈ C, sj ⊂ si. Let Cf = {s ∈ C: |s| > 1 and ∀s′ ∈ C,
s′ 6⊂ s} be the set of association constraints, and let Af = {a∈R: {a}6∈ C} be the set of attributes
to be fragmented. We note that the construction of the set of constraints Cf is polynomial in C.
Also, by construction, Cf is well defined and does not contain singleton constraints.

Let us now suppose that Q={Q}, with Q=“select * from R where
∧

ai∈Af
(ai=0)” and

freq(Q)= 1. Since the attribute values are equally distributed, the selectivity of all the conditions
in Q is the same. As a consequence, the cost of Q with respect to an arbitrary fragment F is
proportional to the number of attributes in the fragment itself. The fragment F in a fragmentation
F that minimizes the cost with respect to the given query is therefore the one containing the
maximum number of attributes. As described in the proof of Theorem 4.8, computing the fragment
with the maximum cardinality corresponds to solve the minimum hitting set problem, since S′ =
R − F .

4.10 A heuristic approach to minimize query cost execution

The two heuristic algorithms proposed in previous sections are not suited for solving Problem 4.3,
since they do not take into account the advantage that arises in having sets of plaintext attributes
appearing in the same fragment. Due to the monotonicity of the cost function introduced in the
previous section with respect to the dominance relationship (see Lemma 4.4), the complete search
algorithm proposed in Section 4.5 could also be used to compute a solution for Problem 4.3. In
this case, function Evaluate should implement the Cost(Q,F) function. The complete search
algorithm remains however exponential in the number of attributes. While this may not be an
issue for small schemas, it may make the algorithm not applicable for complex schemas. We then
propose a heuristic algorithm working in polynomial time.

108 4. Combining fragmentation and encryption to protect data privacy

4.10.1 Computing a vector-minimal fragmentation with the cost func-

tion

Our heuristic is based on a variant of the depth-first search algorithm proposed for the complete
search, where a selected number of subtrees composing the fragmentation tree are visited following
the same strategy proposed for the complete search algorithm. As shown in Figure 4.14, the
fragmentation lattice is logically divided into

⌈

n
d

⌉

bands, where:

◦ n is the cardinality of Af ;

◦ d is a parameter indicating the number of levels in the tree completely visited at each step;2

◦ ps is a parameter indicating number of promising fragmentations explored at each step.

The first subtree of depth d is built considering as a root vertex the top element F⊤ of the
lattice. At level x · d , ps subtrees are visited (where ps is another parameter of the heuristic),
taking as a root one of the fragmentations computed at level x · d . These visits artificially stop at
level (x + 1) · d , where the best ps solutions are chosen as the root for the next in-depth visits of
the solution space.

The function in Figure 4.15 takes as input the set Af of attributes to be fragmented, the set
Cf of well defined non singleton constraints, and d and ps additional parameters. It computes a
vector-minimal fragmentation Min of Af , by visiting a subset of the fragmentations in F.

The algorithm uses variables: marker[F], representing the position of the marker within frag-
mentation F ; Min, representing the current minimal fragmentation; MinCost , representing the
number of fragments composing Min; currentqueue, containing the best ps fragmentations at level
x · d that represent the roots of the subtrees to be visited; and nextqueue, containing, in increasing
cost order, the correct fragmentations at level (x + 1) · d computed by the visits of the subtrees
rooted at the solutions in currentqueue. At start, the algorithm initializes variable Min to F⊤

and variable MinCost to the cost of F⊤. Then, the algorithm calls function BoundedSearch-
Min on F⊤ that iteratively builds the children of F⊤ according to Definition 4.11. Function
BoundedSearchMin(Fp) is then recursively called on each Fc, child of Fp, only if Fc satisfies
all the constraints (i.e., if function SatCon returns true) and level d has not been reached. In
this latter case, if Fc is correct, it is inserted in nextqueue. Note that the function exploits the
monotonicity of the cost function adopted and compares the cost of Fp with Min only if Fp is
locally minimal (i.e., it does not have correct children).

When the subtree rooted at F⊤ has been visited, the first ps fragmentations in nextqueue
become the content of currentqueue and nextqueue is re-initialized to null. Function Bound-
edSearchMin is then called for each F∈currentqueue, but moving back the marker of F to its
first fragment. The re-initialization of the marker implies that, for the root fragmentation F of
each subtree, all the fragmentations that represent a child of F in the lattice are re-evaluated, but
possibly not in the order-based cover exploited by the complete search. We note that this strategy
could visit more than once the same vertex in the lattice. However, the maximum number of times
that a fragmentation can be generated is ps. When currentqueue becomes empty, it is replaced
with the first ps fragmentations in nextqueue, until the last layer in the tree is reached.

2If d is equal to |Af | the heuristic approach degenerates in a complete search.

4.10. A heuristic approach to minimize query cost execution 109

FRAGMENT(Af ,Cf ,d,ps)
nextqueue:= null /* priority queue of promising solutions */
currentqueue:= null /* queue containing the best ps solutions */

for each ai∈Af do F⊤
i := {ai} /* root of the search tree F⊤ */

marker[F⊤] := 1 /* next fragment to be merged */
Min := F⊤ /* current minimal fragmentation */
MinCost := Cost(Q,Min)
/* compute the best ps solution within d levels from F⊤ */
insert(nextqueue,Min,MinCost)
while nextqueue 6=null do

i := 1
while (i≤ps)∧(nextqueue 6=null) do

i := i+1
enqueue(currentqueue,extractmin(nextqueue))

nextqueue := null

while currentqueue 6=null do
F := dequeue(currentqueue)
marker[F] := 1
BoundedSearchMin(F ,d)

return(Min)

BOUNDEDSEARCHMIN(Fp,dist)
localmin := true /* minimal correct fragmentation */
for i=marker[Fp]. . . (|Fp|-1) do

for j :=(i+1). . . |Fp| do
if Fp

i .last<AF
p
j .first then /* Fp

i fully precedes Fp
j */

for l=1. . . |Fp| do
case:

(l<j ∧ l 6=i): F c
l := Fp

l
(l>j): F c

l−1 := Fp

l

(l=i): F c
l := Fp

i F
p
j

marker[Fc] := i
if SatCon(F c

i) then
localmin := false
if dist= 1 then

insert(nextqueue,Fc,Cost(Q,Fc))
else

BoundedSearchMin(Fc,dist−1) /* recursive call */
if localmin then

cost := Cost(Q,Fp)
if cost<MinCost then

MinCost := cost
Min := Fp

Figure 4.15 Function that finds a vector-minimal fragmentation with minimal cost

Example 4.9. Figure 4.16 illustrates the execution, step by step, of function BoundedSearch-
Min (Bounded for short) applied to Example 4.1, assuming d = 1 and ps = 2. The table in
Figure 4.16(a) describes, for each (recursive) call to BoundedSearchMin, the updates to the
variables as well as to nextqueue. Therefore, the table in Figure 4.16(a) has the same structure
as the table in Figure 4.7(a), except for the last column, which is dedicated to nextqueue, and for
the column dedicated to the number of fragments in the solution, which is substituted here by the
cost of the same. Figure 4.16(b) illustrates the portion of the lattice visited by the algorithm. At
the beginning variable Min is initialized to [N|O|S|Z], which is the fragmentation representing the
root of the tree, the cost MinCost is initialized to 20, and nextqueue is initially empty. First,
function BoundedSearchMin is called on [N|O|S|Z], with dist = 1. Since dist−1 is 0, the frag-
mentations generated from [N|O|S|Z] and satisfying constraints do not cause a recursive call to
BoundedSearchMin, but they are inserted in nextqueue after the evaluation of their cost. Then,
BoundedSearchMin is called on the first two fragmentations extracted from nextqueue, that is,

110 4. Combining fragmentation and encryption to protect data privacy

Bounded(Fp,dist) Fp
i Fp

j Fc SatCon(F c
i) Bounded(Fc,dist) Cost(Q,Fc) Min nextqueue

N|O|S|Z,1 N O NO|S|Z false –
S NS|O|Z false –
Z NZ|O|S true – 18 NZ|O|S,18

O S N|OS|Z true – 12 N|OS|Z,12
Z N|OZ|S true – 8 N|OZ|S,8

S Z N|O|SZ true – 5 N|O|SZ,5

N|O|SZ,1 N O NO|SZ false –
SZ NSZ|O false –

O SZ N|OSZ false – 5 N|O|SZ
N|OZ|S,1 N OZ NOZ|S false –

S NS|OZ false –
OZ S – – – 8

(a)

N|O|S|Z

wwwwwwwwwwww

		
		

		
		

	

55
55

55
55

5

GGGGGGGGGGGG

OOOOOOOOOOOOOOOO20

NO|S|Z NS|O|Z NZ|O|S

18

N|OS|Z

12

N|OZ|S

8

N|O|SZ

5

NOZ|S

oooooooooooooooo
NO|SZ

oooooooooooooooo
NSZ|O

wwwwwwwwwwww
NS|OZ N|OSZ

(b)

Figure 4.16 An example of the execution of function Fragment in Figure 4.15

[N|O|SZ] and [N|OZ|S]. The final fragmentation computed by the heuristic algorithm is the same
computed by SearchMin.

4.10.2 Correctness and complexity

We now evaluate the correctness and the complexity of function Fragment in Figure 4.15.

Theorem 4.12 (Correctness). Function Fragment in Figure 4.15 terminates and finds a vector-
minimal fragmentation (Definition 4.12).

Proof. Function Fragment terminates if all the while loops composing it terminate. The external
while loop terminates when nextqueue is empty, provided the two internal loops terminate. The
first internal loop terminates since variable i is increased by one at each step. It terminates
when i > ps. The second internal while loop terminates since, at each iteration, an element
is extracted from currentqueue and function BoundedSearchMin terminates. Indeed, function
BoundedSearchMin at each recursive call, combines two of the fragments in the parent to
compute its children and the recursion terminates, since at each call dist is decreased by one.
Since BoundedSearchMin terminates, the number of items inserted in nextqueue is finite. Also,
the number of layers in the fragmentation tree is finite. Therefore, nextqueue becomes empty and
Fragment terminates.

We now prove that a solution F computed by this function over Af and Cf is a vector-minimal
fragmentation. According to Definition 4.12 of minimality, a fragmentation F is vector-minimal

4.11. Query execution 111

if and only if (1) it is correct, (2) it maximizes visibility, and (3) ∄F ′:F ≺ F ′ that satisfies the
two conditions above. The first two properties come directly from the proof of Theorem 4.4, since
function BoundedSearchMin works exactly as SearchMin when generating candidate solutions.
We need only to prove the third property.

By contradiction, let F ′ be a fragmentation satisfying the constraints in Cf and maximizing
visibility, such that F ≺ F ′. Let VF and VF ′ be the fragment vectors associated with F and F ′,
respectively. As already proved in the proof of Theorem 4.6, F ′ contains a fragment VF ′ [ai] that
is the union of two different fragments, VF [ai] and VF [aj], of F . We need then to prove that
function Fragment cannot terminate with two different fragments whose union does not violate
any constraint.

There are two different situations when invoking BoundedSearchMin(F ,dist), that is, dist> 1
or dist= 1. In the first case, F ′ is generated and BoundedSearchMin(F ′,dist − 1) called. In
the second case, F ′ is generated and inserted in nextqueue. Since nextqueue is an ordered queue,
BoundedSearchMin(F ′,dist) is called only if there are no more than ps solution with cost lower
than nextqueue. But if F is returned as a solution of Fragment, no solution in nextqueue has lower
cost than F , since BoundedSearchMin(F ′′) is called for each F ′′ ∈nextqueue. This generates a
contradiction since, from Lemma 4.4, Cost(Q,F ′)≤Cost(Q,F).

Therefore the solution F computed by Fragment in Figure 4.15 is a vector-minimal fragmen-
tation.

Theorem 4.13 (Complexity). Given a set of constraints C={c1,. . . ,cm}, a set of attributes
A={a1,. . . an}, and the two parameters d and ps, the complexity of function Fragment(A,C,d,ps)
in Figure 4.15 is O(ps

d
n2d+2m) in time.

Proof. The maximum number of iterations for the external while loop in function Fragment
is O(n

d
), since the fragmentation tree is composed of n layers and, at each iteration, solu-

tions inserted in nextqueue are d layers under the solutions currently in nextqueue. Function
BoundedSearchMin(Fp,d) is recursively called for each Fp∈currentqueue, which contains at
most ps solutions, since it is filled in during the preceding while loop. Function Bounded-
SearchMin, which behavior is similar to function SearchMin, visits the solutions in the sub-
tree rooted at Fp within d layers. Therefore, the number of solutions built at each recursion of
BoundedSearchMin(Fp,d) is O(n2d) and each generated solution is compared with constraints
in C. The overall time complexity is therefore O(ps

d
n2d+2m).

4.11 Query execution

Fragmentation of a relation R implies that only fragments, which are stored in place of the original
relation to satisfy confidentiality constraints, are used for query execution. The fragments can
be stored on a single server or on multiple servers. The server (or servers) storing the fragments
while needs not to be trusted with respect to the confidentiality, since accessing single fragments or
encrypted information does not expose to any privacy breach, it is trusted for correctly evaluating
queries on fragments (honest-but-curious).

Users who are not authorized to access the content of the original relation R have only a partial
view on the data, meaning that they can only access the fragments. A query submitted by a user
with a partial view can be presented directly to the server(s) storing the desired fragment. Users
who are authorized to access the content of the original relation have a full view on the data and

112 4. Combining fragmentation and encryption to protect data privacy

Query

mapping

component

Q
Q
s
,
Q
u

Q, k

Q
s

response to Q

f
1

….

response to Q
s

Q

response to Q

full view

partial view

TRUSTED

 UNTRUSTED

f
n

^
 ^

Figure 4.17 Interactions among users and server storing the fragments

can present queries referring to the schema of the original relation. The queries issued by users with
full view are then translated into equivalent queries operating on the encrypted and fragmented
data stored on the server(s). The translation process is executed by a trusted component, called
query mapping component , invoked every time there is the need to access sensitive information (see
Figure 4.17). In particular, the query mapping component receives a query Q submitted by a user
with full view along with the key k possibly needed for decrypting the query result computed by the
server, and returns the result of query Q to the user. Since every physical fragment of R contains
all the attributes of R, either in encrypted or in clear form, no more than one fragment needs to
be accessed to respond to Q. The query mapping component therefore maps the user’s query Q
onto an equivalent query Qs, working on a specific fragment. The server executes the received
query Qs on the required fragment and returns the result to the query mapping component. Note
that, whenever query Q may involve attributes that do not appear in the clear form in the selected
fragment, the query mapping component may need to execute an additional query Qu on the
decrypted results of Qs, which is in charge of enforcing all conditions that cannot be evaluated on
the physical fragment or of projecting the attributes reported in the select clause of query Q.
In this case, the query mapping component decrypts the result received, executes query Qu on it,
and returns the result of Qu to the user. We now describe the query translation process in more
details.

We consider select-from-where SQL queries of the form Q =“select AQ from R where C”,
where AQ is a subset of the attributes of R, and C is a conjunction of basic conditions c1 . . . cn
of the form (a op v) or (aj op ak), with a , aj , and ak attributes of R, v constant value, and
op comparison operator in {=, 6=, >,<,≤,≥}. Let us then consider the evaluation of query Q
on physical fragment F̂ i(salt ,enc,ai1 , . . . , ain), where salt is the primary key, enc contains the
encrypted attributes, and ai1 , . . . , ain are the plaintext attributes (see Section 4.3). Suppose, for
generality, that C contains some conditions that involve attributes stored in the clear form in F̂ i

and some others that cannot instead be evaluated on F̂ i. The query mapping component translates
the original query Q into a query Qs operating on the physical fragment and defined as:

4.11. Query execution 113

Original query on R Translation over encrypted fragments

Q := select SSN, Name
from Patient

where Sickness=‘Latex al.’
and

ZIP=‘94140’

Qs.3 := select salt, enc

from F̂3

where Sickness=‘Latex al.’and

ZIP=‘94140’

Qu := select SSN, Name
from Decrypt(Qs.3, Key)

Q′ := select SSN, Name
from Patient

where Sickness=‘Latex al.’
and

ZIP=‘94140’
and

Occupation=‘Nurse’

Q′

s.3:= select salt, enc

from F̂3

where Sickness=‘Latex al.’and

ZIP=‘94140’

Q′

u := select SSN, Name
from Decrypt(Q′

s.3, Key)
where Occupation=‘Nurse’

Figure 4.18 An example of query translation over a fragment

select AQ ∩ {ai1 , . . . , ain}, salt , enc

from F̂ i

where
∧

cj∈Ce
i
cj

where Ce
i is the set of basic conditions in C that can be evaluated on physical fragment F̂ i, that is,

Ce
i = {cj : cj ∈ C ∧ attributes(cj) ∈ F̂ i}, with attributes(cj) representing the attributes appearing

in cj . Note that the salt and enc attributes in the select clause of Qs are specified only if the
select or where clauses of the original query Q involve attributes not appearing in clear form
in the fragment. The query mapping component then decrypts the tuples received and executes
on them a query Qu defined as:

select AQ

from Decrypt(Qs, k)
where

∧

cj∈{C−Ce
i }

cj

where Decrypt(Qs, k) denotes a temporary relation including the tuples returned by Qs and where
attribute enc has been decrypted through key k. The where clause of Qu includes all conditions
defined on attributes that do not appear in clear form in the physical fragment and that can be
only evaluated on the decrypted result. The final result of query Qu is then returned to the user.

Note that since we are interested in minimizing the query evaluation cost, a query optimizer
can be used to select the fragment that allows the execution of more selective queries by the server,
thus decreasing the workload of the application and maximizing the efficiency of the execution [25].
For instance, the physical fragment F̂ i exploited by Qs can be conveniently chosen as the fragment
minimizing Cost(Q,Fi) as defined in Section 4.9.

Example 4.10. Consider the relation in Figure 4.1(a) and its fragments in Figure 4.2.

◦ Consider a query Q retrieving the Social Security Number and the name of the patients whose
Sickness is Latex al. and whose ZIP is 94140. Since fragment F̂ 3 contains both Sickness

114 4. Combining fragmentation and encryption to protect data privacy

and ZIP, it can evaluate both the conditions in the where clause and is chosen for query
evaluation. Figure 4.18 illustrates the translation of Q to queries Qs.3 executed by the server
on the fragment (notation Qs.x indicates a query executed by the server on fragment x), and
Qu executed by the application. Query Qs.3 returns to the application only the tuples belonging
to the final result. The application just needs to decrypt them for projecting attributes SSN

and Name.

◦ Consider a query Q′ retrieving the Social Security Number and the name of the patients whose
Sickness is Latex al., whose ZIP is 94140, and whose occupation is Nurse. Fragment F̂ 3

contains both Sickness and ZIP and S(Q′,F3)=1/6. Fragment F 2 contains only Occupation

and S(Q′,F3)=1/3. The query mapping component therefore translates query Q′ into queries
Q′
s.3 executed by the server on the fragment, and Q′

u executed by the application (see Fig-
ure 4.18). Since ZIP does not appear in clear form in fragment F̂ 3, the condition on it needs
to be evaluated by the application, which also performs the projection of the SSN and Name

attributes after decrypting the result computed by Qs.3.

Note that queries whose where clause contains negated conditions can be easily managed by
the query mapping component since whenever a basic condition c can be evaluated on a physical
fragment, also its negation (i.e., not(c)) can be evaluated on the same fragment. Queries whose
where clause contains disjunctions need special consideration. As a matter of fact, according
to the semantics of the or operator, any condition that cannot be evaluated over a fragment
but that is in disjunction with other conditions that can be evaluated on the fragment cannot
be simply evaluated on the result returned by the server (like done in the case of conjunction).
Three scenarios are then possible. 1) The query conditional part can be reduced to a conjunctive
normal form; then the query mapping and evaluation can proceed as illustrated in the conjunctive
case above. 2) The query conditional part can be reduced to a disjunctive normal form where all
components can be evaluated over different fragments; in this case the query mapping component
will ask the server for the execution of as many queries as the components of the disjunction and
will then merge (union) their results. 3) The query conditional part contains a basic condition (to
be evaluated in disjunction with others) that cannot be evaluated on any fragment (as it involves
a sensitive attribute or attributes that appear in two different fragments); in this case the query
mapping component will need to retrieve the entire fragment (any fragment will do) and evaluate
the query condition at its site.

4.12 Indexes

As discussed in Section 4.3, each physical fragment reports in the clear only some of the attributes
(as dictated by the fragmentation) while reporting the remaining attributes as a single encrypted
tuple. This clearly has an impact on the performance of queries that need to evaluate selection
predicates on both data appearing in clear and on data appearing in encrypted form (see Sec-
tion 4.11). In the encrypted database proposals, queries on encrypted data are typically evaluated
by means of indexes built on encrypted attributes: each cleartext query is translated into a query
on the indexes and the result (complete but maybe including spurious tuples) is then decrypted and
filtered by a trusted client (see Figure 4.17). As discussed in Chapter 2, different kinds of indexes
have been proposed, each providing a different balance between efficiency and confidentiality. We
distinguish here these methods in three main classes.

4.12. Indexes 115

Knowledge Indexed fragment f̂ 1

Sickness

Latex al.
Latex al.
Latex al.
Celiac
Pollen al.
Nickel al.

Name Sickness

A. Smith Latex al.

salt enc Name is1

s1 α A. Smith λ
s2 β B. Jones λ
s3 γ C. Taylor λ
s4 δ D. Brown φ
s5 ε E. Cooper π
s6 ζ F. White ψ

salt enc Name is2

s1 α A. Smith σ
s2 β B. Jones σ
s3 γ C. Taylor σ
s4 δ D. Brown ρ
s5 ε E. Cooper σ
s6 ζ F. White ρ

salt enc Name is3

s1 α A. Smith η
s2 β B. Jones η
s3 γ C. Taylor η
s4 δ D. Brown µ
s5 ε E. Cooper µ
s6 ζ F. White µ

(a) vk (b) hk (c) di (d) hi (e) fhi

Figure 4.19 Adversary knowledge (a,b) and choices for indexed fragments (c,d,e)

◦ Direct index. The index is obtained by applying an encryption (unsalted) function on the
cleartext values of the attribute [58].

◦ Hash index. The index is obtained by applying a keyed hash function to the cleartext
values and restricting the result to produce collisions [24].

◦ Flattened hash index. The index is obtained by applying a keyed hash function with
collision as in the case of hash index while applying a post processing that flattens the
distribution of index values (so to avoid exposures of outliers) [45, 96].

In the encrypted database scenario, direct indexes are the most efficient, as conditions on clear-
text values have a one to one correspondence with conditions on indexed values; at the same time
they exhibit a major vulnerability making them applicable only in restricted situations. Hash in-
dexes may create exposure problems only in the presence of outliers or in the case of use of multiple
indexes in the same table, but otherwise guarantee confidentiality. Flattened hash indexes provide
better protection. While one may think that the same properties could hold for fragmentations,
unfortunately the application of indexes to fragments (which, unlike encrypted databases, report
some cleartext values) introduces new vulnerabilities. In this section we briefly discuss the vul-
nerabilities to the aim of identifying a safe use of indexes, which we apply to our scenario. For
simplicity, in the discussion we refer to a simple fragmentation problem characterized by a relation
R(a1, a2) and by a single confidentiality constraint {a1, a2}. We then examine the exposure risk of
a fragment where a1 appears in the clear jointly with an index of a2, for each of the above classes
of indexes. An instance of such a configuration, to which we refer for concreteness in the examples,
is table Patient in Figure 4.1(a) restricted to attributes Name and Sickness, together with the
confidentiality constraint on them (c2). We then evaluate the protection of the fragment reporting
Name (Figure 4.2(a)) in the clear when indexes on attribute Sickness are added. Figure 4.19(c–e)
reports the indexed fragments under the different indexing assumptions.

To examine the vulnerability of the indexed fragments, we first need to identify the knowledge
available to the adversary, whose aim is to reconstruct the protected association (Name,Sickness).
We can identity two kinds of knowledge: vertical knowledge and horizontal knowledge, characterized
as follows.

◦ Vertical knowledge. Vertical knowledge is due to the fact that the values not appearing
in the clear in one fragment (for a confidentiality constraint forbidding their association with
other values) may appear in the clear in other fragments. Vertical knowledge does not require

116 4. Combining fragmentation and encryption to protect data privacy

any additional external information for the adversary since, apart from the case where the
attribute appears in a singleton constraint, it refers to information immediately present in
other accessible fragments (Figure 4.2(c)). Figure 4.19(a) reports the vertical knowledge
for our example, illustrating the projection of the Sickness attribute of Figure 4.1(a). An
adversary observing the fragments can then have complete knowledge of the distribution
(cleartext values and their number of occurrences) of the indexed attributes. In the example,
the observer knows that there are three patients with latex allergy.

◦ Horizontal knowledge. Horizontal knowledge is due to possible external knowledge that
the adversary has with respect to the presence of specific tuples (corresponding to sensitive
associations) in the table. In its simplest form, horizontal knowledge is then represented
by knowledge of a single tuple (v1, v2). In the example, the adversary may know that A.
Smith suffers from latex allergy, that is, (A. Smith, latex al.) belongs to the original table
R. Figure 4.19(b) reports this example of horizontal knowledge.

Let us now examine the exposure risk of indexed fragments under the assumption of horizontal
and vertical knowledge.3

Direct index, vertical knowledge (di-vk). Sensitive associations are exposed depending on
their distinguishability with respect to the number of occurrences of the indexed values. In our
example, the index corresponding to latex allergy is completely recognizable being the only one
with three occurrences. Consequently, the adversary infers that A. Smith, B. Jones, and C. Taylor
suffer from latex allergy. As for the other three patients, the adversary can estimate they suffer
from one of the three other sicknesses, each with equal probability.

Direct index, horizontal knowledge (di-hk). By joining this knowledge on the attribute
appearing in the clear in the indexed fragment (Name), the adversary can retrieve the index value
λ corresponding to the specific cleartext value of the indexed attribute (Sickness). This exposes
the associations having the same index value as the one the adversary knows. In our example,
knowledge of the association (A. Smith, latex al.) allows the adversary to know that λ is the index
for latex allergy and therefore to infer that also B. Jones, and C. Taylor suffer from latex allergy.

Hash index, vertical knowledge (hi-vk). The use of the hash index diminishes the exposure of
association since different cleartext values may be represented by the same index value. However,
values with a high number of occurrences (outliers), typically remain recognizable. In the example,
the adversary can infer that index σ refers to latex allergy, since it is the only one with at least 3
occurrences. She can then infer that 3 out of the 4 patients have latex allergy (i.e., each one has
latex allergy with 0.75 probability).

Hash index, horizontal knowledge (hi-hk). Like in the direct index case, the adversary can
recognize the index value representing the known cleartext value, with the only difference that the
index value can correspond also to other cleartext values. The adversary can then infer that some
associations are not present in the database (tuples with a different index value will certainly not
have the known cleartext value). Together with vertical knowledge, it allows the adversary to infer
the probability that some sensitive associations (with the known cleartext value) belong to the
database. In the example, knowledge of the association (A. Smith, latex al.) allows the adversary

3We note that the treatment of vertical knowledge strictly resembles threat models, proposed for encrypted
databases, that assume that the adversary had complete knowledge of the cleartext database and aimed at recon-
structing the correspondence between cleartext and index values (scenario Freq+DBK in [24]).

4.13. Experimental results 117

to know that σ is the index for latex allergy. Since there are 3 occurrences of latex allergy and 4
occurrences of σ, by removing the known one, the adversary can infer that B. Jones, C. Taylor,
and E. Cooper have a 0.66 probability of suffering from latex allergy.

Flattened hash index, vertical knowledge (fhi-vk). Flattening the occurrences of the index
values makes impossible to establish correspondences between cleartext values and index values
on the basis of the number of occurrences. Flattened hash indexes are not vulnerable to vertical
knowledge.

Flattened hash index, horizontal knowledge (fhi-hk). Like in the hashed case, the adversary
can recognize the index value representing the known cleartext value. Together with vertical
knowledge, it allows the adversary to identify the subset of tuples that may be associated with the
cleartext value for which the index is known, with an estimate of the probability of their association.
In the example, knowledge of the association (A. Smith, latex al.) allows the adversary to know
that η is the index for latex allergy and therefore to infer that B. Jones and C. Taylor have a 1.0
probability of suffering from latex allergy (since there are only three occurrences of latex allergy).

In summary, vertical and horizontal knowledge create inference risks on the basis of the num-
ber of occurrences of cleartext (and corresponding index) values. Even when values are equally
distributed, all indexes above remain vulnerable to horizontal knowledge, allowing the adversary
to infer associations with the known cleartext value. It is easy to see that such vulnerabilities are
blocked when values are equally distributed and horizontal knowledge refers to association with
indexed values that have only one occurrence. Both conditions are certainly satisfied when indexes
refer to key attributes. Without compromising confidentiality of fragments, we can therefore apply
indexes on attributes corresponding to candidate keys of the original relations.

Indexes can be easily integrated in our cost model, by simply refining Cost(Q,F) function.
This can easily be done by considering the selectivity of indexes for conditions on indexed values.
Indexes do not have any impact on the monotonicity property of the cost function on fragments
(Lemma 4.4) and therefore on the applicability of our solutions. With reference to our example
we can then consider direct indexes on SSN and Name (assuming Name is a candidate key) in any
fragment where they appear encrypted (all fragments for SSN and those in Figure 4.2(b) and
Figure 4.2(c) for Name).

4.13 Experimental results

The heuristic algorithms presented in Sections 4.6, 4.8, and 4.10 have been implemented as C
programs to obtain experimental data and assess their behavior in terms of execution time and
quality of the returned solution. Aiming to a comparison of the results computed by our heuristic
algorithms to the optimal solutions, we also implemented three versions of the algorithm presented
in Section 4.5, analyzing the complete solution space computing the fragmentation with the minimal
number of fragments, the one with maximum affinity, and the one with minimum cost, since all
these three functions are monotonic with respect to �. The relation schema we considered in the
experiments is composed of 19 attributes and is inspired by a database of medical information.
Taking into account possible confidentiality requirements we expressed up to 18 confidentiality
constraints. These constraints are well defined (see Definition 4.2) and composed of a number of
attributes varying from 2 to 4 (we did not consider singleton constraints as they cannot be solved
via fragmentation). The content of the affinity matrix has been produced using a pseudo-random

118 4. Combining fragmentation and encryption to protect data privacy

 10000

 100

 1

 19 15 10 8

T
im

e
(s

)

Number of Attributes

complete search (cost)
complete search (affinity)

complete search
d=3 ps=5
d=3 ps=1
d=2 ps=5
d=2 ps=1
d=1 ps=5
d=1 ps=1

heuristic algorithm (affinity)
heuristic algorithm

Figure 4.20 Computational time of the algorithms

 5

 4

 3

 2

 1

 0
 19 15 10 5 3

N
um

be
r

of
 F

ra
gm

en
ts

Number of Attributes

complete search
heuristic algorithm

Figure 4.21 Number of fragments of the solution produced by the algorithms

4.13. Experimental results 119

 50

 40

 30

 20

 10

 0
 19 15 10 5 3

A
ffi

ni
ty

Number of Attributes

complete search
heuristic algorithm

Figure 4.22 Affinity of the solution produced by the algorithms

generation function. We considered 14 queries, each characterized by a frequency value. The
experiments have considered configurations with an increasing number of attributes, from 3 to 19,
taking into account, for every configuration, only the constraints completely fitting in the selected
attributes. The number of constraints for a configuration with n attributes ranges between n−3 to
n+1. The system implemented presents as an option the use of indexes, according to the analysis
of Section 4.12.

Figure 4.20 compares the time required for the execution of the complete search algorithms
with the heuristic algorithms presented in this chapter. Consistently with the fact that the prob-
lem of minimizing the number of fragments, the problem of maximizing affinity, and the problem
of minimizing cost while satisfying confidentiality constraints are NP-hard, the three complete
search strategies require exponential time in the number of attributes. The complete search then
becomes unfeasible even for a relatively small number of attributes; with the availability of large
computational resources it would still not be possible to consider large configurations (in our ex-
periments we were able only to run the complete search for schemas with less than 15 attributes).
By contrast, the time required for the execution of the heuristic analysis always remains low. The
heuristic functions computing the vector minimal fragmentation and the vector minimal fragmen-
tation maximizing affinity have computational time near 0. On the other hand, the time required
by the heuristic for the minimum cost fragmentation problem increases exponentially with the
increase in the look-ahead depth and linearly with the increase in the number of parallel steps,
always showing a limited time for the simplest search (d=1,ps=1). It is therefore important to
have available a family of heuristics, so to apply in real systems a dynamic approach where initially
a search is executed with the most efficient heuristic, increasing the depth according to the amount
of available resources. The number of parallel steps is a parameter that should become particularly
interesting for the implementation of the heuristics on a multi-core architecture, where each core
can manage the exploration of one of the alternatives.

Obviously, a successful heuristics presents a good behavior if it combines time efficiency with
a demonstrated ability to produce good solutions. We therefore compared the solutions computed

120 4. Combining fragmentation and encryption to protect data privacy

 1500

 1000

 500

 0
 15 10 5 3

C
os

t

Number of Attributes

d=1 ps=1
d=3 ps=1

complete search

(a)

 1500

 1000

 500

 0
 19 15 10 5 3

C
os

t

Number of Attributes

d=1 ps=1
d=1 ps=3
d=1 ps=5

(b)

Figure 4.23 Cost of the solution produced by the algorithms

by the execution of each of the heuristic algorithms with those returned by the corresponding
complete search algorithms.

Figure 4.21 presents the number of fragments obtained by the execution of the heuristic al-
gorithm computing a vector-minimal fragmentation (Section 4.6) compared with in a solution
computed by the complete search function. As the graph shows, in all the cases that allow the
comparison, our heuristic has always identified an optimal solution.

 1500

 1000

 500

 0
 15 10 5 3

C
os

t

Number of Attributes

d=1 ps=1
d=1 ps=1 with indexes

complete search
complete search with indexes

Figure 4.24 Cost of the solution with indexes

Figure 4.22 instead compares the affinity of the fragmentation computed through our heuristic
(Section 4.8) with the optimal affinity produced by the complete search strategy. As the graph
shows, for all the cases that allow the comparison, the affinity of the solution computed by the

4.14. Chapter summary 121

heuristic algorithm is close to the optimal value: the average of the difference is 4.2% and the
maximum percentage difference is around 14.1%.

Figure 4.23(a) compares the cost of the solution obtained by our heuristic algorithm (Sec-
tion 4.10) in two configurations: (d = 1, ps = 1) and (d = 3, ps = 1) with the optimal cost
produced by the complete search strategy. The graph shows that even the simplest configuration
(d = 1, ps = 1) guarantees good-quality fragmentations. Figure 4.23(b) shows the cost of the
solutions produced by the heuristic with different values for parameter ps (i.e., 1, 3, and 5) and
with the fixed value d = 1. It is sufficient to use ps = 5 to obtain near-optimum fragmentations.

Finally, experiments have been run to evaluate the benefit of indexes and they have proved (see
Figure 4.24) that the use of indexes on encrypted attributes can produce a significant benefit. The
amount of the benefit is highly dependent on specific features of the relation schema and query
profile.

4.14 Chapter summary

We presented an approach combining fragmentation and encryption to efficiently enforce privacy
constraints over data collections, with particular attention to query execution efficiency. The algo-
rithms proposed for fragmentation take into account the information available about the system,
to the aim of efficiently executing queries on the fragmented data.

Besides the technical contribution, the ideas illustrated in this chapter can represent a step
towards the effective enforcement, as well as the establishment, of privacy regulations. Technical
limitations are in fact claimed as one of the main reasons why privacy cannot be achieved and,
consequently, regulations not be put into enforcement. Research along the line presented here can
then help in providing the building blocks for a more precise specification of privacy needs and
regulations, as well as their actual enforcement, together with the benefit of a clearer and more
direct integration of privacy requirements within existing ICT infrastructures.

5

Distributed query processing under safely

composed permissions

The integration of information sources detained by distinct parties, either for security or efficiency
reasons, is becoming of great interest. A crucial issue in this scenario is the definition of mechanisms
for the integration that correctly satisfy the commercial and business policies of the organization
owning the data. In this chapter, we propose a new model based on the characterization of access
privileges for a set of servers on the components of a relational schema. The proposed approach is
based on three concepts: i) flexible permissions identify portions of the data being authorized, ii)
relations are checked for release not with respect to individual authorizations but rather evaluating
whether the information release they (directly or indirectly) entail is allowed by the permissions,
and iii) each basic operation necessary for query evaluation entails different data exchanges among
the servers. Access control is effectively modeled and efficiently executed in terms of graph coloring
and composition. The query execution plan is checked against privileges to evaluate if it can or
cannot be exploited for query evaluation.

5.1 Introduction

More and more emerging scenarios require different parties, each withholding large amounts of in-
dependently managed information, to cooperate with other parties in a larger distributed system to
the aim of sharing information and perform distributed computations. Such scenarios range from:
traditional distributed database systems, where a centrally planned database design is distributed
to different locations; to federated systems, where independently developed databases are merged
together; to dynamic coalitions and virtual communities, where independent parties may need to
selectively share part of their knowledge towards the completion of common goals. Regardless of
the specific scenario, a common point of such a merging and sharing process is that it is selective:
if on the one hand there is a need to share some data and cooperate, there is on the other hand
an equally strong need to protect those data that, for various reasons, should not be disclosed.

124 5. Distributed query processing under safely composed permissions

The correct definition and management of protection requirements is therefore a crucial point
for an effective collaboration and integration of heterogeneous large-scale distributed systems.
The problem calls for a solution that must be expressive to capture the different data protection
needs of the cooperating parties as well as simple and coherent with current mechanisms for the
management of distributed computations, to be seamlessly integrated in current systems and fully
exploit the availability of technical solutions that are the fruit of a large amount of research and
development. To this aim and for the sake of concreteness, in this chapter we address the problem
with specific consideration to distributed database systems, while noting that our approach can be
extended to other data models.

Current approaches for the specification and enforcement of authorizations in relational
databases claim flexibility and expressiveness because of the possibility of referring to views. Users
can be given access to a specific portion of the data by the definition of the corresponding view (in
the database schema) and the consequent granting of the authorization on the view to the user. It
is then responsibility of the user to query the view itself. Queries on a table (base relation or view)
are controlled with respect to authorizations specified on the table and granted only if authorized.
When the diversity of users and possible views is considerable and dynamic such an approach
clearly results limiting as it: i) requests to explicitly define a view for each possible access needed
and ii) imposes on the user/application the burden of knowing and directly querying the view.
The evaluation of query compliance in terms of existing authorization views has been considered
in [71, 80, 81, 82].

We propose an expressive, flexible, and powerful, yet simple approach for the specification and
enforcement of permissions that overcomes such limitations. Our permissions express privileges
not on specific existing views but on stable components of the database schema, exploiting both
relations and joins between them, effectively identifying the specific portion of the data whose access
is being authorized. Another important aspect of our approach is that we do not limit ourselves to
a simple relation-authorization control but allow data release whenever the information carried by
the relation (either directly or indirectly due to the dependence of the attributes with other data
not explicitly released) is legitimate according to the specified permissions. This is an important
paradigm shift with respect to current solutions, departing from the need of specifying views to
identify the portion of the data to be authorized but explicitly supporting such a specification in
the permissions themselves.

A further novel aspect of the model is the definition of distinct access profiles for the users in
the system, with explicit support for a cooperative management of queries. This is an important
feature in distributed settings, where the minimization of data exchanges and the execution of
steps of the queries in locations where it can be less costly is a crucial factor in the identification
of an execution strategy characterized by good performance.

5.1.1 Chapter outline

The remainder of the chapter is organized as follows. Section 5.2 introduces the preliminary con-
cepts of distributed query evaluation, which are referred in our approach. Section 5.3 illustrates
our security model. Section 5.4 illustrates a graph-based representation of the components of the
proposed authorization model (database schema, relation profiles, and permissions). Section 5.5
describes a safe and efficient permission composition method, exploited for evaluating if a given
release is to be authorized or denied. Section 5.6 discusses query planning and how protection
requirements stated by permissions should impact its execution to ensure data are properly pro-

5.2. Preliminary concepts 125

R Employee(SSN,Job,Salary)
Patient(SSN,DoB,Race)
Treatment(SSN,IdDoc,Type,Cost,Duration)
Doctor(IdDoc,Name,Specialty)

I 〈Treatment.SSN,Patient.SSN〉
〈Treatment.IdDoc,Doctor.IdDoc〉

J 〈Employee.SSN,Patient.SSN〉

Figure 5.1 An example of relations, referential integrity constraints, and joins

tected by the distributed computation. Section 5.7 proposes an algorithm for determining whether
a query plan can be executed in the respect of the authorizations and determine, if it exists, a
safe assignment of tasks to the distributed cooperating parties for the execution of the query plan.
Finally, Section 5.8 concludes the chapter.

5.2 Preliminary concepts

We consider a distributed system composed of different subjects, denoted S, some of which act
as servers storing different relations, denoted R. In this section, we briefly introduce the basic
concepts and assumptions on the data model and the distributed query execution.

5.2.1 Data model

We refer in this chapter to the relational database model discussed in Section 3.2, which is basically
composed of a set R of relations, each with a primary key, and of a set of referential integrity
constraints.

Example 5.1. Consider a distributed system managing medical data, whose schema is repre-
sented in Figure 5.1. The system is composed of four servers with one relation each: Employee

stored at server SE; Patient stored at server SP ; Treatment stored at server ST , and Doctor,
stored at server SD. Underlined attributes denote primary keys. There are two referential in-
tegrity constraints: 〈Treatment.SSN,Patient.SSN〉, implying that treatments can only be given to
patients (values appearing for SSN in Treatment can be only values appearing for SSN in Patient),
and 〈Treatment.IdDoc,Doctor.IdDoc〉, implying that treatments can only be prescribed by doctors
(values appearing for IdDoc in Treatment can be only values appearing for IdDoc in Doctor).

Information in different relations can be combined by using the join operation, which allows
the combination of tuples belonging to different relations imposing conditions on how tuples can
be combined. For simplicity of exposition, we assume that attributes that can be joined appear
with the same name in the different relations, and consider then all joins to be natural joins,
that is, joins whose conditions are conjunctions of equality conditions that compare the value of
two attributes with the same name. We denote a conjunction of equality conditions with a pair
〈Al, Ar〉, where Al (Ar, resp.) is the list of attributes of the left (right, resp.) operand of the join.
Note that while possible joins obviously include all referential integrity constraints, other joins are
possible; in the following we denote with J the set of pairs representing the equality conditions

126 5. Distributed query processing under safely composed permissions

of such additional joins. As an example, with respect to the relations in Figure 5.1, Employee
and Patient can be joined over attribute SSN (retrieving all people that are both employees and
patients). Like the set of relations and the referential integrity constraints, possible joins are also
specified at the time of database design [49].

We assume all attributes in the different relations to have distinct names, apart from attributes
that can be joined, which appear instead with the same name. The intuitive rationale behind such
a homonymity is that attributes that can be joined actually represent the same concept of the
real world. For instance, SSN denotes social security numbers of people, who can then appear, for
example, as patients or employees. We adopt the usual dot notation when necessary to distinguish
the attribute in a specific relation (to refer to the occurrence of its specific values). For instance,
Employee.SSN denotes the social security numbers of employees and Patient.SSN denotes the
social security numbers of patients.

Different join operations can also be used to combine tuples belonging to more than two rela-
tions. The following definition introduces a join path as a sequence of natural join conditions.

Definition 5.1 (Join path). A join path over a sequence of relation schemas R1,. . . ,Rn is a
sequence of n − 1 joins J1, . . . , Jn−1 such that ∀i = 1, . . . , n − 1, Ji = 〈Jli, Jri〉 ∈ (I ∪ J) and Jli
are attributes of a relation appearing in a join Jk, with k < i.

Example 5.2. With reference to the relations in Figure 5.1, an example of
join path (combining more than two relations) is, {〈Patient.SSN,Treatment.SSN〉,
〈Treatment.IdDoc,Doctor.IdDoc〉}, allowing combination of tuples of the relations Patient,
Treatment, and Doctor to retrieve, for example, the specialty of the caring doctor of patients of a
given race.

While noting that the permission model we propose in the next section can be applied to any
schema, in this chapter we assume that the schema is acyclic and lossless [1, 5, 9]. Acyclicity
implies that the join path over any subset of the relations {R1,. . .,Rn} in the schema, denoted
joinpath({R1,. . .,Rn}), is unique. Acyclicity rules out schemas that present recursion or multiple
independent join conditions among the same relations. Acyclicity can be immediately evaluated
on the schema graph (see Section 5.4), considering arcs without orientation. Losslessness of the
schema guarantees that joins among relations produce only correct information (according to the
real world). Intuitively, two relations produce a lossless join if the join among them does not
produce spurious tuples. Losslessness can be evaluated by means of attribute intersections and
functional dependencies (see Section 5.4). Acyclicity and losslessness assumptions are often used
in relational databases, because they permit the realization of simple and efficient procedures on
the data, at the same time capturing the requirements of most real-word situations [9].

5.2.2 Distributed query execution

Since relations are distributed at different servers, query execution may require communication
and data exchanges among the different servers involved in the query (i.e., on which the relations
to be accessed are stored). We assume that each server implements a relational engine able to
compute queries and that it can require the execution of queries to other servers. We assume
communication relies on trusted channels and that servers use robust authentication mechanism
(e.g., SSL/TLS with 2-way authentication using certificates).

5.2. Preliminary concepts 127

n0 πSSN,Salary,DoB

n1 ⊲⊳

LLLLLLL

rrrrrrr

n2 ⊲⊳

KKKKKKK

��
��

n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Figure 5.2 An example of query tree plan

We consider simple select-from-where queries of the form: “select A from Joined relations
where C”, corresponding to algebra expression πA(σC(R1 ⊲⊳ . . . ⊲⊳ Rn)), where A is a set of
attributes, C is the selection conditions, and R1 ⊲⊳ . . . ⊲⊳ Rn are the joins in the from clause.
Each query execution can be represented as a binary tree (called query tree plan) where leaves
correspond to the physical relations accessed by the query (appearing in the from clause), each
non-leaf node is a relational operator receiving in input the result produced by its children and
producing a relation as output, and the root corresponds to the last operation and returns the
result of the query evaluation. To simplify and without loss of generality, we assume the query
plan to satisfy the usual minimization criteria, and, in particular, we assume that projections are
“pushed down” the tree, to eliminate unnecessary attributes as soon as possible. While usually
adopted for efficiency, this assumption is also important for security purposes, as it restricts the
attributes being potentially disclosed to those strictly needed for the computation.

Example 5.3. Consider the relations in Figure 5.1, and consider the following query.

select E.SSN, Salary, DoB
from Employee as E join Patient as P on E.SSN=P.SSN

join Treatment as T on P.SSN=T.SSN

where Duration> 10

The corresponding relational algebra expression is πSSN,Salary,DoB (σDuration>10 (Employee ⊲⊳ Patient

⊲⊳ Treatment)). An example of tree representing the execution of this query is represented in
Figure 5.2, where the selection on Duration> 10 on relation Treatment has been pushed down the
tree (i.e., it is executed before the join operation). Also, projections on necessary attributes are
added before join operations.

Queries may involve joins among relations stored at different servers, which therefore need to
cooperate, and possibly exchange data, for performing the computation. We therefore propose an
authorization model to regulate the view that each server (subject in general) can have on the data
and ensure that query computation exposes to each server only data that the server can view.

128 5. Distributed query processing under safely composed permissions

We assume that each server is responsible for the definition of the access policy on its resources
and permissions involving data stored at different servers are jointly specified and administered. A
centralized query optimizer is responsible for the construction of the query plan, taking into account
the schema and the permissions from each server. This is compatible with all the proposals for
distributed databases aiming at a realization on concrete systems, which assume the use of a
centralized optimizer; a purely distributed approach based on some form of negotiation protocol
among the servers is considered impractical.

In the following, given an operation involving a relation stored at a server, we will use the term
operand to refer independently to the relation or to the server storing it, when the semantics is
clear from the context.

5.3 Security model

We first present our simple, while expressive, permissions regulating how data can be released to
each server. We then introduce the concept of relation profile that characterizes the information
content of a relation.

5.3.1 Permissions

Consistently with standard practice in the security world, we assume a “closed” policy, where data
can be made visible only to parties explicitly authorized for that.

Different subjects in the system may be authorized to view portions of the whole database
content. We consider permissions in a simple, yet powerful form, specifying visibility permissions
for subjects to view certain schema components. Formally, permissions are defined as follow.

Definition 5.2 (Permission). A permission p is a rule of the form [Att , Rels]→S where:

◦ Att is a set of attributes, belonging to one or more relations, whose release is being authorized;

◦ Rels is a set of relations such that for every attribute in Att there is a relation including it;

◦ S is a subject in S.

Permission [Att, Rels]→S states that subject S can view the sub-tuples over the set of attributes
Att belonging to the join among relations Rels (on conditions joinpath(Rels)).

Note that, according to the definition, only attribute names (without indication of the relation)
appear in the first component of the permission, whereas the relation (or relations) to which
the attribute belongs is specified in the second component. This occurs even when the attribute
appears in more than one relation (specified in Rels), consistently with the semantics that all the
occurrences represent the same entity in the real world.

Example 5.4. Figure 5.3 illustrates some permissions on the relations in Figure 5.1 that give
Alice the visibility of:

◦ SSN, Date of Birth, and Race of all patients (p1);
◦ SSN of treated patients, together with Type, Cost, and Duration of their treatments (p2);
◦ Race of patients and Specialty of their caring doctors (p3);
◦ SSN, Job, and Salary of all employees (p4);

5.3. Security model 129

p1: [(SSN,DoB,Race),(Patient)] →Alice
p2: [(SSN,Type,Cost,Duration),(Treatment)] →Alice
p3: [(Race,Specialty),(Treatment,Patient,Doctor)] →Alice
p4: [(SSN,Job,Salary),(Employee)] →Alice
p5: [(Name),(Treatment,Doctor)] →Alice

Figure 5.3 Examples of permissions

◦ Name of doctors who have prescribed some treatment (p5).

Note that the presence of a relation (and therefore the enforcement of the corresponding join
condition) in a permission may decrease the set of tuples that are made visible (to only those tuples
that participate in the join). However, such an elimination of tuples does not correspond to less
information, rather it adds information on the fact that the visible tuples actually join with (i.e.,
have values appearing in) other tuples of the joined relations. For instance, permission p5 while
restricting the set of doctor’s names visible to Alice to only the names of the doctors who have
prescribed treatments, it allows Alice to see that such doctors have prescribed treatments (i.e.,
they appear in relation Treatment).

The only case where including an additional relation in the permission does not influence the
result, and therefore does not imply an indirect information disclosure, occurs when the additional
relations are reachable via referential integrity constraints (from the foreign to the primary key it
references) from a relation in Rels. For instance, permissions p2 in Figure 5.3 and a permission with
the same first component as p2 and having (Treatment,Patient,Doctor) as a second component,
are completely equivalent as they permit (direct or indirect) release of exactly the same information.
Indeed, given the existing referential integrity constraints (see I in Figure 5.1), all SSN and all
IdDoc appearing in Treatment also appear in Patient and Doctor respectively. The added joins
are therefore ineffective.

Note how the simple form of permissions above, with the specification of the relations as a
separate element, proves quite expressive. In particular, the Rels component may also include
relations whose attributes do not appear in the set Att of attributes. This may be due to either:

◦ connectivity constraints, where these relations are needed to build the association among at-
tributes of other relations (i.e., the relations are in the join path). For instance, in permission
p3 in Figure 5.3, Treatment relation appears in the join path to establish the association
between each patient and her caring doctors, but none of its attributes is released. Note
how the permission allows Alice to view the speciality of patients’ doctors without need of
knowing their treatment.

◦ instance-based restrictions, where the relations are needed to restrict the attributes to be
released to only those values appearing in tuples that can be associated with such rela-
tions. For instance, permission p5 in Figure 5.3 allows Alice to view the names of all the
doctors who prescribed at least a treatment (i.e., tuples in the Doctor relation satisfying
Doctor.IdDoc=Treatment.IdDoc condition) but not of those doctors who never prescribed
a treatment. Note how instance-based restrictions can also be used to support situations
where some information can be released only if explicit input is requested (the input is
viewed in this case as a relation to be joined). For instance, we can define a permission such
that providing the employees’ SSN, the company can retrieve their treatments.

130 5. Distributed query processing under safely composed permissions

5.3.2 Relation profiles

Permissions restrict the data (view) that can be released to each subject. To determine whether
a release should be authorized or not, we first need to capture the information content of the
released relation, which can be either base or computed by a query. To this purpose, we introduce
the concept of relation profile as follows.

Definition 5.3 (Relation profile). Given a relation R, the relation profile of R is a triple
[Rπ,R⊲⊳,Rσ], where:

◦ Rπ is the set of attributes in R (i.e., R’s schema);

◦ R⊲⊳ is the, possibly empty, set of base relations joined for the definition/construction of R;

◦ Rσ is the, possibly empty, set of attributes involved in selection conditions in the defini-
tion/construction of R.

According to the definition above, the relation profile of a base relation R(a1, . . . , an) is
[{a1, . . . , an},R ,∅].

The reason why both i)the attributes being returned as result (i.e., the attributes in the se-

lect clause) and ii) the attributes on which the query imposes conditions (i.e., the attributes
in the where clause) appear in the profile reflects the fact that the query result returns indeed
information on both (or, equivalently, the subject needs permissions to view both for accessing the
relation to be released).

Note also that, like for permissions, only attribute names (without indication of the relation)
appear in the first component of the query profile, while the relation (or relations) to which the
attributes belong is specified in the second component. Indeed, if an attribute belongs to more
than one relation (and therefore participates in the join), the common values of such an attribute
in all relations are released by the query, regardless of the specific relation mentioned in the select

clause, which is needed for disambiguating attribute names. The consideration of the attribute
names allows us to conveniently capture this aspect regardless of the specific way in which the query
has been written. For instance, with respect to the query in Example 5.3, the set of social security
numbers released by the query is the intersection of the set of SSN values of patients, employees,
and treatments as captured in the profile: [(SSN,Salary,DoB), (Employee,Patient,Treatment),
(Duration)]. As a matter of fact, a query equal to the query in Example 5.3 but releasing P.SSN

or T.SSN instead of E.SSN, while slightly different in the syntax, would carry exactly the same
information content and, consequently, would have the same profile.

According to the semantics of the relational operators, the profile resulting from a relational
operation, summarized in Figure 5.4,1 is as follows.

◦ Projection (π). A projection operation returns a subset of the attributes of the operand.
Hence, R⊲⊳ and Rσ of the resulting relation R are the same as the ones of the operand, while
Rπ contains only those attributes being projected.

◦ Selection (σ). A selection operation returns a subset of the tuples of the operand. Hence,
R⊲⊳ and Rπ of the resulting relation R are the same as the ones of the operand, while Rσ

needs to include also the attributes appearing in the selection condition.

1 For the sake of simplicity, with a slight abuse of notation, in the table we write σA(R) as a short hand for any
expression σcondition(R), where A is the set of attributes of R involved in condition.

5.4. Graph-based model 131

Profile
Operation Rπ R⊲⊳ Rσ

R := πA(Rl) A R⊲⊳
l Rσ

l

R := σA(Rl) Rπ
l R⊲⊳

l Rσ
l ∪A

R :=Rl⊲⊳jRr Rπ
l ∪Rπ

r R⊲⊳
l ∪R⊲⊳

r Rσ
l ∪Rσ

r

Figure 5.4 Profiles resulting from operations

◦ Join (⊲⊳). A join operation returns a relation that contains the association of the tuples of
the operands, thus capturing the information in both operands as well as the information on
their association (conditions in the join). Hence, Rσ, Rπ, and R⊲⊳ of the resulting relation
R are the union of those of the operands, implicitly capturing the join path joinpath(R⊲⊳)
among the relations composing R⊲⊳ and consequently the set of conditions that each tuple in
R satisfies.

5.4 Graph-based model

We model database schema, permissions, and queries via mixed graphs, that is, graphs with both
undirected and directed arcs.

The schema graph of a set R of relations is a mixed graph whose nodes correspond to the
different attributes of the relations, whose non-oriented arcs correspond to the possible joins (J),
and whose oriented arcs correspond to the referential integrity constraints (I) and the functional
dependencies between the primary key of a relation and its non-key attributes. Attributes appear-
ing with the same name in more than one relation appear as different nodes. To disambiguate,
nodes are identified with the usual dot notation by the pair relation.attribute. This is formalized
by the following definition.

Definition 5.4 (Schema graph). Given a set R of relations, a set I of referential integrity con-
straints over R, and a set J of join conditions over R, a schema graph is a graph G(N , E) where:

◦ N = {Ri.∗ : Ri ∈ R}

◦ E = J ∪ I ∪ {(Ri.K,Ri.a) : Ri ∈ R∧a 6∈ K}

Figure 5.5 represents the schema graph corresponding to the set of relations, referential integrity
constraints, and join conditions in Figure 5.1 (for simplicity, we only report the initials of the
relations).

Permissions and relation profiles correspond to views over the set R of relations and are
characterized by a pair [A,R], corresponding to [Att ,Rels] appearing in the permissions, and to
[Rπ∪Rσ,R⊲⊳] in the relation profile of relation R , respectively.

Definition 5.5 (Entailed view). Given a set R of relations and a permission p=[Att,Rels] over
it, the view V =[A,R] entailed by p is defined as: A=Att and R=Rels.
Given a set R of relations and a relation profile [Rπ,R⊲⊳,Rσ], the view V =[A,R] entailed by the
profile is defined as: A=Rπ∪Rσ and R=R⊲⊳.

132 5. Distributed query processing under safely composed permissions

Figure 5.5 Schema graph for the relations in Figure 5.1

In the characterization of the view, we take into consideration the fact that referential integrity
constraints can be used to extend the relations in R to include all relations reachable from the ones
appearing in R by following referential integrity connections from a foreign key to the referenced
primary key. We can then include such relations in the set R. Given a set R of relations, R∗ denotes
the relations obtained by closing R with respect to referential integrity constraints. For instance,
with respect to the schema graph in Figure 5.5, the closure of R={Treatment} is R∗={Treatment,
Patient, Doctor}.

Given a relation profile/permission, we graphically represent the view entailed through it as a
view graph obtained by coloring the original schema graph with three colors: black for information
that the view carries (i.e., it explicitly contains or indirectly conveys); white for all the non-black
attributes belonging to relations in R∗ and the arcs connecting them to the primary key; and clear
for any other attribute or arc. Intuitively, clear nodes/arcs are attributes/arcs belonging to the
original graph that are ineffective with respect to the evaluation and composition of permissions.
The reason for maintaining them in the view graphs is so that every query/permission is a coloring
(in contrast to a subgraph) of the schema graph. View graph is formally defined as follows.

Definition 5.6 (View graph). Given a set R of relations characterized by schema graph G(N , E)
and a view V = [A,R] entailed by a permission/relation profile on it, the view graph of V over G
is a graph GV (N , E , λV), where λV : {N ∪ E} →{black,white,clear} is a coloring function defined
as follows.

λV (n)=























black, n=R.a , R ∈ R∗ ∧ a ∈ A

white, n=R.a , R ∈ R∗ ∧ a 6∈ A

clear, otherwise

5.4. Graph-based model 133

COLORGRAPH(G,[A,R])
NV := N
EV := E
for each n∈NV do λV (n) := clear
for each (ni,nj)∈EV do λV (ni, nj) := clear
for each R∈R

∗ do
for each a∈R.∗ do /* color nodes */

if a∈A then
λV (R.a) := black

else
λV (R.a) := white

for each (ni,nj)∈joinpath(R∗) do /* color the join path */
λV (ni, nj) := black

for each (ni,nj)∈{(ni,nj): ∃R∈R
∗, ni=R.K ∧nj⊆R.∗} do

if λV (nj)=black ∨ nj appears in joinpath(R∗) then
λV (ni, nj) := black

else
λV (ni, nj) := white

GV := (NV ,EV ,λV)
return(GV)

Figure 5.6 Function for coloring a view graph

λV (ni, nj)=







































black, (ni,nj) ∈ joinpath(R∗) ∨
(ni=R.K, nj=R.a , R ∈ R∗,(a ∈ A ∨ R.a appears in joinpath(R∗)))

white, ni=R.K, nj=R.a , R ∈ R∗,
¬(a ∈ A ∨ R.a appears in joinpath(R∗))

clear, otherwise

According to this definition, a node is colored as: black if it appears in A, white if it is not
black and it belongs to a relation appearing in R∗, and clear otherwise. An arc is colored: black
if either it belongs to joinpath(R∗) or it is an arc going from the key of a relation in R∗ to an
attribute which either belongs to A or appears in joinpath(R∗); white if it is an arc from the key
of a relation in R∗ to one of its attributes which neither belongs to A nor appears in joinpath(R∗);
clear otherwise.

Figure 5.6 illustrates the ColorGraph function that given the schema graph G and a pair [A,R]
denoting either the view entailed by a permission or by a relation profile, implements Definition 5.6
and returns the corresponding view graph. ColorGraph, whose interpretation is immediate, starts
by assigning a clear color to all nodes and arcs and proceeds by coloring black and white arcs and
nodes as prescribed by the definition.

Figure 5.7 reports the view graphs corresponding to the permissions in Figure 5.3. Figure 5.8
reports some examples of relations obtained through queries over the schema in Figure 5.5. The
figure reports the queries originating the relations, the relation profiles, and the corresponding
view graphs.

Before closing this section we introduce two dominance relationships between view graphs that
will be used in the remainder of the chapter.

Definition 5.7 (�N , �NE). Given a schema graph G(N , E), and two view graphs GVi
(N , E , λVi

)
and GVj

(N , E , λVj
) over G, the following dominance relationships are defined:

◦ GVi
�NGVj

, when ∀n∈ N and ∀(nh, nk) ∈ (J ∪ I):

134 5. Distributed query processing under safely composed permissions

p1:[(SSN,DoB,Race),(Patient)]→Alice p2:[(SSN,Type,Cost,Duration),(Treatment)]→Alice

p3:[(Race,Specialty),(Treatment,Patient,Doctor)]→Alice p4:[(SSN,Job,Salary),(Employee)]→Alice

p5:[(Name),(Treatment,Doctor)]→Alice

Figure 5.7 Examples of permissions and their view graphs

– λVi
(n) = black =⇒ λVj

(n)=black, and

– λGi
(nh, nk) = black ⇐⇒ λGj

(nh, nk) = black.

◦ GVi
�NEGVj

, when ∀n∈ N and ∀(nh, nk) ∈ E:

– λVi
(n) = black =⇒ λVj

(n)=black, and

– λGi
(nh, nk) = black =⇒ λGj

(nh, nk) = black.

According to this definition, given two graphs GVi
and GVj

on the same database schema,
GVi

�N GVj
if they have exactly the same black referential integrity and join arcs and the black

5.4. Graph-based model 135

Q1

select E.SSN,Salary
from Employee as E

join Patient as P
on E.SSN=P.SSN
join Treatment as T
on T.SSN=P.SSN

where Cost> 250

[(SSN,Salary), (Employee,Patient,Treatment), (Cost)]

Q2

select P.SSN,DoB
from Employee as E

join Patient as P
on E.SSN=P.SSN

where Race=‘asian’

[(SSN,DoB), (Employee,Patient), (Race)]

Q3

select P.SSN,Race
from Patient as P

join Treatment as T
on T.SSN=P.SSN
join Doctor as D
on T.IdDoc=D.IdDoc

where Specialty=‘cardiology’

[(SSN,Race), (Patient,Treatment,Doctor), (Specialty)]

Q4

select E.SSN,Salary,DoB
from Employee as E

join Patient as P
on E.SSN=P.SSN
join Treatment as T
on P.SSN=T.SSN

where Duration> 10

[(SSN,Salary,DoB), (Employee,Patient,Treatment), (Duration)]

Figure 5.8 Examples of queries, their relation profiles, and their view graphs

nodes of GVi
are a subset of the black nodes of GVj

. GVi
�NE GVj

if the black arcs and nodes
of GVi

are a subset of the black arcs and nodes of GVj
. For instance, with reference to the view

136 5. Distributed query processing under safely composed permissions

graphs in Figures 5.7 and 5.8, it is easy to see that: Gp3�NGQ3
and that Gp1�NEGQ2

.

5.5 Authorized views

To evaluate a query requested by a subject against her permissions and to determine if the query
can be executed, we implement the following intuitive concept.

Principle 5.1. A relation (either base or resulting from a query evaluation) can be released to a
subject if she has permissions to view the information content carried by the relation.

We first discuss when a permission authorizes the release of a relation. We will then address
permission composition and cooperation in query evaluation.

In the reminder of this section we refer our discussion to permissions and relation profiles of a
specific subject and omit, for simplicity, the subject component of permissions in the formalization.

5.5.1 Authorizing permissions

Intuitively, a permission authorizes a release if and only if the information (directly or indirectly)
entailed by the relation profile is a subset of the information that the permission authorizes to
view. Note that this is different from saying that the relation should contain only data that are
a subset of the data authorized by the permission, as this denotes only the information directly
released. A correct enforcement should also ensure that no indirect release occurs. There are two
main sources of indirect release:

◦ the presence, in the query generating the relation, of conditions on attributes that are not
returned (i.e., attributes that appear in the where clause but do not appear in the select

clause);

◦ the presence of join conditions restricting the tuples returned by the query.

The first aspect is easily taken into consideration as it is already captured by the inclusion, in the
relation profile (Definition 5.3), of Rσ component, which is included in A for the entailed view
definition (Definition 5.5). To illustrate the problem of the second aspect, consider permission p1

in Figure 5.7, which allows Alice to view the complete information in Patient, and therefore the
whole tuples representing all patients. Permission p1 by itself is then sufficient to grant Alice the
ability to view the data of all patients (i.e., relation obtained through query “select P.SSN,DoB
from Patient as P where Race=‘asian’ ”). Suppose instead that Alice is interested in the
relation resulting from Q2 in Figure 5.8. This latter query returns a subset of all the tuples of
patients, and therefore only tuples that Alice, according to p1, is authorized to see. However,
permission p1 is not sufficient for granting Alice such visibility on data, since the query result
conveys the additional information that the returned tuples refer to patients who are also employees
of the considered company (information which permission p1 does not authorize).

As already commented in Section 5.4, the only case when joins do not add information is when
there is a referential integrity constraint among the involved relations. Consider, for example,
permission p2 authorizing the release of different attributes in Treatment. For instance, query
“select T.SSN from Treatment as T” is clearly authorized by p2. Consider then the same query
containing, in the from clause, also relations Patient and Doctor with the corresponding joins.

5.5. Authorized views 137

Despite the presence of the additional joins, such a query does not bear additional information
(indirect release) and should therefore be authorized by p2. As a matter of fact, because of the
referential integrity constraints between the involved relations, all SSN’s and IdDoc’s appearing in
Treatment also appear in Patient and Doctor, respectively, and therefore the joins do not impose
restrictions. The consideration of the peculiar characteristics of joins due to referential integrity
constraints is easily taken into account, since it is already captured by the coloring, in the view
graph, of all the relations reachable from the ones appearing in the query, by following referential
integrity constraints (Definition 5.6).

Let us then proceed to formally define when a permission authorizes the release of a relation. We
start by identifying permissions applicable to a relation profile. Intuitively, a permission applies to
a relation when it refers to the complete set of tuples composing the relation. Since tuple restriction
is due to joins not following the direction from a foreign key to the referenced key in a referential
integrity constraint (as commented above), this is equivalent to saying that the permission applies
to a relation profile if it does not contain additional joins (apart from those corresponding to
referential integrity constraints). This is formalized by the following definition.

Definition 5.8 (Applicable). A permission [Att,Rels] is applicable to a relation profile [Rπ,R⊲⊳,Rσ]
iff Rels∗⊆R⊲⊳∗.

In terms of view graphs, this definition is equivalent to say that the black and white nodes of
the view graph Gp of permission p should be a subset of the black and white nodes of the view
graph GR of the relation profile of R .

According to the discussion above, a permission authorizes the release of a relation if and only
if the permission applies to the relation profile and authorizes the release, either direct of indirect,
of the information in the profile. This means that the permission should include (at least) all
attributes composing the relation or accessed for its definition/computation as well as all the join
conditions. In terms of the view graphs, this is equivalent to say that the view graph GR of the
relation profile and the view graph Gp of the permission have exactly the same black referential
integrity and join arcs and that all nodes that are black in the view graph of the relation profile
are also black in the view graph of the permission, that is, GR�NGp . This is formally captured
by the following definition.

Definition 5.9 (Authorizing permission). Given a permission p=[Att,Rels] applicable to a relation
profile R=[Rπ,R⊲⊳,Rσ], p authorizes the release of R iff GR�NGp .

As an example, with reference to the permissions in Figure 5.7 and the relation computed
through query Q2 in Figure 5.8, the set of permissions applicable includes p1 and p4. However,
neither p1 nor p4 authorize the release of the query result. By contrast, considering query “select

P.SSN,DoB from Patient as P where Race=‘asian’ ”, with profile [(SSN,DoB), (Patient), (Race)]
permission p1 is the only applicable permission that also authorizes the query.

5.5.2 Composition of permissions

Checking relation profiles against individual permissions is not sufficient for a true enforcement of
Principle 5.1. Indeed, it might be that for a relation profile there is no permission that singularly
taken authorizes the release of the relation, however information released (directly or indirectly)
by the relation profile is authorized. As an example, consider permissions p1 and p4 in Figure 5.3

138 5. Distributed query processing under safely composed permissions

COMPOSE(G,pi,pj)
p := [Atti∪Attj ,Relsi∪Relsj]
Np := N
Ep := E
for each n∈Np do λV (n) := clear
for each (ni,nj)∈Ep do λV (ni, nj) := clear
for each n∈Np do

if λpi
(n)=black∨λpj

(n)=black then

λp (n)=black
else

if λpi
(n)=white∨λpj

(n)=white then

λp (n)=white
for each (nh,nk)∈Ep do

if λpi
(nh, nk)=black∨λpj

(nh, nk)=black∨ (λp (nh)=black∧λp (nk)=black) then

λp (nh, nk)=black
else

if λpi
(nh, nk)=white∨λpj

(nh, nk)=white then

λp (nh, nk)=white
return(p)

Figure 5.9 Function composing two permissions

and suppose that Alice requests the relation resulting from query Q2 in Figure 5.8, returning the
tuples associated with patients whose SSN appears also in the Employee relation. While neither p1

nor p4 authorize the relation profile (as, for each of them, the relation profile has the additional
join condition that the permission does not authorize), it is clear that the relation does not contain
any information that Alice is not authorized to see. As a matter of fact, Alice could indeed
separately query both relations and then join the two results. In the spirit of Principle 5.1, the
release of the result of query Q2 to Alice should therefore be authorized. To enforce this principle,
we compose permissions and consider a release of a relation authorized if there exists a composition
of permissions that authorizes it.

Composition of permissions must however be performed carefully to ensure that composition
does not authorize additional queries that were authorized by neither of the original permissions.
To illustrate, consider again the permissions in Figure 5.7 and suppose that Alice is interested
in the relation resulting from query Q3. One could think that such a release can be authorized
by composing p1 in Figure 5.7 (authorizing the release of SSN’s and Race’s) and p3 (authorizing
the release of the race of patients together with the specialty of their caring doctor). However,
such a composition does not authorize the relation release. Indeed, the relation profile conveys the
associations between a patient and her caring doctor, which neither of the individual permissions
authorize and which Alice would not be able to reconstruct by separately exploiting the privileges
granted by the two permissions. The problem, in this case, is that the composition of the two
permissions returns more information than that entailed by the two permissions individually taken.
If this is the case, the two permissions should not be composed.

To determine when two permissions can be composed, we exploit one of the foundational results
of the theory of joins for relational databases, expressed by the theorem presented in [5], which
states that two relations produce a lossless join if and only if at least one of the two relations
functionally depends from the intersection of their attributes. The relations that are considered
in the theorem correspond to generic projections on the set of attributes that characterizes the
“universal relation” obtained joining all the relations of our lossless acyclic schema; this means
that each permission corresponds to a relation and that the composition of permissions is correct

5.5. Authorized views 139

only if the above requirement is satisfied. For instance, consider the previous examples and the
permissions in Figure 5.7. Permissions p1 and p4 can be combined because their intersection is
represented by attribute SSN, which is a key for all the attributes in p1 (and p4). Permissions p1

and p3 cannot be combined because their intersection is represented by attribute Race, and neither
p1 nor p3 functionally depend on it.

The application of this basic result of the theory of joins in our scenario is slightly complicated
by the fact that the views corresponding to given permissions may include attributes from different
relations. (We note here that intersection of permissions is computed based only on the attribute
names, without considering the relation they belong to, since attributes with the same name
represent the same real world concept and natural joins impose them to be equal in all the resulting
tuples.) Given two permissions pi=[Att i,Relsi] and pj=[Attj ,Relsj] their composability depends
on the intersection of their visible attributes (i.e., Att i ∩ Attj) but the functional dependency
of the visible attributes of one of the two permissions from the common attributes needs to be
evaluated by taking into account also the referential integrity constraints. This concept can be
easily captured by analyzing the view graphs Gpi

and Gpj
corresponding to the two permissions.

The basic idea is that there is a dependence between pi and pj when there is a black path from
nodes corresponding to the attributes that are listed both in Att i and in Attj to all the black nodes
in Gpi

or in Gpj
. This intuitive concept of dependency is formalized as follows.

Definition 5.10 (Dependence). Given two permissions pi=[Atti,Relsi] and pj=[Attj,Relsj] with
view graphs Gpi

(N , E , λpi
) and Gpj

(N , E , λpj
), respectively, let Bj be the set of nodes corresponding

to {Atti ∩ Attj} in Gpj
. We say that pj depends on pi, denoted pi→pj, iff ∀nj∈N such that

λpj
(nj)=black, ∃n ∈ Bj such that there is a path of only directed black arcs from n to nj in Gpj

.

In the following, notation pi↔pj denotes that both pi→pj and pj→pi hold. Similarly, pi 6↔pj
denotes that neither pi→pj nor pj→pi hold.

For instance, with reference to the permissions in Figure 5.7, as already noted, p2→p1, since
common attribute SSN is key for the Patient relation authorized by p1, and p1 6→p2, since the
attributes released by p2 depend on the pair of attributes SSN and IdDoc. We also note that
p1↔p4, since the SSN attribute, common to the two permissions, is the key of both the Patient

and Employee relations. On the contrary, as already pointed out, p1 6↔p3.
If pi→pj (or pj→pi, respectively), then the two permissions can be safely composed , as formally

stated by the following definition.

Definition 5.11 (Safe composition). Given two permissions pi=[Atti,Relsi] and pj=[Attj,Relsj],
pi and pj can be safely composed when pi→pj, or pj→pi, or both.

For instance, p1 can be safely composed with p2, since p2→p1. Also, since p1↔p4, p1 can be
safely composed with p4.

Similarly to the composition of relations presented in the theory of normal forms for relational
databases, the composition of pi with pj generates a new permission that combines the viewing
privileges of the two, as stated by the following definition.

Definition 5.12 (Composed permission). Given two permissions pi=[Atti,Relsi] and
pj=[Attj,Relsj], their composition is the permission pi⊗pj=[Atti∪Attj,Relsi∪Relsj].

It is easy to see that the view graph of the resulting composed permission is obtained from the
view graphs of the components as follows. A node in Gpi⊗pj

is: black if it is black in either Gpi

140 5. Distributed query processing under safely composed permissions

Gp1 Gp2 Gp1⊗p2

⊗ =

Gp1 Gp4 Gp1⊗p4

⊗ =

Gp1⊗p2
Gp1⊗p4

Gp1⊗p2⊗p4

⊗ =

Figure 5.10 Examples of permission compositions

or Gpj
; white if it is not black and it is white in either Gpi

or Gpj
; it is clear otherwise. An arc

in Gpi⊗pj
is: black if it is black in either Gpi

or Gpj
or if it is incident on only black nodes in

Gpi⊗pj
; white if it is not black and is white in either Gpi

or Gpj
; it is clear otherwise. Figure 5.10

represents the view graphs resulting from a subset of the safe compositions of the privileges in
Figure 5.7, that is, p1⊗p2, p1⊗p4, and p1⊗p2⊗p4.

A permission obtained by composing permissions pi and pj (pi ⊗ pj) can be composed with a
permission pk that did not satisfy the composition requirements with pi nor with pj . In general,
each new permission produces new opportunities for composition that have to be considered. The
consideration of all the potential compositions is modeled by the following concept.

Definition 5.13 (Composition closure). Given a set of permissions P, the closure on composition
of P, denoted P⊗, is the set of permissions obtained as a fixpoint by the procedure which repeatedly
extends P with all permissions obtained by the safe composition of the permissions in P.

5.5. Authorized views 141

For instance, with reference to the set of permissions in Figure 5.7, their closure is P⊗={p1,
p2, p3, p4, p5, p1⊗p2, p1⊗p4, p2⊗p4, p1⊗p2⊗p4}.

The closure represents the greatest representation of the permissions available to a subject.
This concept permits to identify in a complete way if a specific relation profile is authorized for a
subject.

Definition 5.14 (Authorized release). Given a set P of permissions applicable to a relation profile
[Rπ,R⊲⊳,Rσ], P authorizes R iff ∃p ∈ P⊗ such that p authorizes R (according to Definition 5.9).

The computation of the closure on composition of permissions is potentially an expensive
procedure. In the following, we present an efficient algorithm that avoids computing the whole set
of permissions in the composition closure while ensuring completeness of the control, needed to
evaluate if a release is authorized.

5.5.3 Algorithm

Given a set P of n permissions of a subject S applicable to a relation profile [Rπ,R⊲⊳,Rσ], the
control for the authorized release does not require to compute all the possible 2n − 1 permission
compositions, since given two permissions pi and pj , if pj→pi then pj is subsumed by pi⊗pj ,
and whenever a permission pk can be composed with pj , pk can also be composed with pi⊗pj , as
stated by the following theorem.

Theorem 5.1 (Permission implication). Given two permissions pi=[Atti,Relsi], pj=[Attj,Relsj] ∈
P such that pj→pi, ∀pk=[Attk,Relsk] ∈ P:

1. pj→pk ⇒ (pi⊗pj)→pk;

2. pk→pj ⇒ pk→(pi⊗pj).

Proof. Let us consider the two cases above.

1. Let pi⊗pj=[Att i,j ,Relsi,j]. Attributes in Attj∩Attk also appear in the intersection between
Att i,j and Attk. Therefore, there exists a path of only directed black arcs from a node
corresponding to some attributes in Attj∩Attk to each black node in Gpk

.

2. From the hypothesis, we know that there is a path of only directed black arcs from a node
corresponding to some attributes in Attj∩Attk to each black node in Gpj

. Also, we know
that there is a path of only directed black arcs from a node corresponding to some attributes
in Att i∩Attj to each black node in Gpi

. By combining these paths, it follows that also pk→pi
and, therefore, that pk→(pi⊗pj).

This theorem implies that permission pj can be removed from the set P without compromising
the composition process. It is also easy to see that since the composed permission is again applicable
to the relation profile [Rπ,R⊲⊳,Rσ], the set of permissions to be composed always contains at most n
permissions (i.e., the composed permission substitutes one, or both, of the composing permissions).
Function Authorized in Figure 5.11 applies this observation to check whether a relation profile
release is authorized. The function takes as input the view graph GR representing the relation
profile and the subjects requesting the release; on the basis of the set of applicable permissions, it
returns true or false, depending on whether or not the query is authorized.

142 5. Distributed query processing under safely composed permissions

AUTHORIZED(GR ,S)
Let Applicable be the set of permissions [Att, Rels]→Si such that:
{n∈Np :λp (n)=black∨white}⊆{n∈ NR :λR (n)=black∨white} ∧ Si=S

/* check individual permissions */
for each p∈Applicable do

if GR�NGp then return(true)
/* compose permissions */
maxid := |Applicable|
counter := 1
for each p∈Applicable do

p .id := counter
p .maxcfr := counter
counter := counter + 1

idmini := 1
repeat

Let pi be the permission with pi.id=idmini

idminj := Min({p .id:p∈Applicable∧pi.maxcfr<p .id})
Let pj be the permission with pj .id=idminj

dominated := null

if (Gpi
6�NEGpj

) ∧ (Gpj
6�NEGpi

) then

if pj→pi then dominated := dominated ∪ {pj}
if pi→pj then dominated := dominated ∪ {pi}

pi.maxcfr := pj .id
if dominated 6=null then

maxid := maxid + 1
pmaxid := Compose(G,pi,pj)
pmaxid.id := maxid
pmaxid.maxcfr := maxid
Applicable := Applicable − dominated ∪ {pmaxid}

idmini := Min({p .id:p∈Applicable∧p .maxcfr<maxid})
until idmini=null

/* check resulting permissions */
for each p∈Applicable do

if GR�NGp then return(true)
return(false)

Figure 5.11 Function that checks if a release is authorized

Initially, Authorized determines the set Applicable of applicable permissions and checks if one
of these permissions dominates (�N) GR . If this is the case, function Authorized returns true.
Otherwise, the function starts the composition process that exploits Theorem 5.1 according to
which permission pi can be removed from set Applicable if pj→pi. The applicable permissions are
first ordered according to a numeric identifier id, ranging from 1 to |Applicable|, which is associated
with each permission. In the repeat until loop, each permission pi is compared with a permission
pj such that pi.id<pj .id . If the set of black nodes and arcs of Gpi

is not a subset of the set of black
nodes and arcs of Gpj

(i.e., Gpi
6�NEGpj

, meaning that pj has not been computed in a previous
iteration by composing pi with another authorization) and viceversa, function Authorized checks
whether pi and pj can be composed (i.e., pj→pi or pi→pj). If this is the case, the identifier of the
resulting composed permission (if any) becomes equal to the current maximum identifier (maxid)
incremented by one. Each permission p is also associated with a variable p .maxcfr that keeps
track of the highest identifier of the permissions compared to p . This variable avoids to check
the same pair of permissions more than once. The composition process terminates when maxcfr
of all permissions is equal to the highest identifier maxid . The function then checks if any of the
permissions in Applicable dominates (�N) GR . If this is the case, function Authorized returns
true; otherwise it returns false.

5.5. Authorized views 143

id 1 2 3 4 5 6 7 8

p1 p2 p3 p4 p5

initialization 1 2 3 4 5
p2→p1 1 2 3 4 5 p1⊗p2

p1 6↔p3 2 3 4 5 6
p1↔p4 3 3 4 5 6 p1⊗p4

p3 6↔p5 3 5 6 7
p3 6↔(p1⊗p2) 5 5 6 7
p5 6↔(p1⊗p2) 6 5 6 7
p3 6↔(p1⊗p4) 6 6 6 7
p5 6↔(p1⊗p4) 7 6 6 7
(p1⊗p2)→(p1⊗p4) 7 7 6 7 p1⊗p2⊗p4

p3 6↔(p1⊗p2⊗p4) 7 7 7 8
p5 6↔(p1⊗p2⊗p4) 8 7 7 8
Gp1⊗p4

�NEGp1⊗p2⊗p4
8 8 7 8

8 8 8 8

Figure 5.12 An example of the execution of function Authorized

Example 5.5. Consider the schema graph in Figure 5.5, the set of permissions in Figure 5.7,
and the relation R1 computed by query Q1 in Figure 5.8. As it is visible from the view graphs,
all the five permissions are applicable to the profile of the relation resulting from Q1. The table in
Figure 5.12 represents the execution, step by step, of function Authorized on GQ1

by reporting
the evolution of variable p.maxcfr for both original and composed permissions. Each column in the
table corresponds to a permission, whose identifier is the label of the column itself. Note that when
a permission is removed from Applicable, its maxcfr is not reported anymore. Each row in the table
represents an iteration of the repeat until loop, reporting both the dependence relationship between
the composing permissions and the maxcfr for all permissions. Also, in each row the maxcfr of the
permissions checked for a possible composition are reported in italic. When a permission is removed
from Applicable (because subsumed by an added composed permission), its maxcfr is not reported
anymore. Figure 5.10 represents the view graph of the permissions obtained by the composition.
We then conclude that the relation resulting from the evaluation of query Q1 can be released to
Alice, since p1⊗p2⊗p4 authorizes it.

The following theorems state the correctness and complexity of function Authorized.

Theorem 5.2 (Correctness). Given a relation profile R=[Rπ,R⊲⊳,Rσ] and a set Applicable of
applicable permissions, function Authorized terminates and returns true iff the release of R is
authorized by Applicable⊗.

Proof. Termination. All the for loops terminate, since Applicable (by Theorem 5.1) is composed of
at most n permissions. At each iteration of the repeat until loop, function Authorized evaluates
a pair of permissions 〈pi,pj〉 such that pi.maxcfr<pj .id . Two cases can occur: pi and pj cannot
be composed, or pi and pj can be composed (and we suppose, without loss of generality, that
pj→pi). In the first case, in the subsequent iterations pi and pj are no more checked, since pi.id
and pj .id do not change and pi.maxcfr is set to pj .id . In the second case, pi is removed from
Applicable, while the composed permission p=pi⊗pj is added to Applicable. Since pj�NEp, in the
following iterations, when they are compared they do not generate new permissions. Since each
possible combination is checked only once and the number of possible combination is finite, the
repeat until loop terminates.

Correctness. If there exists a permission p∈Applicable⊗ that authorizes the release of R , two

144 5. Distributed query processing under safely composed permissions

cases can occur: p∈Applicable, or p is a composed permission. In the first case, Authorized
returns true since the first for loop iterates on all permissions in Applicable. In the second case,
the repeat until loop removes from Applicable only non-necessary permissions (see Theorem 5.1)
and checks all non-redundant pairs of permissions in Applicable. The repeat until loop terminates
when, for all p in Applicable, p .maxcfr=maxid . Since p .maxcfr is initialized to p .id and updated
to the minimum pi.id such that p .maxcfr<pi.id , each permission is compared to all the other
permissions following it in the order established by id . Also, for each new permission pi, maxid
increases by 1 and pj .id is set to the new value of maxid . Since, for each permission p but pi in
Applicable, p .maxcfr is less than pj .id , the subsequent iterations of the repeat until loop check
the new permission with all the other permissions in Applicable. This means that the repeat until
loop checks all possible pairs of permissions and therefore it finds the permission authorizing the
release of R .

Note also that, if a permission pi removed from Applicable (because pj→pi) authorizes R , the
composed permission pj⊗pi=[Att ij ,Relsij] belongs to Applicable and authorizes the release of R .
In fact, Att ij=(Att i∪Attj)⊃(Rπ∪Rσ). Also, Relsij

∗=Relsi
∗=R⊲⊳∗.

Theorem 5.3 (Complexity). Given a relation profile R=[Rπ,R⊲⊳,Rσ] and a set Applicable of n
applicable permissions, the complexity of function Authorized is O(n3) in time.

Proof. The function matches every permission with every other permission in the Applicable set,
to verify if they can be composed. Any time pi→pj , pi is removed from Applicable, while pi⊗pj
is added to the same. Since, thanks to the ordering among permissions, no match between pairs
of permissions is repeated, each permission is compared to at most n − 1 permissions generating,
at most n versions of the same. Therefore the function makes at most n3 comparisons.

5.6 Safe query planning

To determine whether and how a query can be executed over the distributed system, we need first to
determine the data releases that the execution entails, so that only executions implying authorized
releases are performed. Since we can assume each server to be authorized to view the relation it
holds, each unary operation (projection and selection) can be executed by the server itself, while
a join operation can be executed if all the data communications correspond to authorized releases.

The table in Figure 5.13 summarizes the operations and data exchanges needed to perform
a relational operation reporting, for every data communication, the profile of the relation being
communicated (and hence the information exposure implied by it); data access by a server on
its own relation is implicit. For each operation/communication we also show, before the “:”, the
server executing it. For join operations, we first note that a (natural) join operation Rl⊲⊳Rr, where
Rl and Rr represent the left and right input relations, respectively, can be executed either as a
regular join or a semi-join. We call master the server in charge of the join computation and slave
the server that cooperates with the master during the computation. We then distinguish four
different cases resulting from whether the join is executed as a regular join or as a semi-join and
from which operand serves as master (slave, respectively). The assignment is specified as a pair,
where the first element specifies the operand that serves as master and the second the operand
that serves as slave. We briefly discuss the cases where the left operand serves as master (denoted
[S l,null] for the regular join and [S l,S r] for the semi-join), with the note that the cases where the
right operand serves as master ([S r,null] and [S r,S l]) are symmetric.

5.6. Safe query planning 145

Oper. [m,s] Operation/Flow Views(S l) Views(Sr) View profiles
πX(Rl) [S l,null] S l: πX(Rl)
σX(Rl) [S l,null] S l: σX(Rl)

Rl⊲⊳Jlr
Rr [S l,null] Sr: Rr→S l Rr [Rπ

r ,R⊲⊳
r ,Rσ

r]
S l: Rl⊲⊳Rr

[Sr,null] S l: Rl→Sr Rl [Rπ
l
,R⊲⊳

l
,Rσ

l
]

Sr: Rl⊲⊳Rr

[S l,Sr] S l: RJl
:= πJ (Rl)

S l: RJl
→Sr πJ (Rl) [J ,R⊲⊳

l
,Rσ

l
]

Sr: RJlr
:= RJl

⊲⊳ Rr

Sr: RJlr
→ S l πJ (Rl)⊲⊳ Rr [Rπ

r ,R⊲⊳
l
∪R⊲⊳

r ,Rσ
l
∪Rσ

r]
S l: RJlr

⊲⊳ Rl

[Sr,S l] Sr: RJr
:= πJ (Rr)

Sr: RJr
→S l πJ (Rr) [J ,R⊲⊳

r ,Rσ
r]

S l: RlJr
:=Rl⊲⊳ RJr

S l: RlJr
→Sr Rl⊲⊳ (πJ (Rr)) [Rπ

l
,R⊲⊳

l
∪R⊲⊳

r ,Rσ
l
∪Rσ

r]
Sr: RlJr

⊲⊳Rr

Figure 5.13 Execution of operations and required views with corresponding profiles

◦ [S l,null]: in the regular join processed by S l, server S r sends (i.e., needs to release) its
relation to S l, and S l computes the join. For execution, S l needs to hold a permission
(either base or composed) authorizing it to view Rr, which has profile [Rπ

r ,R⊲⊳
r ,Rσ

r].

◦ [S l,S r]: the semi-join requires a longer sequence of steps. First, S l computes the projection
RJl

of the attributes J in its relation Rl participating in the join. Second, S l sends RJl
to S r;

this operation entails a data release characterized by the profile of RJl
, which (according to

Definition 5.3) is [J ,R⊲⊳
l ,Rσ

l]. Third, S r locally computes RJlr as the join between RJl
and its

relation Rr. Fourth, S r sends RJlr to S l; this operation entails a data release characterized
by the profile of RJlr, namely [Rπ

r ,R⊲⊳
l ∪R⊲⊳

r ,Rσ
l ∪Rσ

r] (note that the first component contains
only Rπ

r , since J must be a subset of Rπ
r). Fifth, S l computes the join between RJlr and its

own relation Rl.

Semi-joins are usually more efficient than regular joins as they minimize communication (which
also benefits security): the slave server needs only to send those tuples that participate in the join,
instead of its complete relation.

For instance, consider the query in Example 5.3. If the join at node n2 in the tree is executed
as a regular join, SE sends the all the tuples in Employee relation, restricted to attributes SSN and
Salary, to SP (or vice versa). If the join is executed as a semi-join where SE acts as a master,
SE sends to SP the projection of the Employee relation on SSN. SP then sends back to SE the
SSN and DoB values in Patient relation joined with the list of values of SSN received from SE .

A function εT assigns to each node n of a query tree plan T (NT ,ET) a server or a pair of
servers, called executor , responsible for the execution of the algebraic operation represented by n.
To formally capture this intuitive idea, the definition of the executor assignment function εT is
introduced as follows.

Definition 5.15 (Executor assignment). Given a query tree plan T (NT , ET), an executor as-
signment function εT : NT → S × {S∪null} is an assignment of pairs of servers to nodes such
that:

146 5. Distributed query processing under safely composed permissions

1. each leaf node (corresponding to a relation R) is assigned the pair [S ,null], where S is the
server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left child) at
server S l, is assigned a pair [S l,null].

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child) at server S l
and Rr (right child) at server S r, is assigned a pair [master,slave] such that master∈ {S l,S r},
slave∈ {S l,S r,null}, and master 6=slave.

Given a query plan, our algorithm determines an assignment of the computation steps to
different servers, in such a way that the execution given by the assignment entails only releases
allowed by the permissions.

Definition 5.16 (Safe assignment). Given a query tree plan T (NT , ET) and an executor assign-
ment function εT , εT (n) is said to be safe when one of the following conditions hold:

1. n is a leaf node;

2. n corresponds to a unary operation;

3. n corresponds to a join and all the releases derived by the assignment are authorized.

εT is said to be safe iff ∀n ∈ NT , εT (n) is safe.

A query plan is then feasible iff there is a safe assignment for it.

Definition 5.17 (Feasible query plan). A query plan T (NT , ET) is said to be feasible iff there
exists an executor assignment function εT on T such that εT is safe.

5.6.1 Third party involvement

As already discussed, the execution of joins necessarily requires some communication of information
among the operands, which we check against permissions (base or composed) and allow only if
authorized. It may happen that, for a given join, none of the four possible modes of execution
corresponds to a safe assignment. In such a case, we envision a third party can participate in the
operation acting either as a proxy for one of the two operands or as a coordinator for them. Table
in Figure 5.14 summarizes the different ways in which a third party can be involved. We briefly
comment them here.

◦ [S t,null]: the third party receives the relations from the operands and independently com-
putes the (regular) join.

◦ [S t,S l] and [S t,S r]: the third party replaces S r (S l, respectively) in the computation with
the role of master with S l (S r, respectively) in the role of slave.

◦ [S l,S t] and [S r,S t]: the third party replaces S r (S l, respectively) in the computation with
the role of slave with S l (S r, respectively) in the role of master.

5.6. Safe query planning 147

◦ [S t,S lS r]: the third party takes the role of master in charge of computing the join with S l
and S r both working as slaves. In this case, each of the operands computes the projection
of its attributes that participate in the join and sends it to the third party. The third party
computes the join between the two inputs and sends back the result to each of the operands,
each of which joins the input with its relation and returns the result to the third party. The
third party can now join the relations received from the operands and compute the result.

Note that the first five scenarios are a simple adaptation of those already seen in the previous
section, with the third party only acting as proxy, which therefore needs to have the permissions
necessary to view the relation of the party for which it acts as a proxy, as well as the view required
by its role (master/slave). The latter scenario [S t,S lS r] is instead a little more complex and, as
it can be easily seen from the table, entails different data views. In this scenario the third party
is required to only view the tuples of the operands that participate in the join (it does not need
to have the complete view on a relation as in the case it acts as a proxy). Also, each of the slaves
is required only to view the attributes of the other relation that joins with itself (instead of the
complete list).

The consideration of a third party requires to slightly change the executor assignment definition
(Definition 5.15) which becomes as follows.

Definition 5.18 (Executor assignment - with third party). Given a query plan T (NT , ET), an
executor assignment function εT : NT → S × {S ∪ [S × S]∪null} is an assignment of pairs of
servers to nodes such that:

1. each leaf node (corresponding to a relation R) is assigned the pair [S ,null], where S is the
server where R is stored;

2. each non-leaf node n, corresponding to unary operation op on operands Rl (left child) at
server S l, is assigned a pair [S l,null].

3. each non-leaf node n, corresponding to a join operation on operand Rl (left child) at server
S l and Rr (right child) at server S r, is assigned a pair [master,slaves] such that master
∈ S, slaves ∈ {S ∪ [S l,S r] ∪ null}, master 6=slave, and at least one of the elements is in
{S l,S r,[S l,S r],null}.

The definitions of safe assignment and feasible query plan remain unchanged.

Example 5.6. Consider the scenario of Example 5.3 and the permissions held by servers storing
data in Figure 5.15. The outer join between (Employee⊲⊳Patient) and Treatment can be safely
assigned neither to SE and SP nor to ST . It is then necessary to resort to the intervention of
a third party. Specifically, a safe assignment for the given operation is [SP ,SD]. As a matter of
fact, SD is authorized to access attributes SSN, Type, and Duration of relation Treatment and
attributes SSN, DoB, and Race from the join of Employee with Patient. SP is authorized to view
the whole Treatment relation, provided join condition P.SSN=T.SSN holds.

We can now state the problem as follows.

Problem 5.1. Given a query plan T (NT , ET) and a set of permissions P: 1) determine if T is
feasible and 2) retrieve a safe assignment εT for it.

In the next section we illustrate an algorithm for the solution of such a problem, which exploits
permissions composition technique already introduced, and given a query plan and a set of base
permissions determines if the plan is feasible and, if so, returns a safe assignment for it.

1
4
8

5
.

D
istrib

u
ted

q
u
ery

p
ro

cessin
g

u
n
d
er

sa
fely

co
m

p
o
sed

p
erm

issio
n
s

[m,s] Operation/Flow Views(S l) Views(Sr) Views(St) View profiles
[St,null] S l: Rl→ St Rl [Rπ

l ,R⊲⊳
l ,Rσ

l]
Sr:Rr→ St Rr [Rπ

r ,R⊲⊳
r ,Rσ

r]
St: Rl⊲⊳ Rr

[St,Sr] S l: Rl→ St Rl [Rπ
l ,R⊲⊳

l ,Rσ
l]

St:RJl
:= πJ (Rl)

St:RJl
→ Sr πJ (Rl) [J,R⊲⊳

l ,Rσ
l]

Sr:RJlr := RJl
⊲⊳ Rr

Sr:RJlr → St πJ (Rl) ⊲⊳ Rr [Rπ
r ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

St:RJlr⊲⊳Rl

[St,S l] Sr:Rr→ St Rr [Rπ
r ,R⊲⊳

r ,Rσ
r]

St:RJr := πJ (Rr)
St:RJr → S l πJ (Rr) [J,R⊲⊳

r ,Rσ
r]

S l:RJrl:=Rl⊲⊳ RJr

S l:RJrl → St Rl⊲⊳ (πJ (Rr)) [Rπ
l ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

St:RJrl⊲⊳Rr

[S l,St] S l:RJl
:= πJ (Rl)

S l:RJl
→ St πJ (Rl) [J,R⊲⊳

l ,Rσ
l]

Sr:Rr→ St Rr [Rπ
r ,R⊲⊳

r ,Rσ
r]

St:RJlr := RJl
⊲⊳ Rr

St:RJlr → S l πJ (Rl) ⊲⊳ Rr [Rπ
r ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

S l:RJlr ⊲⊳Rl

[Sr,St] Sr:RJr := πJ (Rr)
Sr:RJr → St πJ (Rr) [J,R⊲⊳

r ,Rσ
r]

S l: Rl→ St Rl [Rπ
l ,R⊲⊳

l ,Rσ
l]

St:RJrl := Rl⊲⊳ RJr

St:RJrl → Sr Rl⊲⊳ (πJ (Rr)) [Rπ
l ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

Sr:RJrl ⊲⊳ Rr

[St,S lSr] S l:RJl
:= πJ (Rl)

Sr:RJr := πJ (Rr)
S l:RJl

→ St πJ (Rl) [J,R⊲⊳
l ,Rσ

l]
Sr:RJr → St πJ (Rr) [J,R⊲⊳

r ,Rσ
r]

St:RJlJr := RJl
⊲⊳ RJr

St:RJlJr → S l (πJ (Rl)) ⊲⊳ (πJ (Rr)) [J,R⊲⊳
l ∪R⊲⊳

r ,Rσ
l ∪Rσ

r]
St:RJlJr → Sr (πJ (Rl)) ⊲⊳ (πJ (Rr)) [J,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

S l:RJlrl:=Rl⊲⊳ RJlJr

Sr:RJlrr:=RJlJr ⊲⊳Rr

S l:RJlrl → St Rl⊲⊳((πJ (Rl)) ⊲⊳ (πJ (Rr))) [Rπ
l ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

Sr:RJlrr → St ((πJ (Rl)) ⊲⊳ (πJ (Rr)))⊲⊳Rr [Rπ
r ,R⊲⊳

l ∪R⊲⊳
r ,Rσ

l ∪Rσ
r]

St:RJlrl ⊲⊳ RJlrr

Figure 5.14 Different strategies for executing join operation, with the intervention of a third party

5.7. Build a safe query plan 149

p6: [(SSN,Job,Salary),(Employee)] → SE

p7: [(SSN),(Patient)] → SE

p8: [(SSN,DoB,Race),(Patient)] → SP

p9: [(SSN,Job,Salary),(Employee,Patient)] → SP

p10: [(SSN,IdDoc,Type,Cost,Duration),(Patient,Treatment)] → SP

p11: [(SSN,IdDoc,Type,Cost,Duration),(Treatment)] → ST

p12: [(IdDoc,Name,Specialty),(Doctor)] → SD

p13: [(SSN,Type,Duration),(Treatment)] → SD

p14: [(SSN,DoB,Race),(Employee,Patient)] → SD

Figure 5.15 An example of servers’ permissions

INPUT
P
G(N , E)
T(NT ,ET)

OUTPUT
εT (n) /* as n.executor */

/* n.left, n.right: left and right children */
/* n.operator, n.parameter: operation and its parameters */
/* [n.π,n.⊲⊳,n.σ]: profile */
/* n.leftslave, n.rightslave: left and right slaves */
/* n.leftthirdslave: third party acting as left slave */
/* n.rightthirdslave: third party acting as right slave */
/* n.candidates: list of records of the form [server ,fromchild,counter] stating candidate servers, the child

(left, right) it comes or proxies for, and the number of joins for which the server is candidate in the subtree */
/* n.executor.master, n.executor.slaves: executor assignment */

MAIN
FindCandidates(root(T))
AssignExecutor(root(T), null)
return(T)

Figure 5.16 Algorithm computing a safe assignment for a query plan

5.7 Build a safe query plan

The determination of the safe assignment follows two basic principles, in order to minimize the
cost of computation: i) we favor semi-joins (in contrast to regular joins); ii) if more servers are
candidate to safely execute a join operation (at a given level in the tree), we prefer the server that is
involved in a higher number of join operations. To this aim, we associate with each candidate server
a counter that keeps track of the number of join operations for which the server is a candidate.

The algorithm receives in input the set of permissions, the schema graph, and the query plan
T (NT , ET), where each leaf node (base relation R) is already assigned to executor [server ,null],
where server is the server storing the relation. It returns, if it exists, a safe assignment for T .

The algorithm works by performing two traversals of the query tree plan. The first traversal
(procedure Find candidates) visits the tree in post-order . At each node, the profile of the node
is computed (as in Figure 5.4) based on the profile of the children and of the operation associated
with the node. Also, the set of possible candidate assignments for the node is determined based
on the set of possible candidates for its children as follows. If the node is a unary operation, the
candidates for the node are all the candidates for its unique child. If the node is a join operation,

150 5. Distributed query processing under safely composed permissions

FINDCANDIDATES(n)
l := n.left
r := n.right
if l 6=null then FindCandidates(l)
if r 6=null then FindCandidates(r)
case n.operator of

π: n.π := n.parameter; n.⊲⊳ := l.⊲⊳; n.σ := l.σ
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

σ: n.π := l.π; n.⊲⊳ := l.⊲⊳; n.σ := l.σ ∪ n.parameter
for c in l.candidates do Add [c.server, left, c.count] to n.candidates

⊲⊳: n.π := l.π ∪ r .π; n.⊲⊳ := l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter; n.σ := l.σ ∪ r .σ
right slave view := [Jl, l.⊲⊳, l.σ]
left slave view := [Jr, r .⊲⊳, r .σ]
right master view := [l.π ∪ Jr , l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter, l.σ ∪ r .σ]
left master view := [Jl ∪ r .π, l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter, l.σ ∪ r .σ]
right full view := [l.π, l.⊲⊳, l.σ]
left full view := [r .π, r .⊲⊳, r .σ]
/* check case [Sr,null] and [Sr,S l] */
n.leftslave := null

c := GetFirst(l.candidates)
while (n.leftslave=null)∧(c 6=null) do

if Authorized(Gleft slave view , c.server) then n.leftslave := c
c := c.next

regular := null

rightmasters = null

for c in r .candidates do
if Authorized(Gright full view , c.server) then Add [c.server, right, c.count+1] to regular
if Authorized(Gright master view , c.server) then Add [c.server, right, c.count+1] to rightmasters

if n.leftslave 6=null then
Add rightmasters to n.candidates

else
Add regular to n.candidates

/* check case [S l,null] and [S l,Sr] */
n.rightslave := null

c := GetFirst(r .candidates)
while (n.rightslave=null)∧(c 6=null) do

if Authorized(Gright slave view , c.server) then n.rightslave := c
c := c.next

regular := null

leftmasters = null

for c in l.candidates do
if Authorized(Gleft full view , c.server) then Add [c.server, left, c.count+1] to regular
if Authorized(Gleft master view , c.server) then Add [c.server, left, c.count+1] to leftmasters

if n.rightslave 6=null then
Add leftmasters to n.candidates

else
Add regular to n.candidates

/* check third party */
if n.candidates=null then n.candidates := FindThirdParty(n,leftmasters,rightmasters)
/* node cannot be executed */
if n.candidates=null then exit(n)

Figure 5.17 Function that determines the set of safe candidates for nodes in T

procedure Find candidates calls function Authorized in Figure 5.11 whenever it is necessary to
verify if a particular server can act as master, slave, or can calculate a regular join. Authorized
is called on the view graph representing the profile of the views that should be made visible in
the execution of an operation. The algorithm considers candidates of the left child in decreasing
order of join counter (GetFirst) and stops at the first candidate found that can serve as left slave
(inserting it into local variable leftslave). The algorithm proceeds examining all the candidates of

5.7. Build a safe query plan 151

ASSIGNEXECUTOR(n, from parent)
if from parent 6=null then

chosen := Search(from parent, n.candidates)
else

chosen := GetFirst(n.candidates)
n.executor.master := chosen.server
case chosen.fromchild of

left: /* case [S l,null], [S l,Sr], [S l,St] */
if n.left6=null then AssignExecutor(n.left, n.executor.master)
if n.right 6=null then

if n.rightslave 6=null then
n.executor.slaves := {n.rightslave}
AssignExecutor(n.right, n.rightslave)

else n.executor.slaves := {n.rightthirdslave}
AssignExecutor(n.right, null)

right: /* case [Sr,null], [Sr,S l], [Sr,St] */
if n.left6=null then

if n.leftslave 6=null then
n.executor.slaves := {n.leftslave}
AssignExecutor(n.right, n.leftslave)

else n.executor.slaves := {n.leftthirdslave}
AssignExecutor(n.right, null)

if n.right 6=null then AssignExecutor(n.right, n.executor.master)

third left: /* case [St,Sr] */
n.executor.slaves := {n.rightslave}
if n.left6=null then AssignExecutor(n.left, null)
if n.right 6=null then AssignExecutor(n.right, n.rightslave)

third right: /* case [St,S l] */
n.executor.slaves := {n.leftslave}
if n.left6=null then AssignExecutor(n.left, n.leftslave)
if n.right 6=null then AssignExecutor(n.right, null)

third: /* case [St,null], [St,S lSr] */
n.executor.slaves := {n.leftslave, n.rightslave}
if n.left6=null then AssignExecutor(n.left, n.leftslave)
if n.right 6=null then AssignExecutor(n.right, n.rightslave)

Figure 5.18 Function that chooses one candidate for each node in T

the right child to determine if they can work as master for a semi-join (if a left slave was found) or
as a regular join (if no left slave was found). Note that while we need to determine all servers that
can act as master, as we need to consider all possible candidates for propagating them upwards in
the tree, it is sufficient to determine one slave (a slave is not propagated upward in the tree). For
each of such server candidates a triple [server ,right,counter] is added to the candidates list, where
counter is the counter that was associated with the server in the right child of the node incremented
by one (as candidate also for the join of the father, the server would execute one additional join
compared to the number it would have executed at the child level). Then, the algorithm proceeds
symmetrically to determine whether there is a candidate from the right child (considering the
candidates in decreasing order of counter) that can work as slave, and then determining all the
left candidates that can work as master, adding them to the set of candidates. At the end of this
process, list candidates contains all the candidates coming from either the left or right child that
can execute the join in any of the execution modes of Figure 5.13. If no candidate was found,
the algorithm determines whether the operation can be computed with the intervention of a third
party by calling function FindThirdParty in Figure 5.19 that similarly for the cases above,
simply implements the controls according to the views that would be required for the execution
(Section 5.6.1). If even such a call does not return any candidate, the algorithm exits returning

152 5. Distributed query processing under safely composed permissions

FINDTHIRDPARTY(n,leftmasters,rightmasters)
l := n.left; r := n.right; list := null

right slave view := [Jl, l.⊲⊳, l.σ]
left slave view := [Jr, r .⊲⊳, r .σ]
right master view := [l.π ∪ Jr, l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter, l.σ ∪ r .σ]
left master view := [Jl ∪ r .π, l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter, l.σ ∪ r .σ]
right full view := [l.π, l.⊲⊳, l.σ]
left full view := [r .π, r .⊲⊳, r .σ]
two slave view := [Jl∪Jr, l.⊲⊳ ∪ r .⊲⊳ ∪ n.parameter, l.σ ∪ r .σ]
/* check if a third party can act as a slave */
if leftmasters 6=null then /* case [S l,St] */

n.rightthirdslave := null

i := 1
while (n.rightthirdslave=null)∧(i< |S|) do

if Authorized(Gright slave view , Si) ∧ Authorized(Gleft full view , Si) then n.rightthirdslave := Si

i := i+1
if n.rightthirdslave 6=null then

for each c ∈ leftmasters do Add [c.server, left, c.count] to list
if rightmasters 6=null then /* case [Sr,St] */

n.leftthirdslave := null

i := 1
while (n.leftthirdslave=null)∧(i< |S|) do

if Authorized(Gleft slave view , Si) ∧ Authorized(Gright full view , Si) then n.leftthirdslave := Si

i := i+1
if n.leftthirdslave 6=null then

for each c ∈ rightmasters do Add [c.server, right, c.count] to list
if list 6=null then return(list)
/* check if a third party can act as a master */
for i:=1 . . . |S| do

if n.leftslave 6=null then /* case [St,S l] */
if Authorized(Gright master view , Si) ∧ Authorized(Gleft full view , Si) then Add [Si, third right, 1] to list

else
if n.rightslave 6=null then /* case [St,Sr] */

if Authorized(Gleft master view , Si) ∧ Authorized(Gright full view , Si) then Add [Si, third left, 1] to list
if list 6=null then return(list)
/* check if a third party can execute the regular join: case [St,null] */
for i:=1 . . . |S| do

if Authorized(Gleft full view , Si) ∧ Authorized(Gright full view , Si) then Add [Si, third, 1] to list
if list 6=null then return(list)
/* check if a third party can act as a coordinator: case [St,S lSr] */
c:= GetFirst(l.candidates)
while (n.leftslave=null)∧(c 6=null) do

if Authorized(Gtwo slave view , c.server) then n.leftslave := c.server
c := c.next

if n.leftslave 6=null then
c:= GetFirst(r .candidates)
while (n.rightslave=null)∧(c 6=null) do

if Authorized(Gtwo slave view , c.server) then n.rightslave:= c.server
c := c.next

if n.rightslave 6=null then
for i:=1 . . . |S| do

if Authorized(Gleft slave view , Si) ∧ Authorized(Gright slave view , Si)
∧ Authorized(Gleft master view , Si) ∧ Authorized(Gright master view , Si)
then Add Si to masterlist

if masterlist 6=null then for each m∈masterlist do Add [m, third, 1] to list
if list 6=null then return(list)

Figure 5.19 Function that evaluates the intervention of a third party for join operations

5.7. Build a safe query plan 153

n0 πSSN,Salary,DoB

n1 ⊲⊳

LLLLLLL

rrrrrrr

n2 ⊲⊳

KKKKKKK

��
��

n3 πSSN

n4 πSSN,Salary n5 πSSN,DoB n6 σDuration>10

n7 Employee n8 Patient n9 Treatment

Find candidates

Node Candidates Slaves
n7 [SE , , 0]∗

n4 [SE , left, 0]
n8 [SP , , 0]∗

n5 [SP , left, 0]
n2 [SP , right, 1] SE

n9 [ST , , 0]
n6 [ST , left, 0]
n3 [ST , left, 0]
n1 [SP , left, 2] SD

n0 [SP , left, 2]

Assign executor

Node εT (n) Calls to AssignExecutor
n0 [SP ,] (n1, SP)
n1 [SP , SD] (n2, SP) (n3, null)
n2 [SP , SE] (n4, SE) (n5, SP)
n4 [SE ,] (n7, SE)
n7 [SE ,]∗

n5 [SP ,] (n8, SP)
n8 [SP ,]∗

n3 [ST ,] (n6, ST)
n6 [ST ,] (n9, ST)
n9 [ST ,]

Figure 5.20 An example of execution of the algorithm in Figure 5.16

the node at which the process was interrupted (i.e., for which no safe assignment exists) signaling
that the tree is not feasible.

If Find candidates completes successfully, the algorithm proceeds with the second traversal
of the query tree plan. The second traversal (procedure AssignExecutor) recursively visits the
tree in pre-order . At the root node, if more assignments are possible, the candidate server with
the highest join count is chosen. Hence, the chosen candidate is pushed down to the child from
which it was determined during the preceding post-order traversal. The other child (if existing)
is pushed down the recorded candidate slave. If no slave was recorded as possible (i.e., right-
slave/leftslave=null or the slave is a third party) a null value is pushed down. At each children,
the master executor is determined as the server pushed down by the parent (if it is not null) or
the candidate server with the highest join count and the process is recursively repeated, until a
leaf node is reached.

Example 5.7. Consider the query plan in Figure 5.2 of query Q4, reported in Figure 5.20 for con-
venience, requested by Alice, who is authorized to view the query result (see composed permission
p1⊗p2⊗p4 in Figure 5.10). Consider also the set of servers’ permissions in Figure 5.15. Fig-
ure 5.20 illustrates the working of procedures Find candidates and Assign executor reporting
the nodes in the order they are considered by them and the candidates/executors determined. Can-
didates/executors with a “*” are those of the leaf nodes (already given in input). To illustrate the
working, let us look at some sample calls. Consider, for example, the call Find candidates(n2).
Among the candidates of the children (SE from left child n4 and SP from right child n5) only the
right child candidate SP survives as candidate for the join, which is executed as a semi-join since

154 5. Distributed query processing under safely composed permissions

SE can act as a slave. When Assign executor is called, the set of candidates at each node is as
shown in the table summarizing the results of Find candidates. Starting at the root node, the
only possible choice assigns to n0 executor [SP ,], where SP was recorded as coming from the left
(and only) child n1, to which SP is then pushed with a recursive call. At n1 the master is set as
SP and, combining this with the slave field, the executor is set to [SP ,SD]. Hence, SP is further
pushed down to the left child (from where it was taken by Find candidates) n3, while SD is not
pushed down to the left child n2, since it was a third party helping in finding a correct assignment.

We conclude this section with a note regarding the integration of our approach with existing
query optimizers. Optimization of distributed queries operates in two-steps [64]. First, the query
optimizer identifies a good plan, analogous to the one it would produce for a centralized system;
second, it assigns operations to the distinct servers in the system. Our algorithm nicely fits in such
a two phase structure. In particular, while in the illustration of the algorithm we have assumed the
complete query plan to be provided as input, we note that our algorithm could be nicely merged
with the optimizers and perform its pre-order visit in conjunction with the construction of the
tree by the query optimizer, computing candidates while the optimizers builds the plan, and its
post-order visit for computing executors for the optimizers in the second phase.

5.8 Chapter summary

We presented a simple, yet powerful, approach for the specification and enforcement of permissions
regulating data release among data holders collaborating in a distributed computation, to ensure
that query processing discloses only data whose release has been explicitly authorized. Data
disclosure has been captured by means of profiles associated with each data computation that
describe the information carried by the released relation. Allowed data releases have instead
been captured by means of simple permissions, which can be efficiently composed without privacy
breaches. In this chapter we presented a simple graphical representation of both permissions and
profiles, allowing to easily enforce our secure chasing process. We also presented an algorithm
that, given a query plan, determines whether it can be safely executed and produces a safe query
planning for it. The main advantage of our approach is its simplicity that, without impacting
expressiveness, makes it nicely interoperable with current solutions for collaborative computations
in distributed database systems.

6

Conclusions

In this thesis, we have addressed the problem of protecting information when outsourced to an
external server. After a brief introduction and a discussion of related work, we focused on three
specific aspects: access control enforcement, privacy protection, and safe data integration. In this
chapter, we shortly summarize the contributions of this thesis and we outline some future work.

6.1 Summary of the contributions

The contributions of this thesis are threefold.

Access control enforcement. We present an access control model based on the combination
of access control with cryptography. This idea is in itself not new, but the problem of applying it
in an outsourced architecture introduces several challenges. To the purpose of granting efficiency
in accessing data, we proposed to exploit a key derivation approach and presented a strategy
for defining an adequate hierarchy for key derivation. This basic model has then been extended
to conveniently support policy updates at the server side while reducing the burden of the data
owner. The proposed solution is based on two different encryption layers. The lower layer is
managed directly by the data owner and is used to enforce the initial access control policy. The
higher layer is managed by the remote server and enforces updates to the original policy without
the data owner’s direct intervention on data. This solution has been carefully analyzed to the aim
of modeling the risk of collusion to which data are exposed.

Privacy protection. We design a technique supporting the management of privacy protection
requirements over a relational database. The proposed approach is based on the representation of
these requirements through confidentiality constraints and on their enforcement through encryption
and fragmentation. A confidentiality constraint is defined as a set of attributes which joint visibility
must be prevented to non authorized users. Privacy protection can therefore be granted by solving
confidentiality constraints, imposing that no constraint is a subset of the schema of a fragment

156 6. Conclusions

and preventing join among fragments by encrypting common attributes. To this aim, we proposed
different fragmentation algorithms, which can be used to produce a good fragmentation, depending
on the information about the system workload known at design time.

Safe data integration. We propose an approach for regulating data flows among parties collab-
orating for the integration of their information sources. The integration mechanism is based on the
characterization of access privileges for the collaborating servers on the components of a relational
schema and on their enforcement in distributed query evaluation. An access privilege is defined
as a view on the data, which can flow to a given server. However, the complete enumeration of
access privileges in a relational schema may be expensive. We therefore presented an algorithm
for composing access privileges, without information leakage. The enforcement of access privileges
is then obtained by controlling data exchanges during the query evaluation process. To this aim,
we proposed an algorithm that can be used to produce a query execution plan satisfying (base or
composed) access privileges.

6.2 Future work

The research described in this thesis can be extended along several directions.

6.2.1 Access control enforcement

Management of write operations. Our access control system, based on selective encryption,
manages access control enforcement and dynamic policy updates. However, it assumes access oper-
ations to be read only (see Chapter 3). This assumption, even if adequate in a data dissemination
scenario, is not sufficient for the management of data subject to dynamic updates by different
parties, which may not coincide with the original data owner. In the multi-owner scenario, each
owner is authorized to modify the portion of data she owns, while she can only read a larger
subset of the outsourced resources, possibly owned by another party. We plan then to extend the
model proposed in this thesis, relaxing the assumption that accesses are read-only, and proposing
a system able to efficiently manage also the multi-owner scenario. Current works on integrity in
the data outsourcing scenario, while guarantee that write operations are performed by authorized
users only, are not suited to the multi-owner scenario, since they do not allow administrators to
grant selective write privileges to different users.

Secrecy of the access control policy. The mechanism proposed for access control enforcement
exploits key derivation through an adequate hierarchy. The use of a key derivation hierarchy and
its tokens, while greatly simplifying key management, introduces a new vulnerability related to
policy confidentiality. As a matter of fact, the public availability of tokens and therefore the
corresponding key derivation hierarchy, makes visible the relationship between users and resources
they are authorized to access, and therefore the authorization policy the owner wishes to enforce.
In several contexts, however, the policy itself should be considered confidential as owners do not
wish to publicly declare to whom they give (or not give) access to their resources. Also, an
analysis of the policy may allow observers to reconstruct the structure of the social network of users
accessing the system, potentially obtaining information disclosing the identity of users and their

6.2. Future work 157

relationships. Since the overall aim of these novel solutions is to allow an efficient confidentiality-
preserving mechanism for resource dissemination, the protection of the access control policy appears
a natural requirement that systems will be interested in supporting, as long as its protection does
not introduce a significant impact on system performance. A straightforward solution to this
problem consists in encrypting the token catalog. However, this solution has the disadvantage
of making key derivation inefficient [40]. It is therefore necessary to define a solution that both
protects the privacy of the access control policy and that ensures an efficient key derivation process.

6.2.2 Privacy protection

Management of data updates. The privacy protection system based on the combined use
of fragmentation and encryption presented in Chapter 4 makes the implicit assumptions that the
original dataset is never updated. In particular, the proposed model assumes that no tuples are
added to the original table. However, if a new tuple can be inserted and subsequently fragments
on the available fragmentation, it becomes easy to reconstruct the original tuples: it is sufficient
to concatenate the new tuple of each of the fragments. Obviously, this situation would violate the
confidentiality constraints imposed for the system. It is therefore necessary to define an adequate
strategy to safely manage data updates. A straightforward solution to this problem may consist in
postponing data insertion, until a given number of new tuples is reached. This solution, however,
does not always provide the desired privacy level, and data freshness cannot be guaranteed. A
future line of research will focus on the definition of a model able to efficiently manage insertions
and updates, while granting privacy protection and up to date information in a fragmentation.

Avoiding encryption exploiting a trusted party. As already noted, handling encrypted
data is inefficient from the user’s point of view, since she needs to cooperate with the remote server
in query evaluation. A line of future work will consist in analyzing the possibility for the data
owner to directly store a portion of her data. In this scenario, privacy constraints can be solved
by fragmenting the original table in two fragments only: one fragment will be outsourced and
therefore has to fulfill confidentiality constraints; and the other fragment will be directly managed
by the data owner. The problem that needs to be solved in this scenario is related to the size of
the fragment directly managed by the data owner. In fact, it is necessary to minimize the size of
such a fragment, since otherwise the owner would not be interested in exploiting data outsourcing.
Another aspect to consider is the workload for the data owner in query evaluation.

6.2.3 Safe data integration

Instance-based authorization. The authorization model defined for controlling flows of in-
formation in distributed systems has been designed on the schema of the distributed database.
Therefore, the definition of the portion of the data visible to a server is based on a list of attributes
and tables. Also, joins are exploited as a way for reducing the set of visible data to those satisfying
a specific join condition. An interesting new line of research consists in allowing the specification
of instance-based permissions. This extension of the security model will require the arrangement
of both the algorithm for safely composing permissions and the algorithm that evaluates if a query
execution plan is safe.

158 6. Conclusions

Building a safe query execution tree. In Chapter 5, we proposed an algorithm able to define
if a given query execution plan is safe with respect to a given set of permissions. However, from the
user’s point of view, given a query it is interesting to have an algorithm that returns a safe query
execution plan, if such a plan exists for the set of permissions characterizing the system. A naive
solution to this problem consists, as briefly discussed in Chapter 5, in checking each possible query
execution plan with respect to the profiles of the permissions. However, the number of possible
plans for a query may be high, growing with the number of relations and servers involved in the
evaluation. It is then necessary to find an alternative solution that may exploit permissions for
directly building a safe query execution plan.

6.3 Closing remarks

This work has appeared in the form of conference papers (see Appendix A). In particular, a
general discussion on the problem and solutions related to data outsourcing has been provided
in [45]. Our access control system for outsourced databases has been studied from different point
of views in [15, 32, 33, 34, 37], while our two layer model for policy updates has been studied
in [41, 42]. The problem of privacy preserving through the combined use of fragmentation and
encryption has been presented in [27, 28, 29]. The problem of composing privileges for accessing
data in a distributed scenario has been analyzed in [43]. The problem of verifying whether a query
evaluation strategy is safe with respect to a set of permissions has been analyzed in [44].

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Sri-
vastava, D. Thomas, and Y. Xu. Two can keep a secret: a distributed architecture for secure
database services. In Proc. of the 2nd Biennal Conference Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, January 2005.

[3] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In Proc. of the 22nd
International Conference on Data Engineering (ICDE 2006), Atlanta, GA, April 2006.

[4] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption for numeric
data. In Proc. of the 23rd SIGMOD International Conference on Management of Data
(SIGMOD 2004), Paris, France, June 2004.

[5] A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in relational databases. ACM
Transaction on Database Systems, 4(3):297–314, 1979.

[6] S. Akl and P. Taylor. Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer System, 1(3):239, 1983.

[7] J.P. Anderson. Computer security planning study. Technical Report 73-51, Air Force Elec-
tronic System Division, 1972.

[8] M.J. Atallah, K.B. Frikken, and M. Blanton. Dynamic and efficient key management for
access hierarchies. In Proc. of the 12th ACM Conference on Computer and Communications
Security (CCS05), Alexandria, VA, November 2005.

[9] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems - Concepts, Languages
and Architectures. McGraw-Hill Book Company, 1999.

160 6. Bibliography

[10] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in a multidimensional
database. In Proc. of 23rd International Conference on Very Large Data Bases (VLDB97),
Athens, Greece, August 1997.

[11] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and Jr. J.B. Rothnie. Query processing
in a system for distributed databases (SDD-1). ACM Transaction on Database Systems,
6(4):602–625, December 1981.

[12] J.C. Birget, X. Zou, G. Noubir, and B. Ramamurthy. Hierarchy-based access control in
distributed environments. In Proc. of IEEE International Conference on Communications
(ICC 2002), Helsinki, Finland, June 2002.

[13] J. Biskup, D.W. Embley, and J. Lochner. Reducing inference control to access control for
normalized database schemas. Information Processing Letters, 106(1):8–12, 2008.

[14] J. Biskup and J. Lochner. Enforcing confidentiality in relational databases by reducing infer-
ence control to access control. In Proc. of the 10th International Conference on Information
Security (ISC 2007), Valparáıso, Chile, October 2007.

[15] C. Blundo, S. Cimato, S. De Capitani di Vimercati, A. De Santis, S. Foresti, S. Paraboschi,
and P. Samarati. Efficient key management for enforcing access control in outsourced scenar-
ios. In Proc. of the 24th IFIP TC-11 International Information Security Conference (SEC
2009), Cyprus, Greece, May 2009.

[16] D. Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Persiano. Public-key encryption with key-
word search. In Proc. of the 23rd Annual Eurocrypt Conference (Eurocrypt 2004), Interlaken,
Switzerland, May 2004.

[17] D. Boneh and M.K. Franklin. Identity-based encryption from the weil pairing. SIAM Journal
on Computing, 32(3):586–615, 2003.

[18] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. In Proc. of the 22rd Annual Eurocrypt Conference (Eurocrypt
2003), Warsaw, Poland, May 2003.

[19] C. Boyens and O. Gunter. Using online services in untrusted environments - a privacy-
preserving architecture. In Proc. of the 11th European Conference on Information Systems
(ECIS ’03), Naples, Italy, June 2003.

[20] R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching in encrypted
data. In Proc. of the 1st Secure Data Management Workshop (SDM04), Toronto, Canada,
August–September 2004.

[21] A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In Proc. of the 24th
International Conference on Data Engineering (ICDE 2008), Cancun, Mexico, April 2008.

[22] California senate bill sb 1386, September 2002.

[23] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill Book
Company, 1984.

6.3. Bibliography 161

[24] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Modeling and assessing inference exposure in encrypted databases. ACM Transactions
on Information and System Security, 8(1):119–152, 2005.

[25] S. Chaudhuri. An overview of query optimization in relational systems. In Proc. of
the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS98), Seattle, WA, June 1998.

[26] D.M. Chiu and Y.C. Ho. A methodology for interpreting tree queries into optimal semi-join
expressions. In Proc. of the SIGMOD International Conference on Management of Data
(SIGMOD 1980), Santa Monica, CA, May 1980.

[27] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Fragmentation and encryption to enforce privacy in data storage. ACM Transactions on
Information and System Security (TISSEC). to appear.

[28] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Fragmentation and encryption to enforce privacy in data storage. In Proc. of the 12th
European Symposium On Research In Computer Security (ESORICS07), Dresden, Germany,
September 2007.

[29] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Fragmentation design for efficient query execution over sensitive distributed databases. In
Proc. of the 29th International Conference on Distributed Computing Systems (ICDCS 2009),
Montreal, Canada, June 2009.

[30] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-Anonymity. In T. Yu
and S. Jajodia, editors, Secure Data Management in Decentralized Systems. Springer-Verlag,
2007.

[31] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access control. In
Proc. of the 19th IEEE Computer Security Foundations Workshop (CSFW’06), Los Alamitos,
CA, 2006.

[32] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Metadata management in outsourced encrypted databases. In Proc. of the 2nd VLDB
Workshop on Secure Data Management (SDM’05), Trondheim, Norway, September 2005.

[33] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Selective data encryption in outsourced dynamic environments. In Proc. of the 2nd
International Workshop on Views On Designing Complex Architectures (VODCA 2006),
Bertinoro, Italy, September 2006.

[34] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. An experimental evaluation of multi-key strategies for data outsourcing. In Proc. of
the 22nd IFIP TC-11 International Information Security Conference (SEC 2007), Sandton,
South Africa, May 2007.

162 6. Bibliography

[35] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Bal-
ancing confidentiality and efficiency in untrusted relational DBMSs. In Proc. of the 10th
ACM Conference on Computer and Communications Security (CCS03), Washington, DC,
October 2003.

[36] E. Damiani, S. De Capitani di Vimercati, M. Finetti, S. Paraboschi, P. Samarati, and S. Ja-
jodia. Implementation of a storage mechanism for untrusted DBMSs. In Proc. of the 2nd
International IEEE Security in Storage Workshop (SISW’03), Washington, DC, May 2003.

[37] E. Damiani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, and M. Viviani. Measuring
inference exposure in outsourced encrypted databases. In Proc. of the 1st Workshop on
Quality of Protection (QoP05), Milan, Italy, September 2005.

[38] G.I. Davida, D.L. Wells, and J.B. Kam. A database encryption system with subkeys. ACM
Transactions on Database Systems, 6(2):312–328, 1981.

[39] The DBLP computer science bibliography. http://dblp.uni-trier.de. http://dblp.uni-trier.de.

[40] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and P. Samarati.
Preserving confidentiality of security policies in data outsourcing. In Proc. of the Workshop
on Privacy in the Electronic Society (WPES2008), Alexandria, VA, October 2008.

[41] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. A data
outsourcing architecture combining cryptography and access control. In Proc. of the 1st
Computer Security Architecture Workshop (CSAW 2007), Fairfax, VA, November 2007.

[42] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Over-
encryption: Management of access control evolution on outsourced data. In Proc. of the
33rd International Conference on Very Large Data Bases (VLDB 2007), Vienna, Austria,
September 2007.

[43] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Assessing
query privileges via safe and efficient permission composition. In Proc. of the 15th ACM
Conference Conference on Computer and Communications Security (CCS 2008), Alexandria,
VA, October 2008.

[44] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Con-
trolled information sharing in collaborative distributed query processing. In Proc. of the 28th
International Conference on Distributed Computing Systems (ICDCS 2008), Beijing, China,
June 2008.

[45] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati. Privacy of outsourced
data. In A. Acquisti, S. Gritzalis, C. Lambrinoudakis, and S. De Capitani di Vimercati,
editors, Digital Privacy: Theory, Technologies and Practices. Auerbach Publications (Taylor
and Francis Group), 2007.

[46] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries using views with access patterns
under integrity constraints. In Proc. of the 10th International Conference on Database Theory
(ICDT 2005), Edinburgh, Scotland, January 2005.

6.3. Bibliography 163

[47] S. Evdokimov, M. Fischmann, and O. Gunther. Provable security for outsourcing database
operations. In Proc. of the 22nd International Conference on Data Engineering (ICDE ’06),
Atlanta, GA, April 2006.

[48] D. Florescu, A.Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of
limited access patterns. In Proc. of the SIGMOD International Conference on Management
of Data (SIGMOD 1999), Philadelphia, PA, June 1999.

[49] H. Garcia-Molina, J.D. Ullman, and J.D. Widom. Database Systems: The Complete Book.
Prentice Hall, 2001.

[50] M.R. Garey and D.S. Johnson. Computers and Intractability; a Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

[51] E. Goh. Secure Indexes. http://eprint.iacr.org/2003/216/, 2003.

[52] G. Gottlob and A. Nash. Data exchange: Computing cores in polynomial time. In Proc. of
the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2006), Chicago, IL, June 2006.

[53] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science, 2/E. Addison-Wesley Professional, 1994.

[54] E. Gudes. The design of a cryptography based secure file system. IEEE Transactions on
Software Engineering, 6(5):411–420, 1980.

[55] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc. of 18th
International Conference on Data Engineering (ICDE’02), San Jose, CA, February 2002.

[56] H. Hacigümüs, B. Iyer, and S. Mehrotra. Ensuring integrity of encrypted databases in
database as a service model. In Proc. of the IFIP TC-11 WG 11.3 Seventeenth Annual
Working Conference on Data and Application Security (DBSsec 2003), Estes Park, CO,
August 2003.

[57] H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries over
encrypted relational databases. In Proc. of the 9th International Conference on Database
Systems for Advanced Applications (DASFAA 2004), Jeju Island, Korea, March 2004.

[58] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted data in the
database-service-provider model. In Proc. of the 21st SIGMOD Conference on Management
of Data (SIGMOD 2002), Madison, WI, June 2002.

[59] L. Harn and H. Lin. A cryptographic key generation scheme for multilevel data security.
Computers and Security, 9(6):539–546, 1990.

[60] T. Hofmeister and H. Lefmann. Approximating Maximum Independent Sets in Uniform
Hypergraphs. In Proc. of the 23rd International Symposium on Mathematical Foundations
of Computer Science (MFCS98), Brno, Czech Republic, August 1998.

164 6. Bibliography

[61] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In Proc.
of the 30th International Conference on Very Large Data Bases (VLDB 2004), Toronto,
Canada, September 2004.

[62] M. Hwang and W. Yang. Controlling access in large partially ordered hierarchies using
cryptographic keys. The Journal of Systems and Software, 67(2):99–107, 2003.

[63] B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu. A framework for efficient storage
security in RDBMS. In Proc. of International Conference on Extending Database Technology
(EDBT 2004), Crete, Greece, March 2004.

[64] D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys,
32(4):422–469, December 2000.

[65] M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. Journal of
Algorithms, 49(1):2–12, 2003.

[66] C. Li. Computing complete answers to queries in the presence of limited access patterns.
VLDB Journal, 12(3):211–227, 2003.

[67] H.T. Liaw, S.J. Wang, and C.L. Lei. On the design of a single-key-lock mechanism based on
Newton’s interpolating polynomial. IEEE Transaction on Software Engineering, 15(9):1135–
1137, 1989.

[68] G.M. Lohman, D. Daniels, L.M. Haas, R. Kistler, and P.G. Selinger. Optimization of nested
queries in a distributed relational database. In Proc. of the 10th International Conference
on Very Large Data Bases (VLDB 1984), Singapore, August 1984.

[69] S. MacKinnon, P. Taylor, H. Meijer, and S.Akl. An optimal algorithm for assigning crypto-
graphic keys to control access in a hierarchy. IEEE Transactions on Computers, 34(9):797–
802, 1985.

[70] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Proc. of
the 29th International Conference on Very Large Databases (VLDB 2003), Berlin, Germany,
September 2003.

[71] A. Motro. An access authorization model for relational databases based on algebraic manip-
ulation of view definitions. In Proc. of the 5th International Conference on Data Engineering
(ICDE89), Los Angeles, CA, February 1989.

[72] E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets: Immutability for aggre-
gated/condensed signatures. In Proc. of European Symposium On Research in Computer
Security (ESORICS 2004), Sophia Antipolis, France, September 2004.

[73] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced
databases. ACM Transactions on Storage, 2(2):107–138, 2006.

[74] M. Narasimha and G. Tsudik. DSAC: integrity for outsourced databases with signature
aggregation and chaining. In Proc. of the 14th ACM International Conference on Information
and Knowledge Management (CIKM 2005), Bremen, Germany, October–November 2005.

6.3. Bibliography 165

[75] A. Nash and A. Deutsch. Privacy in GLAV information integration. In Proc. of the 10th
International Conference on Database Theory (ICDT 2005), Barcelona, Spain, January 2007.

[76] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems, 2/E.
Prentice-Hall, Inc., 1999.

[77] Payment card industry (PCI) data security standard, September 2006.
https://www.pcisecuritystandards.org/pdfs/pci dss v1-1.pdf.

[78] Personal data protection code. Legislative Decree no. 196, June 2003.

[79] I. Ray, I. Ray, and N. Narasimhamurthi. A cryptographic solution to implement access
control in a hierarchy and more. In Proc. of the 11th ACM Symposium on Access control
Models and Technologies (SACMAT’02), Monterey, CA, USA, 2002.

[80] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques
for fine-grained access control. In Proc. of the 23rd SIGMOD International Conference on
Management of Data (SIGMOD’04), Paris, France, June 2004.

[81] A. Rosenthal and E. Sciore. View security as the basis for data warehouse security. In
Proc. of the 2nd Intlernational Workshop on Design and Management of Data Warehouses
(DMDW 2000), Stockholm, Sweden, June 2000.

[82] A. Rosenthal and E. Sciore. Administering permissions for distributed data: factoring and
automated inference. In Proc. of the IFIP TC-11 WG 11.3 Seventeenth Annual Working
Conference on Data and Application Security (DBSsec 2001), Niagara Canada, July 2001.

[83] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[84] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mecha-
nisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design,
LNCS 2171. Springer-Verlag, 2001.

[85] R.S. Sandhu. On some cryptographic solutions for access control in a tree hierarchy. In Proc.
of the 1987 Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow
(FJCC’87), Dallas, TX, October 1987.

[86] R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access control. Informa-
tion Processing Letters, 27(2):95–98, 1988.

[87] A. De Santis, A.L. Ferrara, and B. Masucci. Cryptographic key assignment schemes for any
access control policy. Information Processing Letters, 92(4):199–205, 2004.

[88] B. Schneier. Applied Cryptography, 2/E. John Wiley & Sons, 1996.

[89] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. On the twofish key
schedule. In Proc. of the 5th Annual Workshop on Selected Areas in Cryptography (SAC98),
Atlanta, GA, June 1998.

166 6. Bibliography

[90] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access path
selection in a relational database management system. In Proc. of the SIGMOD International
Conference on Management of Data (SIGMOD’79), May - June 1979.

[91] V.R.L. Shen and T.S. Chen. A novel key management scheme based on discrete logarithms
and polynomial interpolations. Computer and Security, 21(2):164–171, 2002.

[92] R. Sion. Query execution assurance for outsourced databases. In Proc. of the 31st Interna-
tional Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, August–
September 2005.

[93] D.X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data.
In Proc. of the 21st IEEE Symposium on Research in Security and Privacy (S&P 2000),
Berkeley, CA, May 2000.

[94] Y. Sun and K.J.R. Liu. Scalable hierarchical access control in secure group communications.
In Proc. of the 23rd Conference of the IEEE Communications Society (Infocom), Hong Kong,
China, March 2004.

[95] H. Tsai and C. Chang. A cryptographic implementation for dynamic access control in a user
hierarchy. Computer and Security, 14(2):159–166, 1995.

[96] H. Wang and Laks V. S. Lakshmanan. Efficient secure query evaluation over encrypted XML
databases. In Proc. of the 32nd International Conference on Very Large Databases (VLDB
2006), Seoul, Korea, September 2006.

[97] Z.F. Wang, J. Dai, W. Wang, and B.L. Shi. Fast query over encrypted character data in
database. Communications in Information and Systems, 4(4):289–300, 2004.

[98] Z.F. Wang, W. Wang, and B.L. Shi. Storage and query over encrypted character and nu-
merical data in database. In Proc. of the 5th International Conference on Computer and
Information Technology (CIT’05), Shanghai, China, September 2005.

[99] B.R. Waters, D. Balfanz, G. Durfee, and D.K. Smetters. Building an encrypted and search-
able audit log. In Proc. of the 11th Annual Network and Distributed System Security Sym-
posium (NDSS 2004), San Diego, CA, February 2004.

[100] C.K. Wong, M. Gouda, and S.S. Lam. Secure group communications using key graphs.
IEEE/ACM Transactions on Networking, 8(1):16–30, 2000.

[101] C.T. Yu and C.C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399–
433, December 1984.

[102] A. Zych and M. Petkovic. Key management method for cryptographically enforced access
control. In Proc. of the 1st Benelux Workshop on Information and System Security (WISSec
2006), Antwerpen, Belgium, November 2006.

A

Publications

International journals

1. Combining Fragmentation and Encryption to Protect Data Privacy

(co-authors: V. Ciriani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in ACM Transactions on Information and System Security (TISSEC), to appear.

Abstract: The impact of privacy requirements in the development of modern applications
is increasing very quickly. Many commercial and legal regulations are driving the need to de-
velop reliable solutions for protecting sensitive information whenever it is stored, processed,
or communicated to external parties. To this purpose, encryption techniques are currently
used in many scenarios where data protection is required since they provide a layer of pro-
tection against the disclosure of personal information, which safeguards companies from the
costs that may arise from exposing their data to privacy breaches. However, dealing with
encrypted data may make query processing more expensive.

In this paper, we address these issues by proposing a solution to enforce privacy over data col-
lections that combines data fragmentation with encryption. We model privacy requirements
as confidentiality constraints expressing the sensitivity of attributes and their associations.
We then use encryption as an underlying (conveniently available) measure for making data
unintelligible, while exploiting fragmentation as a way to break sensitive associations among
attributes. We formalize the problem of minimizing the impact of fragmentation in terms
of number of fragments and their affinity and present two heuristics algorithms for solving
such problems. We also discuss experimental results comparing the solutions returned by our
heuristics with respect to optimal solutions, which show that the heuristics, while guarantee-
ing a polynomial-time computation cost are able to retrieve solutions close to optimum.

2. Access Control Policies and Languages

(co-authors: S. De Capitani di Vimercati, P. Samarati, S. Jajodia)

168 A. Publications

in International Journal of Computational Science and Engineering (IJCSE), Vol. 3, No. 2,
pp. 94–102, 2007.

Abstract: Access control is the process of mediating every request to data and services
maintained by a system and determining whether the request should be granted or denied.
Expressiveness and flexibility are top requirements for an access control system together
with, and usually in conflict with, simplicity and efficiency. In this paper, we discuss the
main desiderata for access control systems and illustrate the main characteristics of access
control solutions.

Refereed papers in proceedings of international conferences

and workshops

1. Fragmentation Design for Efficient Query Execution over Sensitive Distributed
Databases

(co-authors: V. Ciriani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 29th International Conference on Distributed Computing Systems (ICDCS
2009), Montreal, Canada, June 22-26, 2009.

Abstract: The balance between privacy and utility is a classical problem with an increasing
impact on the design of modern information systems. On the one side it is crucial to ensure
that sensitive information is properly protected; on the other side, the impact of protec-
tion on the workload must be limited as query efficiency and system performance remain
a primary requirement. We address this privacy/efficiency balance proposing an approach
that, starting from a flexible definition of confidentiality constraints on a relational schema,
applies encryption on information in a parsimonious way and mostly relies on fragmentation
to protect sensitive associations among attributes. Fragmentation is guided by workload
considerations so to minimize the cost of executing queries over fragments. We discuss the
minimization problem when fragmenting data and provide a heuristic approach to its solu-
tion.

2. Efficient Key Management for Enforcing Access Control in Outsourced Scenarios

(co-authors: C. Blundo, S. Cimato, S. De Capitani di Vimercati, A. De Santis, S. Paraboschi,
P. Samarati)

in Proc. of the 24th IFIP TC-11 International Information Security Conference (SEC 2009),
Cyprus, Greece, May 18-20, 2009.

Abstract: Data outsourcing is emerging today as a successful paradigm allowing individuals
and organizations to exploit external servers for storing and distributing data. While trusted
to properly manage the data, external servers are often not authorized to read them, therefore
requiring data to be encrypted. In such a context, the application of an access control policy
requires different data to be encrypted with different keys so to allow the external server to
directly enforce access control and support selective dissemination and access.
The problem therefore emerges of designing solutions for the efficient management of the
encryption policy enforcing access control, with the goal of minimizing the number of keys
to be maintained by the system and distributed to users. Since such a problem is NP-hard,

169

we propose a heuristic approach to its solution based on a key derivation graph exploiting
the relationships among user groups. We experimentally evaluate the performance of our
heuristic solution, comparing it with previous approaches.

3. Assessing Query Privileges via Safe and Efficient Permission Composition

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 15th ACM Conference Conference on Computer and Communications Security
(CCS 2008), Alexandria, Virginia, USA, October 27-31, 2008.

Abstract: We propose an approach for the selective enforcement of access control restric-
tions in, possibly distributed, large data collections based on two basic concepts: i) flexible
authorizations identify, in a declarative way, the data that can be released, and ii) queries
are checked for execution not with respect to individual authorizations but rather evaluating
whether the information release they (directly or indirectly) entail is allowed by the autho-
rizations. Our solution is based on the definition of query profiles capturing the information
content of a query and builds on a graph-based modeling of database schema, authoriza-
tions, and queries. Access control is then effectively modeled and efficiently executed in
terms of graph coloring and composition and on traversal of graph paths. We then provide
a polynomial composition algorithm for determining if a query is authorized.

4. Preserving Confidentiality of Security Policies in Data Outsourcing

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, G. Pelosi, P. Samarati)

in Proc. of the Workshop on Privacy in the Electronic Society (WPES 2008), Alexandria,
Virginia, USA, October 27, 2008.

Abstract: Recent approaches for protecting information in data outsourcing scenarios ex-
ploit the combined use of access control and cryptography. In this context, the number of
keys to be distributed and managed by users can be maintained limited by using a public
catalog of tokens that allow key derivation along a hierarchy. However, the public token
catalog, by expressing the key derivation relationships, may leak information on the security
policies (authorizations) enforced by the system, which the data owner may instead wish to
maintain confidential.

In this paper, we present an approach to protect the privacy of the tokens published in
the public catalog. Consistently with the data outsourcing scenario, our solution exploits
the use of cryptography, by adding an encryption layer to the catalog. A complicating
issue in this respect is that this new encryption layer should follow a derivation path that is
“reversed” with respect to the key derivation. Our approach solves this problem by combining
cryptography and transitive closure information. The result is an efficient solution allowing
token release and traversal of the key derivation structure only to those users authorized
to access the underlying resources. We also present experimental results that illustrate the
behavior of our technique in large settings.

5. Controlled Information Sharing in Collaborative Distributed Query Processing

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 28th International Conference on Distributed Computing Systems (ICDCS
2008), Beijing, China, June 17-20, 2008.

170 A. Publications

Abstract: We present a simple, yet powerful, approach for the specification and enforcement
of authorizations regulating data release among data holders collaborating in a distributed
computation, to ensure that query processing discloses only data whose release has been
explicitly authorized. Data disclosure is captured by means of profiles, associated with each
data computation, that describe the information carried by the result. We also present
an algorithm that, given a query plan, determines whether it can be safely executed and
produces a safe execution strategy. The main advantage of our approach is its simplicity
that, without impacting expressiveness, makes it nicely interoperable with current solutions
for collaborative computations in distributed database systems.

6. A Data Outsourcing Architecture Combining Cryptography and Access Control

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 1st Computer Security Architecture Workshop (CSAW’07), Fairfax, VA, USA,
November 2, 2007.

Abstract: Data outsourcing is becoming today a successful solution that allows users and
organizations to exploit external servers for the distribution of resources. Some of the most
challenging issues in such a scenario are the enforcement of authorization policies and the
support of policy updates. Since a common approach for protecting the outsourced data
consists in encrypting the data themselves, a promising approach for solving these issues is
based on the combination of access control with cryptography. This idea is in itself not new,
but the problem of applying it in an outsourced architecture introduces several challenges.

In this paper, we first illustrate the basic principles on which an architecture for combining
access control and cryptography can be built. We then illustrate an approach for enforcing
authorization policies and supporting dynamic authorizations, allowing policy changes and
data updates at a limited cost in terms of bandwidth and computational power.

7. Over-encryption: Management of Access Control Evolution on Outsourced Data

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 33rd International Conference on Very Large Data Bases (VLDB 2007),
Vienna, Austria, September 23-28, 2007.

Abstract: Data outsourcing is emerging today as a successful paradigm allowing users and
organizations to exploit external services for the distribution of resources. A crucial problem
to be addressed in this context concerns the enforcement of selective authorization policies
and the support of policy updates in dynamic scenarios.

In this paper, we present a novel solution to the enforcement of access control and the
management of its evolution. Our proposal is based on the application of selective encryption
as a means to enforce authorizations. Two layers of encryption are imposed on data: the
inner layer is imposed by the owner for providing initial protection, the outer layer is imposed
by the server to reflect policy modifications. The combination of the two layers provides an
efficient and robust solution. The paper presents a model, an algorithm for the management
of the two layers, and an analysis to identify and therefore counteract possible information
exposure risks.

8. Fragmentation and Encryption to Enforce Privacy in Data Storage

171

(co-authors: V. Ciriani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 12th European Symposium Research Computer Security (ESORICS07), Dres-
den, Germany, September 24-26, 2007.

Abstract: Privacy requirements have an increasing impact on the realization of modern
applications. Technical considerations and many significant commercial and legal regulations
demand today that privacy guarantees be provided whenever sensitive information is stored,
processed, or communicated to external parties. It is therefore crucial to design solutions
able to respond to this demand with a clear integration strategy for existing applications and
a consideration of the performance impact of the protection measures.

In this paper we address this problem and propose a solution to enforce privacy over data
collections by combining data fragmentation with encryption. The idea behind our approach
is to use encryption as an underlying (conveniently available) measure for making data un-
intelligible, while exploiting fragmentation as a way to break sensitive associations between
information.

9. An Experimental Evaluation of Multi-key Strategies for Data Outsourcing

(co-authors: E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 22nd IFIP TC-11 International Information Security Conference (SEC 2007),
Sandton, Gauteng, South Africa, May 14-16, 2007.

Abstract: Data outsourcing is emerging today as a successful solution for organizations
looking for a cost-effective way to make their data available for on-line querying. To protect
outsourced data from unauthorized accesses, even from the (honest but curious) host server,
data are encrypted and indexes associated with them enable the server to execute queries
without the need of accessing cleartext. Current solutions consider the whole database as
encrypted with a single key known only to the data owner, which therefore has to be kept
involved in the query execution process. In this paper, we propose different multi-key data
encryption strategies for enforcing access privileges. Our strategies exploit different keys,
which are distributed to the users, corresponding to the different authorizations. We then
present some experiments evaluating the quality of the proposed strategies with respect to
the amount of cryptographic information to be produced and maintained.

10. Selective Data Encryption in Outsourced Dynamic Environments

(co-authors: E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 2nd International Workshop on Views On Designing Complex Architectures
(VODCA 2006), Bertinoro, Italy, September 16-17, 2006.

Abstract: The amount of information held by organizations’ databases is increasing very
quickly. A recently proposed solution to the problem of data management, which is becom-
ing increasingly popular, is represented by database outsourcing. Several approaches have
been presented to database outsourcing management, investigating the application of data
encryption together with indexing information to allow the execution of queries at the third
party, without the need of decrypting the data. These proposals assume access control to be
under the control of the data owner, who has to filter all the access requests to data.

In this paper, we put forward the idea of outsourcing also the access control enforcement
at the third party. Our approach combines cryptography together with authorizations, thus

172 A. Publications

enforcing access control via selective encryption. The paper describes authorizations man-
agement investigating their specification and representation as well as their enforcement in
a dynamic scenario.

11. Key Management for MultiUser Encrypted Databases

(co-authors: E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the International Workshop on Storage Security and Survivability (StorageSS’05),
Fairfax, VA, USA, November 11, 2005.

Abstract: Database outsourcing is becoming increasingly popular introducing a new
paradigm, called database-as-a-service (DAS), where an organization’s database is stored
at an external service provider. In such a scenario, access control is a very important issue,
especially if the data owner wishes to publish her data for external use.

In this paper, we first present our approach for the implementation of access control through
selective encryption. The focus of the paper is then the presentation of the experimental
results, which demonstrate the applicability of our proposal.

12. Measuring Inference Exposure in Outsourced Encrypted Databases

(co-authors: E. Damiani, S. De Capitani di Vimercati, P. Samarati, M. Viviani)

in Proc. of the 1st Workshop on Quality of Protection (QoP05), Milan, Italy, September 15,
2005 (short paper).

Abstract: Database outsourcing is becoming increasingly popular introducing a new
paradigm, called database-as-a-service, where an encrypted client’s database is stored at
an external service provider. Existing proposals for querying encrypted databases are based
on the association, with each encrypted tuple, of additional indexing information obtained
from the plaintext values of attributes that can be used in the queries. However, the rela-
tionship between indexes and data should not open the door to inference and linking attacks
that can compromise the protection granted by encryption.

In this paper, we present a simple yet robust indexing technique and investigate quantitative
measures to model inference exposure. We present different techniques to compute an aggre-
gate measure from the inference exposure associated with each single index. Our approach
can take into account the importance of plaintext attributes associated with indexes and/or
can allow the user to weight the inference exposure values supplied in relation to their relative
ordering.

13. Metadata Management in Outsourced Encrypted Databases

(co-authors: E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Proc. of the 2nd VLDB Workshop on Secure Data Management (SDM’05), Trondheim,
Norway, September 2-3, 2005.

Abstract: Database outsourcing is becoming increasingly popular introducing a new
paradigm, called database-as-a-service, where a client’s database is stored at an external
service provider. Outsourcing databases to external providers promises higher availability
and more effective disaster protection than in-house operations. This scenario presents new
research challenges on which the usability of the system is based. In particular, one important
aspect is the metadata that must be provided to support the proper working of the system.

173

In this paper, we illustrate the metadata that are needed, at the client and server, to store
and retrieve mapping information for processing a query issued by a client application to the
server storing the outsourced database. We also present an approach to develop an efficient
access control technique and the corresponding metadata needed for its enforcement.

Chapters in books

1. Theory of Privacy and Anonymity

(co-authors: V. Ciriani, S. De Capitani di Vimercati, P. Samarati)

in Algorithms and Theory of Computation Handbook, Second Edition, M. Atallah and M.
Blanton (eds), CRC Press, 2009.

2. Privacy-Preserving Data Mining: Models and Algorithms

(co-authors: V. Ciriani, S. De Capitani di Vimercati, P. Samarati)

in Privacy-Preserving Data Mining: Models and Algorithms, C.C. Aggarwal and P.S. Yu
(eds), Springer, 2008.

Abstract: Data mining technology has attracted significant interest as a means of iden-
tifying patterns and trends from large collections of data. It is however evident that the
collection and analysis of data that include personal information may violate the privacy of
the individuals. Privacy protection in data mining is then becoming a crucial issue that has
captured the attention of many researchers.

In this chapter, we discuss the concept of k-anonymity and its application in data mining.
We first discuss how privacy can be violated in data mining. We then introduce possible
approaches to ensure the satisfaction of k-anonymity in data mining.

3. Recent Advances in Access Control

(co-authors: S. De Capitani di Vimercati, P. Samarati)

in Handbook of Database Security: Applications and Trends, M. Gertz and S. Jajodia (eds),
Springer-Verlag, 2008.

Abstract: Access control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be granted or denied.
Traditional access control models and languages result limiting for emerging scenarios, whose
open and dynamic nature requires the development of new ways of enforcing access control.
Access control is then evolving with the complex open environments that it supports, where
the decision to grant an access may depend on the properties (attributes) of the requestor
rather than her identity and where the access control restrictions to be enforced may come
from different authorities. These issues pose several new challenges to the design and imple-
mentation of access control systems. In this chapter, we present the emerging trends in the
access control field to address the new needs and desiderata of today’s systems.

4. Access Control Models for XML

(co-authors: S. De Capitani di Vimercati, S. Paraboschi, P. Samarati)

174 A. Publications

in Handbook of Database Security: Applications and Trends, M. Gertz and S. Jajodia (eds),
Springer-Verlag, 2008.

Abstract: XML has become a crucial tool for data storage and exchange. In this chapter,
after a brief introduction on the basic structure of XML, we illustrate the most important
characteristics of access control models. We then discuss two models for XML documents,
pointing out their main characteristics. We finally present other proposals, describing their
main features and their innovation compared to the previous two models.

5. Privacy of Outsourced Data

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

in Digital Privacy: Theory, Technologies, and Practices, A. Acquisti, S. Gritzalis, C. Lam-
brinoudakis, S. De Capitani di Vimercati (eds), Auerbach Publications (Taylor and Francis
Group), 2007.

6. k-Anonymity

(co-authors: V. Ciriani, S. De Capitani di Vimercati, P. Samarati)

in Secure Data Management in Decentralized Systems, T. Yu and S. Jajodia (eds), Springer-
Verlag, 2007.

Abstract: To protect respondents’ identity when releasing microdata, data holders often
remove or encrypt explicit identifiers, such as names and social security numbers. De-
identifying data, however, provide no guarantee of anonymity. Released information often
contains other data, such as race, birth date, sex, and ZIP code, that can be linked to pub-
licly available information to re-identify respondents and to infer information that was not
intended for release.

One of the emerging concept in microdata protection is k-anonymity , which has been recently
proposed as a property that captures the protection of a microdata table with respect to pos-
sible re-identification of the respondents to which the data refer. k-anonymity demands that
every tuple in the microdata table released be indistinguishably related to no fewer than k
respondents. One of the interesting aspect of k-anonymity is its association with protection
techniques that preserve the truthfulness of the data. In this chapter we discuss the concept
of k-anonymity, from its original proposal illustrating its enforcement via generalization and
suppression. We then survey and discuss research results on k-anonymity in particular with
respect to algorithms for its enforcement. We also discuss different ways in which generaliza-
tion and suppressions can be applied to satisfy k- anonymity and, based on them, introduce
a taxonomy of k-anonymity solutions.

7. Microdata Protection

(co-authors: V. Ciriani, S. De Capitani di Vimercati, P. Samarati)

in Secure Data Management in Decentralized Systems, T. Yu and S. Jajodia (eds), Springer-
Verlag, 2007.

Abstract: Governmental, public, and private organizations are more and more frequently
required to make data available for external release in a selective and secure fashion. Most
data are today released in the form of microdata, reporting information on individual respon-
dents. The protection of microdata against improper disclosure is therefore an issue that has

175

become increasingly important and will continue to be so. This has created an increasing
demand on organizations to devote resources for adequate protection of microdata.

In this chapter, we first characterize the microdata protection problem (in contrast to macro-
data protection), discussing the disclosure risks at which microdata are exposed. We survey
the main techniques that have been proposed to protect microdata from improper disclosure
by distinguishing them in masking techniques (which protect data by masking or perturb-
ing their values), and synthetic data generation techniques (which protect data by replacing
them with plausible, but made up, values). We conclude the chapter with observations on
measures for assessing disclosure risk and information loss brought by the application of
protection techniques.

8. Access Control Policies and Languages in Open Environments

(co-authors: S. De Capitani di Vimercati, S. Jajodia, P. Samarati)

in Secure Data Management in Decentralized Systems, T. Yu and S. Jajodia (eds), Springer-
Verlag, 2007.

Abstract: One of the most challenging problems in managing large, distributed, and het-
erogeneous networked systems is specifying and enforcing access control security policies reg-
ulating interactions between parties and access to services and resources. Recent proposals
for specifying and exchanging access control policies adopt different types of access control
languages.

In this chapter, we review three different types of access control languages. We start the
chapter with an overview of the basic concepts on which access control systems are based.
We then illustrate logic-based, XML-based, and credential-based access control languages.
We conclude the chapter discussing how policies expressed by using different languages and
coming from different systems can be combined.

9. Authorization and Access Control

(co-authors: S. De Capitani di Vimercati, P. Samarati)

in Security, Privacy, and Trust in Modern Data Management, M. Petkovic and W. Jonker
(eds), Springer-Verlag, 2007.

Abstract: Access control is the process of controlling every request to a system and deter-
mining, based on specified rules (authorizations), whether the request should be granted or
denied. The definition of an access control system is typically based on three concepts: access
control policies, access control models, and access control mechanisms. In this chapter, we
focus on the traditional access control models and policies. In particular, we review two of
the most important policies: the discretionary and mandatory access control policies. We
therefore start the chapter with an overview of the basic concepts on which access control
systems are based. We then illustrate different traditional discretionary and mandatory ac-
cess control policies and models that have been proposed in the literature, also investigating
their low-level implementation in terms of security mechanisms.

10. Trust Management

(co-authors: C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati)

176 A. Publications

in Security, Privacy, and Trust in Modern Data Management, M. Petkovic and W. Jonker
(eds), Springer-Verlag, 2007.

Abstract: The amount of data available electronically to a multitude of users has been
increasing dramatically over the last few years. The size and dynamics of the user community
set requirements that cannot be easily solved by traditional access control solutions. A
promising approach for supporting access control in open environments is trust management .

This chapter provides an overview of the most significant approaches for managing and
negotiating trust between parties. We start by introducing the basic concepts on which trust
management systems are built, describing their relationships with access control. We then
illustrate credential-based access control languages together with a description of different
trust negotiation strategies. We conclude the chapter with a brief overview of reputation-
based systems.

11. Access Control

(co-authors: S. De Capitani di Vimercati, S. Paraboschi, P. Samarati)

in The Handbook of Computer Networks, H. Bidgoli (ed), Wiley, 2007.

Abstract: Access control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be granted or denied.
The variety and complexity of the protection requirements that may need to be imposed make
access control a far from trivial process. Expressiveness and flexibility are top requisites for
an access control system together with, and usually in conflict with, simplicity and efficiency.
In this chapter, we discuss the main desiderata for access control systems and illustrate the
main characteristics of access control solutions in some of the most popular existing systems.

Papers under submission to international journals

1. Encryption Policies for Enforcing Access Control to Outsourced Data

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

2. Integrating Trust Management and Access Control in Data-Intensive Web Ap-
plications

(co-authors: S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, G. Psaila, P. Samarati).

Papers under submission to international conferences

1. Enforcing Confidentiality Constraints on Sensitive Databases with Lightweight
Trusted Clients

(co-authors: V. Ciriani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati)

	Introduction
	Motivation
	Contribution of the thesis
	Access control enforcement
	Privacy protection
	Safe data integration

	Organization of the thesis

	Related work
	Introduction
	Chapter outline

	Basic scenario and data organization
	Parties involved
	Data organization
	Interactions

	Querying encrypted data
	Bucket-based approach
	Hash-based approach
	B+ tree approach
	Order preserving encryption approaches
	Other approaches

	Evaluation of inference exposure
	Integrity of outsourced data
	Privacy protection of databases
	Access control enforcement in the outsourcing scenario
	Safe data integration
	Chapter summary

	Selective encryption to enforce access control
	Introduction
	Chapter outline

	Relational model
	Basic concepts and notation

	Access control and encryption policies
	Access control policy
	Encryption policy
	Token management

	Minimal encryption policy
	Vertices and edges selection
	Vertices factorization

	A2E algorithm
	Correctness and complexity

	Policy updates
	Grant and revoke
	Correctness

	Two-layer encryption for policy outsourcing
	Two-layer encryption

	Policy updates in two-layer encryption
	Over-encrypt
	Grant and revoke
	Correctness

	Protection evaluation
	Exposure risk: Full_SEL
	Exposure risk: Delta_SEL
	Design considerations

	Experimental results
	Chapter summary

	Combining fragmentation and encryption to protect data privacy
	Introduction
	Chapter outline

	Confidentiality constraints
	Fragmentation and encryption for constraint satisfaction
	Minimal fragmentation
	Correctness
	Maximal visibility
	Minimum number of fragments
	Fragmentation lattice

	A complete search approach to minimal fragmentation
	Computing a minimal fragmentation
	Correctness and complexity

	A heuristic approach to minimize fragmentation
	Computing a vector-minimal fragmentation
	Correctness and complexity

	Taking attribute affinity into account
	A heuristic approach to maximize affinity
	Computing a vector-minimal fragmentation with the affinity matrix
	Correctness and complexity

	Query cost model
	A heuristic approach to minimize query cost execution
	Computing a vector-minimal fragmentation with the cost function
	Correctness and complexity

	Query execution
	Indexes
	Experimental results
	Chapter summary

	Distributed query processing under safely composed permissions
	Introduction
	Chapter outline

	Preliminary concepts
	Data model
	Distributed query execution

	Security model
	Permissions
	Relation profiles

	Graph-based model
	Authorized views
	Authorizing permissions
	Composition of permissions
	Algorithm

	Safe query planning
	Third party involvement

	Build a safe query plan
	Chapter summary

	Conclusions
	Summary of the contributions
	Future work
	Access control enforcement
	Privacy protection
	Safe data integration

	Closing remarks

	Bibliography
	Publications

