UNIVERSITA DEGLI STUDI
DI MILANO

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI
DIPARTIMENTO DI TECNOLOGIE DELL'INFORMAZIONE

DOTTORATO DI RICERCA IN INFORMATICA (INF/01 INFORMATICA)
SCUOLA DI DOTTORATO IN INFORMATICA, XXI CICLO

Preserving Privacy in Data Outsourcing

TESI DI DOTTORATO DI RICERCA DI
Sara Foresti

RELATORE
Prof. Pierangela Samarati

CORRELATORE
Prof. Sabrina De Capitani di Vimercati

DIRETTORE DELLA SCUOLA DI DOTTORATO
Prof. Ernesto Damiani

Anno Accademico 2007/08

Abstract

The increasing availability of large collections of personal information as well as of data storage fa-
cilities for supporting data-intensive services, support the view that service providers will be more
and more requested to be responsible for the storage and the efficient and reliable dissemination
of information, thus realizing a “data outsourcing” architecture. Within a data outsourcing archi-
tecture data are stored together with application front-ends at the sites of an external server who
takes full charges of their management. While publishing data on external servers may increase
service availability, reducing data owners’ burden of managing data, data outsourcing introduces
new privacy and security concerns since the server storing the data may be honest-but-curious. A
honest-but-curious server honestly manages the data but may not be trusted by the data owner
to read their content. To ensure adequate privacy protection, a traditional solution consists in
encrypting the outsourced data, thus preventing outside attacks as well as infiltration from the
server itself. Such traditional solutions have however the disadvantage of reducing query execu-
tion efficiency and of preventing selective information release. This introduces then the need to
develop new models and methods for the definition and enforcement of access control and privacy
restrictions on outsourced data while ensuring an efficient query execution.

In this thesis, we present a comprehensive approach for protecting sensitive information when
it is stored on systems that are not under the data owner’s control. There are mainly three security
requirements that need to be considered when designing a system for ensuring confidentiality of
data stored and managed by a honest-but-curious server. The first requirement is access control
enforcement to limit the ability of authorized users to access system’s resources. In traditional
contexts, a trusted module of the data management system is in charge of enforcing the access
control policy. In the considered scenario, the service provider is not trusted for enforcing the access
control policy and the data owner is not willing to mediate access requests to filter query results.
We therefore propose a new access control system, based on selective encryption, that does not
require the presence of a trusted module in the system for the enforcement of the policy. The second
requirement is privacy protection to limit the visibility of stored/published data to non authorized

IT

users while minimizing the adoption of encryption. Data collections often contain personally
identifiable information that needs to be protected both at storage and when disseminated to other
parties. As an example, medical data cannot be stored or published along with the identity of the
patients they refer to. To guarantee privacy protection and to limit the use of encryption, in this
thesis we first propose a solution for modeling in a simple while powerful way privacy requirements
through confidentiality constraints, which are defined as sets of data whose joint visibility must
be prevented. We then propose a mechanism for the enforcement of confidentiality constraints
based on the combined use of fragmentation and encryption techniques: associations broken by
fragmentation will be visible only to those users who are authorized to know the associations
themselves. The third requirement is safe data integration to limit the ability of authorized users
to exchange data for distributed query evaluation. As a matter of fact, often different sources
storing the personal information of users need to collaborate to achieve a common goal. However,
such data integration and sharing may be subject to confidentiality constraints, since different
parties may be allowed to access different portions of the data. We therefore propose both a model
for conveniently representing data exchange constraints and a mechanism for their enforcement
during the distributed query evaluation process.

In this thesis, we address all these three security requirements by defining a model and a
mechanism for enforcing access control on outsourced data; by introducing a fragmentation and
encryption approach for enforcing privacy constraints; and by designing a technique for regulating
data flows among different parties. The main contributions can be summarized as follows.

o With respect to the access control enforcement on outsourced data, the original results are:
the combined use of selective encryption and key derivation strategies for access control en-
forcement; the introduction of a notion of minimality of an encryption policy to correctly
enforce an access control policy without reducing the efficiency in key derivation; the develop-
ment of a heuristic approach for computing a minimal encryption policy in polynomial time;
the introduction of a two-layer encryption model for the management of policy updates.

o With respect to the definition of a model for enforcing privacy protection, the original re-
sults are: the definition of confidentiality constraints as a simple while complete method
for modeling privacy requirements; the introduction of the notion of minimal fragmentation
that captures the property of a fragmentation to satisfy the confidentiality constraints while
minimizing the number of fragments; the development of an efficient approach for computing
a minimal fragmentation, which is a NP-hard problem; the introduction of three notions
of local optimality, based on the structure of the fragments composing the solution, on the
affinity of the attributes in the fragments, and on a query evaluation cost model, respectively;
the proposal of three different approaches for computing fragmentations satisfying the three
definitions of optimality.

o With respect to the design of a safe data integration mechanism, the original results are:
the definition of permissions as a simple while complete method for modeling data exchange
limitations; the modeling of both permissions and queries as relation profiles and their repre-
sentation through a graph-based model; the introduction of an approach for the composition
of permissions working in polynomial time; the definition of a method that takes data ex-
change restrictions into account while designing a query execution plan.

Acknowledgements

I would like to use the occasion of this thesis to thank all the people who helped me in reaching
this important goal.

First of all, I would like to sincerely thank my advisor, Pierangela Samarati. It has been an
honor for me to be one of her Ph.D. students. I would like to express her all my gratitude for
introducing me to scientific research and for her constant support, guidance, and help over the
years, which made my Ph.D. experience productive and stimulating.

I would like to thank Sabrina De Capitani di Vimercati: for her answers to all my questions
(even to senseless ones), for her precious advices, and for her optimism in any situation that helped
me to win my usual negativity.

I would like to thank Valentina Ciriani, Sabrina De Capitani di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati for the manifold profitable discussions and support
on the various aspects of the work presented in this thesis.

I would like to thank Vijay Atluri, Carlo Blundo, Sushil Jajodia, and Javier Lopez, the referees
of this thesis, for having dedicated their precious time in reviewing the thesis and for contributing,
with their valuable comments, to the improvement of the quality of the results presented here.

Last, but not least, I would like to thank my family. All the pages of this thesis would not be
sufficient to express my gratitude to them: their teaching, their support, and their love have been,
and will always be, a fundamental reference point for achieving any result.

Contents

1 Introduction 1
1.1 Motivation e e 1
1.2 Contribution of the thesisS o v 3

1.2.1 Access control enforcement] 4
1.2.2 Privacy protectionJ 5
1.2.3 Safe data integration Lo 5
1.3 Organization of the BhesiS . o o 6
2 Related work 9
2.1 Introduction v oo 9
2.1.1 Chapter OULHNE © o o o o oo 10
2.2 Basic scenario and data organizationJ 10
2.2.1 Parties involvedj 11
2.2.2 Data organizationj 11
2.2.3 Interactions e e e e e e 13
2.3 Querying encrypted datao 14
2.3.1 Bucket-based approach 15
2.3.2 Hash-based approach 16
2.3.3 B+ treeapproacho e 17
2.3.4 Order preserving encryption approaches L. 19
2.3.5 Other approaches‘ 20
2.4 Evaluation of inference exposure 21
2.5 Integrity of outsourced datal 23
2.6 Privacy protection of databases 24
2.7 Access control enforcement in the outsourcing scenario 25

VI Contents

2.8 Safe data integration 26
2.9 Chapter summary‘ 27
3 Selective encryption to enforce access control 29
3.1 INtroduCtion . . . o o oo i 29
3.1.1 Chapter outhind . . . « o v v v oo 31

3.2 Relational modelo 31
3.2.1 Basic concepts and notation L 31

3.3 Access control and encryption policies‘ 32
3.3.1 Access control policﬂ 32
3.3.2 Encryption policy e 33

3.3.3 Token managemento 36

3.4 Minimal encryption policyl 38
3.4.1 Vertices and edges selection 41
3.4.2 Vertices factorization 43

3.5 A2E algoTithin . . o o oot 43
3.5.1 Correctness and complexityl o oo 49

3.6 POlCY UPALES . . o o o v oo 53
3.6.1 Grant and 1evoke 53
3.6.2 COTTECHNIONS « « « v o o e e e e e 57

3.7 Two-layer encryption for policy outsourcing 59
3.7.1 Twolayer encryption o oot 60

3.8 Policy updates in two-layer encryptiono 63
3.8.1 Over—encrypt‘ 63
3.8.2 Grant and TeVOKe . . « « o o o 64
3.8.3 COITECHIIESS .« « o o o o e e e e e 68

3.9 Protection evaluationot 69
3.9.1 Bxposurerisk: Full SEU 70
3.9.2 Exposure risk: Delta SEL 72
3.9.3 Design considerationso 73

3.10 Experimental reSUltS . . . 73
3.11 Chapter summarﬁ 76
4 Combining fragmentation and encr i i s
7

4.1.1 Chapter outhingo 79

4.2 Confidentiality constraints L 0L 79
4.3 Fragmentation and encryption for constraint satisfactionl 81
4.4 Minimal fragmentation 83
4.4.1 COITeCHNESS . . v v v v v e e e e e e e e e 83
4.4.2 Maximal visibility 84
4.4.3 Minimum number of fragments o000 84
4.4.4 Fragmentation lattice 00 0 85

45 A complete search approach to minimal fragmentationl 87
4.5.1 Computing a minimal fragmentation 89
4.5.2 Correctness and complexita 91

Contents VII
4.6 A heuristic approach to minimize fragmentation 92
4.6.1 Computing a vector-minimal fragmentatiod 92

4.6.2 Correctness and complexityl o oo oo 94

4.7 Taking attribute affinity into account] 96
4.8 A heuristic approach to maximize affinity 99
4.8.1 Computing a vector-minimal fragmentation with the affinity matrix 100

4.8.2 Correctness and complexitﬂ 102

4.9 Query cost model 104
4.10 A heuristic approach to minimize query cost execution 107
4.10.1 Computing a vector-minimal fragmentation with the cost function 108
4.10.2 Correctness and complexity‘ 110

4.11 Query eXxecution 111
4.12 Indexeso 114
4.13 Experimental resultso oo 117
4.14 Chapter summarﬁ 121
5 Distributed query processing under safely composed permissions 123
5.1 Introduction o oo oo 123
5.1.1 Chapter oUtlindo 124

5.2 Preliminary concepts‘ 125
5.2.1 Datamodel 125

5.2.2 Distributed query execution 126

5.3 Security model 128
5.3.1 Permissions e 128

5.3.2 Relation proﬁle§ 130

5.4 Graph-based model 131
5.5 Authorized VIOWS . . . o o oo, 136
5.5.1 Authorizing permissions oo 136

5.5.2 Composition of PermiSsions« v v oo o 137

5.5.3 Algorithm 141

5.6 Safe query planningﬁ 144
5.6.1 Third party Involvement] 146

5.7 Build asafe query planl. 149
5.8 Chapter summarﬂ 154
‘6 Conclusions 155
6.1 Summary of the contributionﬁ 155
6.2 Future work e 156
6.2.1 Access control enforcement] 156
6.2.2 Privacy protectionj 157

6.2.3 Safe data integration Lo oL L 157

6.3 Closing remarkso 158
| Bibliography 159

‘A Publications

167

List

of Figures

2.1 DAS scenario 11
2.2 An example of plaintext (a) and encrypted (b) relation| 13
2.3 An example of bucketizationo 15
2.4 An example of B+ tree indexing Structureo 18
2.5 Indexing methods supporting queries 21
3.1 An example of access matrix (a) and authorization policy graph (b) 33
3.2 An example of encryption policy graph 35
3.3 Catalog for the encryption policy represented in Figure B2 .. 37
3.4 Key derivation process i i e e e e e e e 38
3.5 _An example of encryption policy graph over {A, B,C.D} 39
3.6 Algorithm for computing an encryption policy £ equivalent to A 44
3.7 Procedure for covering material vertices and removing redundant edge§ 45
3.8 Procedure for factorizing the common ancestors between vertices 46
3.9 Procedure for creating an encryption policy 47
3.10 An example of algorithm exectution oo oo 48
3.11 Procedure for granting or revoking permission (u,0) 54
3.12 Function that inserts a new vertex representing U 54
3.13 Procedure for deleting vertex v oL 55
3.14 Procedure for updating the encryption policy 56
3.15 Examples of grant and revoke operations 57
3.16_An example of BEL and SEL combination (Delta_SEL and Full SEL) 61
3.17 Procedures for granting and revoking permission (u,0)l 65
3.18 An example of grant operation 66
3.19 An example of revoke operation 67
3.20 Possible views on object 0 L 70

List of Figures

3.21 View transitions in the FullLSEL 71
3.22 From locked to sel_locked VIEWS o oo 71
3.23 View transitions in the Delta. SEL 72
3.24 Number of tokens for the DBLP SCenario 74
3.25 Number of tokens for the championship scenario 75
4.1 An example of plaintext relation (a) and its well defined constraints (b) 80
4.2 An example of physical fragments for the relation in Figure/4.1(a) 82
4.3 Algorithm that correctly fragments R 83
4.4 An example of fragmentation lattice o000 86
4.5 A fragmentation tree for the fragmentation lattice in Figure 7 87
4.6 Function that performs a complete searchl 89
4.7 An example of the execution of function Fragment in Figure 46 90
4.8 Function that finds a vector-minimal fragmentation 93
4.9 An example of the execution of function Fragment in Figure 48 .. 95
4.10 An example of affinity MAtTIX .« . o o 97
4.11 Graphical representation of the working of the function in Figure 412 ... 99
4.12 Function that finds a vector-minimal fragmentation with maximal afﬁnitj 100
4.13 An example of the execution of function Fragment in Figure 12 ... 101
4.14 Depiction of the search Spaces‘ 107
4.15 Function that finds a vector-minimal fragmentation with minimal costl 109
4.16 An example of the execution of function Fragment in Figurel4.15 110
4.17 Interactions among users and server storing the fragments 112
4.18 An example of query translation over a fragment 113
4.19 Adversary knowledge (a,b) and choices for indexed fragments (cde) . ..o 115
4.20 Computational time of the algorithm§ 118
4.21 Number of fragments of the solution produced by the algorithms 118
4.22 Affinity of the solution produced by the algorithn@ 119
4.23 Cost of the solution produced by the algorithms 120
4.24 Cost of the solution With INdeXes . . . « v v v v v v i 120
5.1 An example of relations, referential integrity constraints, and join§ 125
52 An example of query tree planJ 127
5.3 Examples of permissions 129
5.4 Profiles resulting from operations 131
5.5 Schema graph for the relations in Figure 5. 132
5.6 Function for coloring a view graph oo 133
5.7 Examples of permissions and their view graphs 134
5.8 Examples of queries, their relation profiles, and their view graph§ 135
5.9 Function composing two permissions 138
5.10 Examples of permission compositions oo 140
5.11 Function that checks if a release is authorized 142
5.12 An example of the execution of function Authorized 143
5.13 Execution of operations and required views with corresponding profiles 145
5.14 Different strategies for executing join operation - with third party 148
5.15 An example of servers’ permissions 149

List of Figures XI
5.16 Algorithm computing a safe assignment for a query plan 149
5.17 Function that determines the set of safe candidates for nodesin 70 150
5.18 Function that chooses one candidate for each nodein T 151
5.19 Function that evaluates the intervention of a third party for join operations 152
5.20 An example of execution of the algorithm in Figure/5.16/ 153

Introduction

The amount of data stored, processed, and exchanged by private companies and public organiza-
tions is rapidly increasing. As a consequence, users are today, with increasing frequency, resorting
to service providers for disseminating and sharing resources they want to make available to others.
The protection against privacy violations is becoming therefore one of the most important issues
that must be addressed in such an open and collaborative context.

In this thesis, we define a comprehensive approach for protecting sensitive information when it
is stored on systems that are not under the data owner’s direct control. In the remainder of this
chapter, we give the motivation and the outline of this thesis.

1.1 Motivation

The rapid evolution of storage, processing, and communication technologies is changing the tradi-
tional information system architecture adopted by both private companies and public organizations.
This change is necessary for mainly two reasons. First, the amount of information held by organi-
zations is increasing very quickly thanks to the growing storage capacity and computational power
of modern devices. Second, the data collected by organizations contain sensitive information (e.g.,
identifying information, financial data, health diagnosis) whose confidentiality must be preserved.

Systems storing and managing these data collections should be secure both from external
users breaking the system and from malicious insiders. However, the design, realization, and
management of a secure system able to grant the confidentiality of sensitive data might be very
expensive. Due to the growing costs of in-house storage and management of large collections of
sensitive data, since it demands for both storage capacity and skilled administrative personnel,
data outsourcing and dissemination services have recently seen considerable growth and promise
to become a common component of the future Web, as testifies by the growing success of Web
companies offering storage and distribution services (e.g., MySpace, Flickr, and YouTube). The
main consequence of this trend is that companies often store their data on external honest-but-
curious servers, which are relied upon for ensuring availability of data and for enforcing the basic
security control on the data they store. While trustworthy with respect to their services in making

2 1. Introduction

published information available, these external systems are however trusted neither to access the
content nor to fully enforce access control policy and privacy protection requirements.

It is then clear that users as well as the companies would find an interesting opportunity in
the use of a dissemination service offering strong guarantees about the protection of user privacy
against both malicious users breaking into the system and the service provider itself. Indeed,
besides well-known risks of confidentiality and privacy breaks, threats to outsourced data include
improper use of information: the service provider could use substantial parts of a collection of data
gathered and organized by the data owner, potentially harming the data owner’s market for any
product or service that incorporates that collection of information.

There are mainly three security aspects that need to be considered when designing a system
for ensuring confidentiality of data stored and managed by a honest-but-curious server, as briefly
outlined in the following.

o Access control enforcement. Traditional architectures assign a crucial role to the reference
monitor [7] for access control enforcement. The reference monitor is the system component
responsible of the validation of access requests. The scenario considered in this thesis how-
ever challenges one of the basic tenets of traditional architectures, where a trusted server is
in charge of defining and enforcing access control policies. This assumption no longer holds
here, because the server does not even have to know the access defined (and possibly mod-
ified) by the data owner. We therefore need to rethink the notion of access control in open
environments, where honest-but-curious servers are in charge of managing the data collection
and are not trusted with respect to the data confidentiality.

o Privacy protection. The vast amounts of data collected and maintained by organizations of-
ten include sensitive personally identifiable information. This trend has raised the attention
of both individuals and legislators, which are forcing organizations to provide privacy guar-
antees over sensitive information when storing, processing or sharing it with others. Indeed,
recent regulations [22, (78] explicitly require specific categories of sensitive information to
be either encrypted or kept separate from other personally identifiable information to grant
confidentiality. Since encryption makes access to stored data inefficient, because it is not
possible to directly evaluate queries on encrypted data, it is necessary to define new solutions
that grant data confidentiality and efficient query evaluation.

o Safe data integration. More and more emerging scenarios require different parties, each
withholding large amounts of independently managed information, to cooperate for sharing
their information. Since the data collection detained by each subject contains sensitive
information, classical distributed query evaluation mechanisms cannot be adopted [23, 64].
We therefore need an approach for regulating data flows among parties and for redefining
query evaluation mechanisms to the aim of fulfilling access control restrictions imposed by
each party. Indeed, data flows among the cooperating parties may be prohibited by privacy
constraints, thus making the design of query execution depending on both efficiency principles
and privacy constraints.

There are many real-life examples of applications need a mechanism to exchange and disclose
data in a selective and secure way. We outline here three possible scenarios.

1.2. Contribution of the thesis 3

Multimedia sharing systems. The amount of multimedia data people collect every day is
quickly increasing. As a consequence, systems offering storage and distribution services for pho-
tographs and videos are becoming more and more popular. However, these data may be sensitive
(e.g., photographs retracting people) and their wide diffusion on the Internet should be prevented
if not explicitly authorized by the data owner. Since the distribution service may not be trusted
with respect to data confidentiality, it cannot enforce the access control policy defined by the data
owner. Therefore, it is necessary to think to an alternative solution to prevent sensitive data
publication.

Healthcare system. More and more healthcare systems collect sensitive information about
historical and present hospitalizations, diagnosis, and more in general health conditions of patients.
Since these data, associated with the identity of patients, are sensitive, their storage, management,
and distribution is subject to both state-level and international regulations. As a consequence,
any healthcare system should adopt an adequate privacy protection system, which guarantees, for
example, that sensitive information is never stored together with patients’ identity.

Recently, the functionalities of healthcare systems have been extended, thanks also to the
evolution and wide diffusion of network communication technologies, to allow data exchange among
cooperating parties, such as medical personnel, pharmacies, insurance companies, and the patients
themselves. Even if this solution improves the quality of the service offered to patients, it however
needs to be carefully designed to avoid non authorized data disclosure. It is therefore necessary to
define a data integration protocol that guarantees data confidentiality.

Financial system. Financial systems store sensitive information that needs to be adequately
protected. As an example, the data collected by companies for credit card payments are sensitive
and need protection both when stored and managed (e.g., credit card numbers and the correspond-
ing security codes cannot be stored together), as demanded by law. Furthermore, thanks also to
the wide diffusion of online transactions, the amount of financial data that systems need to man-
age and protect is increasing very quickly. Financial systems, as well as healthcare systems, need
also to cooperate with other parties, managing independent data collections, such as governmental
offices, credit card companies, and clients.

From the above description, it is straightforward to see that the security problems envisioned
for healthcare systems apply also to the financial scenario, which demands for the same solutions
and technologies for guaranteeing data confidentiality in data storage and exchange.

1.2 Contribution of the thesis

The thesis provides an analysis of the main problems arising when the data owner does not directly
control her data, since they are manager and/or stored by a honest-but-curious server. The contri-
butions of this thesis focus on the three security aspects above-mentioned, that is, access control
enforcement, privacy protection, and safe data integration. In the remainder of this section, we
present the contributions in more details.

4 1. Introduction

1.2.1 Access control enforcement

The first important contribution of this thesis is the proposal of a model for access control enforce-
ment on encrypted, possibly outsourced, data [41,[42]. The original contribution of our work can
be summarized as follows.

Selective encryption. An access control system protecting data stored by a honest-but-curious
system cannot rely on a trusted component (i.e., the reference monitor) that evaluates clients’
requests. Since the data owner cannot act as an intermediary for data accesses, the access control
policy should be embedded in the stored data themselves. Preliminary solutions try to overcome
this issue proposing a novel access control model and architecture that eliminates the need for
a reference monitor and relies on cryptography to ensure confidentiality of the data stored on
the server. New solutions instead propose to combine authorization policy and encryption, thus
allowing access control enforcement to be delegated together with the data. The great advantage
is that the data owner, while specifying the policy, does not need to be involved in its enforcement.
The access control system illustrated in this thesis exploits this same idea: different portions of the
data are encrypted using different encryption keys, which are then distributed to users according
to their access privileges. The model proposed in this thesis differs from previous ones since it
exploits key derivation methods [8,[31] to limit the number of secret keys that users and the data
owner herself need to securely manage. Key derivation methods allow the derivation of a secret
key from another key by exploiting a piece of publicly available information. This solution allows
us to reduce the amount of sensitive information that users and owners have to protect against
third parties.

Efficient access to data. Since key derivation requires a search process in the catalog of publicly
available information and the evaluation of a function, the key derivation process may become
expensive from the client’s point of view. In fact, the public catalog is stored at the provider’s site
and therefore any search operation implies a communication between the client and the server. To
limit the burden due to the key derivation process, in this thesis we propose a solution that tries to
minimize the size of the public catalog. Since such a minimization problem is NP-hard, we present
a heuristic solution that experimentally obtains good results.

Policy updates. Since access control enforcement bases on selective encryption, any time the
policy changes, it is necessary for the data owner to re-encrypt the data to reflect the new policy.
However, the re-encryption process is expensive from the data owner’s point of view, since it
requires interaction with the remote server. To reduce the burden due to this data exchange process,
we propose a two-layer encryption model where a inner layer is imposed by the owner for providing
initial protection and an outer layer is imposed by the server to reflect policy modifications. The
combination of the two layers provides an efficient and robust solution, which avoids data re-
encryption while correctly managing policy updates.

Collusion model. An important aspect that should always be taken into account when designing
a security system is its protection degree. To this purpose, we analyzed the security of the two-
layer model with respect to the risk of collusion among the parties interacting in the considered
scenario. In particular, we consider the case when the server, knowing the encryption keys adopted

1.2. Contribution of the thesis 5

at the outer layer, and a user, knowing a subset of the keys adopted at the inner layer, collude to
gain information that none of them is authorized to access. From this analysis, it is clear that the
proposed model introduces a low collusion risk, which can be further reduced at the cost of a less
efficient query evaluation process.

1.2.2 Privacy protection

The second contribution we present in this thesis is a system that nicely combines fragmentation
and encryption for privacy purposes [28]. The original contribution of our work can be summarized
as follows.

Confidentiality constraints. The release, storage, and management of data is nowadays sub-
ject to a number of rules, imposed by either legislators or data owners, aimed at preserving the
privacy of sensitive information. Since not all the data in a collection are sensitive per se, but
their association with other information may need to be protected, solutions encrypting the whole
data may be an overdo. Therefore, recently solutions combining fragmentation and encryption
have been proposed [2]. In this thesis, we propose a simple while expressive model for representing
privacy requirements, called confidentiality constraints that exploits fragmentation and encryption
for enforcing such constraints. A confidentiality constraint is a set of attributes whose joint visi-
bility should be prevented; a singleton constraint indicates that the values of the single attribute
need to be kept private. This model, while simple, nicely captures different privacy requirements
that need to be enforced on a data collection (e.g., sensitive data and sensitive associations).

Minimality. The main goal of the approach proposed in this thesis is to minimize the use of
encryption for privacy protection. A trivial solution for solving confidentiality constraints consists
in creating a fragment for each attribute that does not appear in a singleton constraint. Obviously
such a solution is not desiderated, unless demanded by constraints, since it makes query evaluation
inefficient. Indeed, since fragments cannot be joined by non authorized users, the client posing
the query would be in charge of combining the data extracted from the different fragments. To
avoid such a situation, we propose three different models for designing a fragmentation that, while
granting privacy protection, maximizes query evaluation efficiency. The three solutions differ in the
efficiency measure proposed (i.e., number of fragments, affinity among attributes, query workload).

Query evaluation. Data fragmentation is usually transparent to the final user, meaning that
queries are formulated on the original schema and then they are reformulated to operate on frag-
ments. Since, as already noted, encryption and fragmentation reduce the efficiency in data retrieval,
we propose to add indexes to fragments. Indexes are defined on attributes that do not appear in
clear form in the fragment. Also, since indexes may open the door to inference and linking attacks,
we carefully analyze the exposure risk due to different indexing methods, considering the external
knowledge of a possible malicious user.

1.2.3 Safe data integration

The third and last contribution we present in this thesis is a solution for the integration of data
from different data sources, which must be subject to confidentiality constraints [43, 44]. The
original contribution coming from our work can be summarized as follows.

6 1. Introduction

Access control model. We present a simple, yet powerful, approach for the specification and en-
forcement of permissions regulating data release among data holders collaborating in a distributed
computation, to ensure that query processing discloses only data whose release has been explicitly
authorized. The model is based on the concept of profile, which nicely models both the information
carried by the result of a query, and the information whose release is authorized by permissions.
To easily evaluate when a data release is allowed by the permissions of the requesting subject, we
propose a graph based model. Profiles are then represented by adequately coloring the graph. The
process of controlling if a query must be denied or allowed is then based on the comparison of
the colors of vertices and edges in the graphs representing the query and the permissions in the
system.

Permission composition. The amount of data that need to be integrated is potentially large
and therefore it is not possible to check queries against single permissions, since the number of
permissions to be explicitly defined would increase quickly. We then introduce the principle that
a query must be allowed if the information release it (directly or indirectly) entails is allowed
by the permissions. In other words, if the subject formulating the query is able to compute
its result by combining information she is allowed to access, then the query should be allowed.
To enforce this basic principle, we propose a permission composition method, which is based on
reachability properties on the graphs representing the profiles of the permissions. The composition
method proposed has the great advantage of working in polynomial time, even if the number of
possible composed permissions is exponential in the number of base permissions. This is due to a
nice dominance property, which we prove in this thesis, between composed permissions and their
components.

Safe query planning. Besides defining and composing permissions, it is necessary to evaluate if
a query operating in the distributed scenario can be executed (i.e., the query is safe) or if the query
must be denied. To this purpose, we characterize the flows of information among the interacting
subjects for the evaluation of the given query, considering also different methods for executing join
operations between distinct data sources. A query is therefore safe if all the data flows it requires
for its evaluation are allowed by the set of (composed) permissions characterizing the system. We
present an algorithm that given a query checks if the query can be evaluated without violating
the set of permissions regulating the distributed system. If the query can be safely executed, the
algorithm we propose also determines which server is in charge for executing which operation.

1.3 Organization of the thesis

In this chapter, we discussed the motivation and the main objectives of our work and described
the major contributions of this thesis. The remaining chapters are structured as follows.

Chapter discusses the state of the art of the security aspects related to the objectives of the
thesis. It presents the main results obtained in the data outsourcing scenario, focusing on mecha-
nisms for query evaluation, inference exposure measurement, and data integrity. Also, it introduces
preliminary works on access control enforcement, privacy protection, and data integration in the
considered scenario.

1.3. Organization of the thesis 7

Chapter 3] illustrates our access control system for securing data stored at a honest-but-curious
server and proposes an efficient mechanism for managing access control policy updates. The risk
of collusion among parties is also analyzed to prove the security of the presented solution.

Chapter addresses the problem of modeling and enforcing privacy requirements to protect
sensitive data and/or their associations. It also presents three cost models for computing an
optimal fragmentation, that is, a fragmentation that allows efficient query evaluation.

Chapter[5/ focuses on the problem of integrating data made available from different parties and
that must satisfy security constraints. It proposes a model for expressing restrictions on data flows
among parties and a mechanism for querying distributed data collections under these constraints.

Chapter [6] summarizes the contributions of this thesis and outlines future work.

Appendix [A reports a list of publications related to the work illustrated in this thesis.

Related work

This chapter discusses the related work in the area of data outsourcing, which is mainly focused on
efficient methods for querying encrypted data. We also present some approaches for evaluating the
inference exposure due to data publication, and solutions for granting data integrity. A few research
efforts have instead addressed the problem of developing access control systems for outsourced data
and for securely querying distributed databases.

2.1 Introduction

The amount of information held by organizations’ databases is increasing very quickly. To respond
to this demand, organizations can:

o add data storage and skilled administrative personnel (at a high rate);

o delegate database management to an external service provider (database outsourcing), a
solution becoming increasingly popular.

In the database outsourcing scenario, usually referred to as Database As a Service (DAS), the
external service provider provides mechanisms for clients to access the outsourced databases. A
major advantage of database outsourcing is related to the high costs of in-house versus outsourced
hosting. Outsourcing provides significant cost savings and promises higher availability and more
effective disaster protection than in-house operations. On the other hand, database outsourcing
poses a major security problem, due to the fact that the external service provider, which is relied
upon for ensuring high availability of the outsourced database (i.e., it is trustworthy), cannot
always be trusted with respect to the confidentiality of the database content.

Besides well-known risks of confidentiality and privacy breaks, threats to outsourced data in-
clude improper use of database information: the server could extract, resell, or commercially use
parts of a collection of data gathered and organized by the data owner, potentially harming the
data owner’s market for any product or service that incorporates that collection of information.

10 2. Related work

Traditional database access control techniques cannot prevent the server itself from making unau-
thorized access to the data stored in the database. Alternatively, to protect against “honest-but-
curious” servers, a protective layer of encryption can be wrapped around sensitive data, preventing
outside attacks as well as infiltration from the server itself [38]. This scenario raises many inter-
esting research challenges. First, data encryption introduces the problem of efficiently querying
outsourced encrypted data. Since confidentiality demands that data decryption must be possible
only at the client-side, techniques have then been proposed, enabling external servers to directly
execute queries on encrypted data. Typically, these solutions consist mainly in adding a piece
of information, called index, to the encrypted data. Indexes are computed based on the plain-
text data and preserve some of the original characteristics of the data to allow (partial) query
evaluation. However, since indexes carry some information about the original data, they may be
exploited as inference channels by malicious users or by the service provider itself. Second, since
data are not under the owner’s direct control, unauthorized modifications must be prevented to
the aim of granting data integrity. For this purpose, different solutions based on different signature
mechanisms have been proposed, with the main goal of improving verification efficiency. Third,
although index-based solutions represent an effective approach for querying encrypted data, they
introduce an overhead in query execution, due to both query formulation through indexes and
data decryption and filtering of query results. However, since often what is sensitive in a data
collection is the association among attributes more than the values assumed by each attribute per
se, new solutions based on the combination of fragmentation and encryption have been proposed
to reduce the usage of encryption and to therefore increase query execution efficiency. Fourth, an
interesting issue that has not been deeply studied in the data outsourcing scenario is represented
by the access control enforcement, which cannot be delegated to the service provider. Finally,
when the outsourced data are stored at different servers, new safe data integration mechanisms are
needed that should take into consideration the different data protection needs of the cooperating
servers.

2.1.1 Chapter outline

In this chapter, we survey the main proposals addressing the data access and security issues arising
in the data outsorcing scenario. The remainder of the chapter is organized as follows. Section 2.2
gives an overview of the entities involved in the data outsourcing scenario and of their typical inter-
actions. Section[2.3 describes the main indexing methods proposed in the literature for supporting
queries over encrypted data. Section[2.4 addresses inference exposure due to different indexing tech-
niques. Section [2.5 focuses on techniques granting data integrity. Section 2.6 describes solutions
efficiently combining fragmentation and encryption for granting privacy protection. Section 2.7]
presents the main proposals for access control enforcement on outsourced encrypted data. Sec-
tion[2.8lillustrates problems and solutions for safe data integration in a distributed system. Finally,
Section [2.9] concludes the chapter.

2.2 Basic scenario and data organization
In this section, we describe the entities involved in the DAS scenario, how data are organized in

the outsourced database context, and the interactions among the entities in the system for query
evaluation.

2.2. Basic scenario and data organization 11

[1) original query Q AC
‘@, l@) -« .
! l A Policy
A P — —o__Metadata___ jEmme)
User 4) plaintext result E’ Data owner
: Meta
i Data
|
| T
| |
| R
: |
Client ¥ Server i
3 2) transformed I
Qc - Query query > Quefy |
¢ Translator o Engine 3 encrypted Executor i
] result H
uery Processor
. loumy |
Meta Encrypt R
Data Decrypt

Figure 2.1 DAS scenario

2.2.1 Parties involved

There are four distinct entities interacting in the DAS scenario (Figure[2.1):

o a data owner (person or organization) produces and outsources resources to make them
available for controlled external release;

o a user (human entity) presents requests (queries) to the system;

o a client front-end transforms the queries posed by users into equivalent queries operating on
the encrypted data stored on the server;

o a server receives the encrypted data from one or more data owners and makes them available
for distribution to clients.

Clients and data owners, when outsourcing data, are assumed to trust the server to faithfully
maintain outsourced data. The server is then relied upon for the availability of outsourced data,
so the data owner and clients can access data whenever requested. However, the server (which can
be “honest-but-curious”) is not trusted with the confidentiality of the actual database content, as
outsourced data may contain sensitive information that the data owner wants to release only to
authorized users. Consequently, it is necessary to prevent the server from making unauthorized
accesses to the database. To this purpose, the data owner encrypts her data with a key known
only to trusted clients, and sends the encrypted database to the server for storage.

2.2.2 Data organization

A database can be encrypted according to different strategies. In principle, both symmetric and
asymmetric encryption can be used at different granularity levels. Symmetric encryption, being
cheaper than asymmetric encryption, is usually adopted. The granularity level at which database

12 2. Related work

encryption is performed can depend on the data that need to be accessed. Encryption can then
be at the finer grain of [55, 63]:

o relation: each relation in the plaintext database is represented through a single encrypted
value in the encrypted database; consequently, tuples and attributes are indistinguishable in
the released data, and cannot be specified in a query on the encrypted database;

o attribute: each column (attribute) in the plaintext relation is represented by a single en-
crypted value in the encrypted relation;

o tuple: each tuple in the plaintext relation is represented by a single encrypted value in the
encrypted relation;

o element: each cell in the plaintext relation is represented by a single encrypted value in the
encrypted relation.

Both relation level and attribute level encryption imply the communication to the requesting client
of the whole relation involved in a query, as it is not possible to extract any subset of the tuples
in the encrypted representation of the relation. On the other hand, encrypting at element level
would require an excessive workload for data owners and clients in encrypting/decrypting data. For
balancing client workload and query execution efficiency, most proposals assume that the database
is encrypted at tuple level.

While database encryption provides an adequate level of protection for data, it makes impossible
for the server to directly execute the users’ queries on the encrypted database. Upon receiving
a query, the server can only send to the requestor the encrypted relations involved in the query;
the client needs then to decrypt such relations and execute the query on them. To allow the
server to select a set of tuples to be returned in response to a query, a set of indexes can be
associated with the encrypted relation. In this case, the server stores an encrypted relation with
an index for each attribute on which conditions may need to be evaluated. For simplicity, we
assume the existence of an index for each attribute in each relation of the database. Different
kinds of indexes can be defined for the attributes in a relation, depending on the clauses and
conditions that need to be remotely evaluated. Given a plaintext database R, each relation r; over
schema R;(a;1,a:2,...,a;y) in R is mapped onto a relation r’f over schema Rf(Counter, Etuple, I;;,
Lis,. .., Iin) in the corresponding encrypted database R*. Here, Counter is a numerical attribute
added as primary key of the encrypted relation; Ftuple is the attribute containing the encrypted
tuple, whose value is obtained applying an encryption function E} to the plaintext tuple, where k
is the secret key; and I;; is the index associated with the j-th attribute a;; in R;. While we assume
encrypted tuples and indexes to be in the same relation, we note that indexes can be stored in a
separate relation [35].

To illustrate, consider relation Employee in Figure The corresponding encrypted relation
is shown in Figure |2.2(b), where index values are conventionally represented with Greek letters.
The encrypted relation has exactly the same number of tuples as the original relation. For the sake
of readability, the tuples in the encrypted relation are listed in the same order with which they
appear in the corresponding plaintext relation. The same happens for the order of indexes, which
are listed in the same order as the corresponding attributes are listed in the plaintext relation
schema. For security reasons, real-world systems do not preserve the order of attributes and tuples
and the correspondence between attributes and indexes is maintained by metadata relations that
only authorized parties can access [32].

2.2. Basic scenario and data organization 13

EMPLOYEE
Emp-Id | Name | YoB | Dept [Salary |
PO1 Ann 1980 | Production 10
RO1 Bob 1975 R&D 15
FO1 Bob 1985 Financial 10
P02 Carol 1980 | Production 20
F02 Ann 1980 | Financial 15
RO2 David 1978 R&D 15
(a)
EMPLOYEEF
[Counter [Etuple [I [Is [I3 [I4 [I5]
1 ite6 Az*+8wc s o ~y € A
2 8(Xznfeuad!= 103 I¢] B 0 A
3 QT73gnew321*/ | ¢ | ~y I A
4 -1vs9e892s s a v € P
5 e32rfsdaS+@Q T « 0% o A
[§ rd3arg*5|) ¢ | B8 B [A

(b)

Figure 2.2 An example of plaintext (a) and encrypted (b) relation

2.2.3 Interactions

The introduction of indexes allows the partial evaluation of any query @ at the server-side, provided
it is previously translated in an equivalent query operating on the encrypted database. Figure 2.1]
summarizes the most important steps necessary for the evaluation of a query submitted by a user.

1. The user submits her query @ referring to the schema of the plaintext database R, and passes
it to the client front-end. The user needs not to be aware that data have been outsourced to
a third party.

2. The client maps the user’s query onto: i) an equivalent query @, working on the encrypted
relations through indexes, and 1) an additional query Q. working on the results of Q5. Query
Qs is then passed on to the remote server. Note that the client is the unique entity in the
system that knows the structure of both R and R* and that can translate the queries the
user may submit.

3. The remote server executes the received query Qs on the encrypted database and returns the
result (i.e., a set of encrypted tuples) to the client.

4. The client decrypts the tuples received and eventually discards spurious tuples (i.e., tuples
that do not satisfy the query submitted by the user). These spurious tuples are removed by
executing query Q.. The final plaintext result is then returned to the user.

Since a client may have limited storage and reduced computation capacity, one of the primary goals
of the query execution process is to minimize the workload at the client side, while maximizing
the operations that can be computed at the server side [57,163].

14 2. Related work

Iyer et al. [55] 63] present a solution for minimizing the client workload that is based on a
graphical representation of queries as trees. Since the authors limit their analysis to select-from-
where queries, each query QQ=“SELECT A FROM Rj,...,R, WHERE C” can be reformulated as an
algebra expression of the form 74 (0o (R1 ... R,,)). Each query can then be represented as a
binary tree, where leaves correspond to relations Ry,...,R, and internal nodes represent relational
operations, receiving as input the result produced by their children. The tree representing a query
is split in two parts: the lower part includes all operations that can be executed by the server, while
the upper part contains all operations that cannot be delegated to the server and that therefore
need to be executed by the client. In particular, since a query can be represented with different,
but equivalent, trees by simply pushing down selections and postponing projections, the basic idea
of the proposed solution is to determine a tree representation of the query, where the operations
that only the client can execute are in the highest levels of the tree. For instance, if there are
two ANDed conditions in the query and only one can be evaluated at the server-side, the selection
operation is split in such a way that one condition is evaluated server-side and the other client-side.

Hacigiimiis et al. [57] show a method for splitting the query Q; to be executed on the encrypted
data into two sub-queries, Qs1 and Qs2, where Qg1 returns only tuples that belongs to the final
result, and query @s2 may contain also spurious tuples. This distinction allows the execution of Q.
over the result of Q42 only, while tuples returned by Q51 can be immediately decrypted. To further
reduce the client’s workload, Damiani et al. [36] propose an architecture that minimizes storage
at the client and introduce the idea of selective decryption of Q5. With selective decryption, the
client decrypts the portion of the tuples needed for evaluating ()., while complete decryption is
executed only for tuples that belong to the final result and that will be returned to the final user.
The approach is based on a block-cipher encryption algorithm, operating at tuple level, that allows
the detection of the blocks containing the attributes necessary to evaluate the conditions in @,
which are the only ones that need decryption.

It is important to note that the process of transforming @ in @), and Q. greatly depends both
on the indexing method adopted and on the clauses and conditions composing query). There
are operations that need to be executed by the client, since the indexing method adopted does not
support the specific operations (e.g., range queries are not supported by all types of indexes) and
the server is not allowed to decrypt data. Also, there are operations that the server could execute
over the index, but that require a pre-computation that only the client can perform and therefore
must be postponed in Q. (e.g., the evaluation of a condition in the HAVING clause, which needs a
grouping over an attribute, whose corresponding index has been created by using a method that
does not support the GROUP BY clause).

2.3 Querying encrypted data

When designing a solution for querying encrypted data, one of the most important goals is to
minimize the computation at the client-side and to reduce communication overhead. The server
therefore should be responsible for the majority of the work. Different indexing approaches allow
the execution of different types of queries at the server side.

We now describe in more detail the methods initially proposed to efficiently execute simple
queries at the server side, and we give an overview of more recent methods that improve the
server’s ability to query encrypted data.

2.3. Querying encrypted data 15

Year of Birth | | |
1970 1980 1990

Sal ary | | |
10 20 30

Figure 2.3 An example of bucketization

2.3.1 Bucket-based approach

Hacigiimiis et al. [58] propose the first method to query encrypted data, which is based on the def-
inition of a number of buckets on the attribute domain. Let r; be a plaintext relation over schema
Ri(a;i1,a:2,. . .,a;,) and r¥ be the corresponding encrypted relation over schema RY(Counter,
FEtuple,I;1,. .. ,I;n). Considering an arbitrary plaintext attribute a,; in R;, with domain D;;, bucket-
based indexing methods partition D;; in a number of non-overlapping subsets of values, called
buckets, containing contiguous values. This process, called bucketization, usually generates buck-
ets that are all of the same size.

Each bucket is then associated with a unique value and the set of these values is the domain
for index I;; associated with a;;. Given a plaintext tuple ¢ in r;, the value of attribute a;; for ¢
(i.e., t[asj]) belongs to only one bucket defined on D;;. The corresponding index value is then the
unique value associated with the bucket to which the plaintext value t[a;;| belongs. It is important
to note that, for better preserving data secrecy, the domain of index I;; may not follow the same
order as the one of the plaintext attribute a;;. Attributes I3 and I in Figure |2.2(b) are the
indexes obtained by applying the bucketization method defined in Figure [2.3 for attributes YoB
and Salary in Figure 2.2(a)L Note that I3 values do not reflect the order of the domain values it
represents, since 1975 < 1985, while § follows ~ in lexicographic order.

Bucket-based indexing methods allow the server-side evaluation of equality conditions appearing
in the WHERE clause, since these conditions can be mapped into equivalent conditions operating
on indexes. Given a plaintext condition of the form a;;=v, where v is a constant value, the
corresponding condition operating on index I;; is [;;=f3, where § is the value associated with
the bucket containing v. As an example, with reference to Figure condition YoB=1985 is
transformed into I3=~. Also, equality conditions involving attributes defined on the same domain
can be evaluated by the server, provided that attributes characterized by the same domain are
indexed using the same bucketization. In this case, a plaintext condition of the form a;;=a; is
translated into condition I;;=1I;; operating on indexes.

Bucket-based methods do not easily support range queries. Since the index domain does not
necessarily preserve the plaintext domain ordering, a range condition of the form a;;>v, where
v is a constant value, must be mapped into a series of equality conditions operating on index
I;; of the form I;;=p; OR I;;=f2 OR ...OR I;;=0, where [1,..., [are the values associated
with buckets that correspond to plaintext values greater than or equal to v. For instance, with
reference to Figure [2.3, condition YoB>1977 must be translated into Is=7 OR Is=4, since both
values represent years greater than 1977.

Note that, since the same index value is associated with more than one plaintext value, queries
exploiting bucket-based indexes usually produce spurious tuples that need to be filtered out by

16 2. Related work

the client front-end. Spurious tuples are tuples that satisfy the condition over the indexes, but
that do not satisfy the original plaintext condition. For instance, with reference to the relations
in Figure 2.2, query “SELECT * FROM Employee WHERE YoB=1985" is translated into “SELECT
Etuple FROM Employee® WHERE I3=~". The result of the query executed by the server contains
tuples 1, 3, 4, and 5; however, only tuple 3 satisfies the original condition as written by the user.
Tuples 1, 4, and 5 are spurious and must be discarded by the client during the postprocessing of
the @ result.

Hore et al. [61] propose an improvement to bucket-based indexing methods by introducing an
efficient way for partitioning the domain of attributes. Given an attribute and a query profile on
it, the authors present a method for building an efficient index, which tries to minimize the number
of spurious tuples in the result of both range and equality queries.

As we will see in Section[2.4] one of the main disadvantages of bucket-based indexing methods
is that they expose data to inference attacks.

2.3.2 Hash-based approach

Hash-based index methods are similar to bucket-based methods and are based on the concept of
one-way hash function [35].

Let r; be a plaintext relation over schema R;(a;1,a2,...,a:,) and rf be the corresponding
encrypted relation over schema Rf(Counter, FEtuple,I;x,. .. I;n). For each attribute a;; in R; to be
indexed, a one-way hash function h : D;; — B;; is defined, where D;; is the domain of a;; and
B;; is the domain of index I;; associated with a;;. Given a plaintext tuple ¢ in r;, the index value
corresponding to attribute a;; for ¢is computed by applying function h to the plaintext value t[a;;].

An important property of any hash function A is its determinism; formally, Vx,y € D;; : = =
y = h(z) = h(y). Another interesting property of hash functions is that the codomain of h is
smaller than its domain, so there is the possibility of collisions; a collision happens when given two
values z,y € D;; with @ # y, we have that h(z) = h(y). A further property is that h must produce a
strong mixing, that is, given two distinct but near values x,y (] —y |< €) chosen randomly in D;;,
the discrete probability distribution of the difference h(z) — h(y) is uniform (the results of the hash
function can be arbitrarily different, even for very similar input values). A consequence of strong
mixing is that the hash function does not preserve the domain order of the attribute on which it is
applied. As an example, consider the relations in Figure 2.2. Here, the indexes corresponding to
attributes Emp-Id, Name, and Dept in relation Employee are computed by applying a hash-based
method. The values of attribute Name have been mapped onto two distinct values, namely « and 3;
the values of attribute Emp-Id have been mapped onto two distinct values, namely 7 and ¢; and the
values of attribute Dept have been mapped onto three distinct values, namely ¢, 6, and u. Like for
bucket-based methods, hash-based methods allow an efficient evaluation of equality conditions of
the form a;;=v, where v is a constant value. Each condition a;;=v is transformed into a condition
I;;=h(v), where I;; is the index corresponding to a;; in the encrypted relation. For instance,
condition Name=“Alice” is transformed into Is=c«. Also, equality conditions involving attributes
defined on the same domain can be evaluated by the server, provided that these attributes are
indexed using the same hash function. The main drawback of hash-based methods is that they
do not support range queries, for which a solution similar to the one adopted for bucket-based
methods is not viable: colliding values are in general not contiguous in the plaintext domain.

If the hash function used for index definition is not collision free, then queries exploiting the
index produce spurious tuples that need to be filtered out by the client front-end. A collision-

2.3. Querying encrypted data 17

free hash function guarantees absence of spurious tuples, but may expose data to inference (see
Section [2.4). For instance, assuming that the hash function adopted for attribute Dept in Fig-
ure 2.2(a)| is collision-free, condition Dept=*“Financial” is translated into Is=p, that will return
only the tuples (in our example, tuples with Counter equal to 3 and 5) that belong to the result
of the query that contains the corresponding plaintext condition.

2.3.3 B+ tree approach

Both bucket-based and hash-based indexing methods do not easily support range queries, since
both these solutions are not order preserving. Damiani et al. [35] propose an indexing method
that, while granting data privacy, preserves the order relationship characterizing the domain of
attribute a;;. This indexing method exploits the traditional B+ tree data structure used by
relational DBMSs for physically indexing data. A B+ tree with fan out n is a tree where every
vertex can store up to n — 1 search key values and n pointers and, except for the root and leaf
vertices, has at least [n/2] children. Given an internal vertex storing f key values ki, ..., ky with
f <n—1, each key value k; is followed by a pointer p; and k; is preceded by a pointer py. Pointer
po points to the subtree that contains keys with values lower than ki, p; points to the subtree
that contains keys with values greater than or equal to ky, and each p; points to the subtree that
contains keys with values included in the interval [k;, k;11). Internal vertices do not directly refer
to tuples in the database, but just point to other vertices in the structure; on the contrary, leaf
vertices do not contain pointers, but directly refer to the tuples in the database having a specific
value for the indexed attribute. Leaf vertices are linked in a chain that allows the efficient execution
of range queries. As an example, Figure |2.4(a) represents the B+ tree index built for attribute
Name of relation Employee in Figure 2.2(a). To access a tuple with key value k, value k is first
searched in the root vertex of the B+ tree. The tree is then traversed by using the following
scheme: if k < k1, pointer pg is chosen; if k > k¢, pointer p; is chosen, otherwise if k; < k < ki1,
pointer p; is chosen. The process continues until a leaf vertex has been examined. If k is not found
in any leaf vertex, the relation does not contain any tuple having, for the indexed attribute, value
k.

A B+ tree index can be usefully adopted for each attribute a;; in the schema of relation R;,
provided a;; is defined over a partially ordered domain. The index is built by the data owner
over the plaintext values of the attribute, and then stored on the remote server, together with the
encrypted database. To this purpose, the B+ tree structure is translated into a specific relation with
the two attributes: Id, represents the vertex identifier; and VertezContent, represents the actual
vertex content. The relation has a row for each vertex in the tree and pointers are represented
through cross references from the vertex content to other vertex identifiers in the relation. For
instance, the B+ tree structure depicted in Figure |2.4(a)|is represented in the encrypted database
by the relation in Figure 2.4(b). Since the relation representing the B+ tree contains sensitive
information (i.e., the plaintext values of the attribute on which the B+ tree is built) this relation
has to be protected by encrypting its content. To this purpose, encryption is applied at the level
of vertex (i.e., of tuple in the relation), to protect the order relationship among plaintext and
index values and the mapping between the two domains. The corresponding encrypted relation
has therefore two attributes: Id that represents, as before, the identifier of the vertex; and C
that contains the encrypted vertex. Figure |2.4(c) illustrates the encrypted B+ tree relation that
corresponds to the plaintext B+ tree relation in Figure|2.4(b).

The B+ tree based indexing method allows the evaluation of both equality and range conditions

18 2. Related work

| Id | VertexContent |
1 | 2, Carol, 3
2 | 4, Bob, 5
3 | 6, David, 7
4 | Ann, 5, 1,5
5 | Bob, 6, 2, 3
6 | Carol, 7,4
7 | David, NIL, 6
(2) (b)
[d[C |

1 | gtem945/*c

2 | 8dgh9wq*d’

3 | ueb3/)jA"w

4 | 8/*5sym,p

5 | mw3A£9wio|

6 | =wco2llps

7 | oieb5(p8*

(c)
Figure 2.4 An example of B+ tree indexing structure

appearing in the WHERE clause. Moreover, being order preserving, it also allows the evaluation of
ORDER BY and GROUP BY clauses of SQL queries, and of most of the aggregate operators, directly
on the encrypted database. Given the plaintext condition a;;>v, where v is a constant value, it
is necessary to traverse the B+ tree stored on the server to find out the leaf vertex representing v
for correctly evaluating the considered condition. To this purpose, the client queries the B+ tree
relation to retrieve the root, which conventionally is the tuple ¢ with ¢[Id]=1. It then decrypts
t[C], evaluates its content and, according to the search process above-mentioned, queries again the
remote server to retrieve the next vertex along the path to v. The search process continues until a
leaf vertex containing v is found (if any). The client then follows the chain of leaf vertices starting
from the retrieved leaf to extract all the tuples satisfying condition a;;> v. For instance, consider
the B+ tree in Figure|2.4(a) defined for attribute Name in relation Employee in Figure A
query asking for tuples where the value of attribute Name follows “Bob” in the lexicographic order
is evaluated as follows. First, the root is retrieved and evaluated: since “Bob” precedes “Carol”,
the first pointer is chosen and vertex 2 is evaluated. Since “Bob” is equal to the value in the vertex,
the second pointer is chosen and vertex 5 is evaluated. Vertex 5 is a leaf, and all tuples in vertices
5, 6, and 7 are returned to the final user.

It is important to note that B+ tree indexes do not produce spurious tuples when executing a
query, but the evaluation of conditions is much more expensive for the client with respect to bucket
and hash-based methods. For this reason, it may be advisable to combine the B+ tree method
with either hash-based or bucket-based indexing, and use the B+ tree index only for evaluating
conditions based on intervals. Compared with traditional B+ tree structures used in DBMSs, the
vertices in the indexing structure presented here do not have to be of the same size as a disk block;

2.3. Querying encrypted data 19

a cost model can then be used to optimize the number of children of a vertex, potentially producing
vertices with a large number of children and trees with limited depth. Finally, we note that since
the B+ tree content is encrypted, the method is secure against inference attacks (see Section [2.4).

2.3.4 Order preserving encryption approaches

To support equality and range queries over encrypted data without adopting B+ tree data struc-
tures, Agrawal et al. [4] present an Order Preserving Encryption Schema (OPES). An OPES
function has the advantage of flattening the frequency spectrum of index values, thanks to the
introduction of new buckets when needed. It is important to note here that queries executed over
this kind of indexes do not return spurious tuples. Also, OPES provides data secrecy only if the
intruder does not know the plaintext database or the domain of original attributes.

Order Preserving Encryption with Splitting and Scaling (OPESS) [96] is an evolution of OPES
that both supports range queries and does not suffer from inference problems. This indexing
method exploits the traditional B-tree data structure used by relational DBMSs for physically
indexing data. B-tree data structure is similar to B+ tree data structure, but internal vertices
directly refer to tuples in the database and leaves of the tree are not linked in a unique list.

An OPESS index can be usefully adopted for each attribute a;; in the relation schema R;,
provided a;; is defined over a partially ordered domain. The index is built by the data owner
over the plaintext values of the attribute, and then stored on the remote server, together with
the encrypted database. Differently from B+ tree indexing structure, the B-tree data structure
exploited by OPESS is built on index values, and not on plaintext values. Therefore, before building
the B-tree structure to be remotely stored on the server, OPESS applies two techniques on the
original values of a;;, called splitting and scaling, aimed at obtaining a flat frequency distribution
of index values.

Consider attribute a;; defined on domain D;; and assume that the values {v1,...,v,} in the
considered relation r; have occurrences, in the order, equal to { f1, ..., f,}. First, a splitting process
is performed on a;;, producing a number of index values having almost a flat frequency distribution.
The splitting process applies to each value vy, assumed by a;; in 7;. It determines three consecutive
positive integers, m — 1, m, and m + 1, such that the frequency f; of value v, can be expressed
as a linear combination of the computed values: f, = ci(m — 1) + ca(m) + c3(m + 1), where ¢,
c2, and c3 are non negative integer values. The plaintext value v;, can therefore be mapped into
c1 index values each with m + 1 occurrences, co index values each with m occurrences, and cs
index values each with m — 1 occurrences. To preserve the order of index values with respect to
the original domain of attribute a;;, for any two values v, < v; and for any index values ¢;, and
1; associated with v, and v; respectively, we need to guarantee that 75, < ¢;. To this purpose, the
authors in [96] propose to exploit an order preserving encryption function. Specifically, for each
plaintext value vy, its index values are obtained by adding a randomly chosen string of low order
bits to a common string of high order bits computed as follows: v§ = Ej(vp), where E is an order
preserving encryption function with key k.

Since splitting technique grants the sum of frequencies of indexes representing value v to be
exactly the same as the original frequency of v, an attacker who knows the frequency distribution of
plaintext domain values could exploit this property to break the indexing method adopted. Indeed,
the index values mapping a given plaintext value are, by definition, contiguous values. Therefore,
the authors in propose to adopt a scaling technique together with splitting. Each plaintext
value vy, is associated with a scaling factor sp. When vy is split into n index values, namely

20 2. Related work

i1,.-.,1n, €ach index entry in the B-tree corresponding to i is replicated s; times. Note that all
sp, replicas of the index point to the same block of tuples in the encrypted database. After scaling
has been applied, the index frequency distribution is not uniform any more. Without knowing the
scaling factor used, it is not possible for the attacker to reconstruct the correspondence between
plaintext and index values.

The OPESS indexing method allows the evaluation of both equality and range conditions
appearing in the WHERE clause. Moreover, being order preserving, it also allows the evaluation of
ORDER BY and GROUP BY clauses of SQL queries, and of most of the aggregate operators, directly
on the encrypted database. It is important to note that query execution becomes expensive, even
if it does not produce spurious tuples, due to the fact that the same plaintext value is mapped
into different index values and both splitting and scaling methods need to be inverted for query
evaluation.

2.3.5 Other approaches

In addition to the three main indexing methods previously presented, many other solutions have
been proposed to support queries on encrypted data. These methods try to better support SQL
clauses or to reduce the amount of spurious tuples in the result produced by the remote server.

Wang et al. [97, 98] propose a new indexing method, specific for attributes whose domain is
the set of all possible strings over a well defined set of characters, which adapts the hash-based
indexing methods to permit direct evaluation of LIKE conditions. The index value associated with
any string s, composed of n characters cics . ..c,, is obtained by applying a secure hash function
to each pair of subsequent characters in s. Given a string s = c¢j¢co...¢c, = $182. .. Sp/2, Where
5; = CaiC2i41, the corresponding index is computed as i = h(s1)h(s2) ... h(sp/2)-

Hacigiimiis et al. [57] study a method to remotely support aggregation operators, such as
COUNT, SUM, AVG, MIN, and MAX. The method is based on the concept of privacy homomor-
phism [19], which exploits properties of modular algebra to allow the execution over index values
of sum, subtraction, and product operations, while not preserving the order relationship character-
izing the original domain. Evdokimov et al. [47] formally analyze the security of the method based
on privacy homomorphism, with respect to the degree of confidentiality assigned to the remote
server. The authors formally introduce a definition of intrinsic security for encrypted databases,
and it is proved that almost all indexing methods are not intrinsically secure. In particular, meth-
ods that do not cause spurious tuples to belong to the result of a query inevitably are exposed to
attacks coming from a malicious third party or from the service provider itself.

The Partition Plaintext and Ciphertext (PPC) is a new model for storing server-side outsourced
data [63]. This model proposes to outsource both plaintext and encrypted information that need
to be stored on the remote server. In this model, only sensitive attributes are encrypted and
indexed, while the other attributes are released in plaintext form. The authors propose an efficient
architecture for the DBMS to store together, and specifically in the same page of memory, both
plaintext and encrypted data.

Different working groups 120,[51, 93, introduce other approaches for searching keywords
in encrypted documents. These methods are based on the definition of a secure index data structure.
The secure index data structure allows the server to retrieve all documents containing a particular
keyword without the need to know any other information. This is possible because a trapdoor
is introduced when encrypting data, and such a trapdoor is then exploited by the client when
querying data. Other similar proposals are based on Identity Based Encryption techniques for the

2.4. Evaluation of inference exposure 21

Query

Index Equality | Range | Aggregation
Bucket-based [58]

Hash-based [35]

B+ Tree [35]

OPES [4]

OPESS

Character oriented [97, 98]

Privacy homomorphism [57]

PPC [63]

Secure index data structures [16, 20, 51,[93,99]
e fully supported; o partially supported; — not supported

o —

O e e e
® O e O

Figure 2.5 Indexing methods supporting queries

definition of secure indexing methods. Boneh and Franklin [17] present an encryption method
allowing searches over ciphertext data, while not revealing anything about the original data. This
method is shown to be secure through rigorous proofs. Although these methods for searching
keywords over encrypted data have been originally proposed for searching over audit logs or email
repositories, they are also well suited for indexing data in the outsourced database scenario.

Figure [2.5 summarizes the discussion by showing, for each indexing method discussed, what
type of query it (partially) supports. Here, an hyphen means that the query is not supported, a
black circle means that the query is fully supported, and a white circle means that the query is
partially supported.

2.4 Evaluation of inference exposure

Given a plaintext relation r over schema R(a1,a2,. .. ,a,), it is necessary to decide which attributes
need to be indexed, and how the corresponding indexes can be defined. In particular, when defining
the indexing method for an attribute, it is important to consider two conflicting requirements: on
one side, the indexing information should be related to the data well enough to provide for an
effective query execution mechanism; on the other side, the relationship between indexes and data
should not open the door to inference and linking attacks that can compromise the protection
granted by encryption. Different indexing methods can provide different trade-offs between query
execution efficiency and data protection from inference. It is therefore necessary to define a measure
for the risk of exposure due to the publication of indexes on the remote server.

Although many techniques supporting different kinds of queries in the DAS scenario have
been developed, a deep analysis of the level of protection provided by all these methods against
inference and linking attacks is missing. In particular, exposure has been evaluated for a few
indexing methods only [24, 61].

Hore et al. [61] analyze the security issues related to the use of bucket-based indexing methods.
The authors consider data exposure problems in two situations: i) the release of a single attribute,
and 7) the publication of all the indexes associated with a relation. To measure the protection
degree granted to the original data by the specific indexing method, the authors propose to exploit

22 2. Related work

two different measures. The first measure is the variance of the distribution of values within a
bucket b. The second measure is the entropy of the distribution of values within a bucket 5. The
higher is the variance, the higher is the protection level granted to the data. Therefore, the data
owner should maximize, for each bucket in the relation, the corresponding variance. Analogously,
the higher is the entropy of a bucket, the higher is the protection level granted to the data. The
optimization problem that the data owner has to solve, while planning the bucketization process
on a relation, is the maximization of minimum variance and minimum entropy, while maximizing
query efficiency. Since such an optimization problem is NP-hard, Hore et al. propose an
approximation method, which fixes a maximum allowed performance degradation. The objective
of the algorithm is then to maximize both minimum variance and entropy, while guaranteeing
performances not to fall under an imposed threshold.

To the aim of taking into consideration also the risk of exposure due to associations, Hore et
al. propose to adopt, as a measure of the privacy granted by indexes when posing a multi-
attribute range query, the well known k-anonymity concept [83]. Indeed, the result of a range
query operating on multiple attributes is exposed to data linkage with publicly available datasets.
k-Anonymity is widely recognized as a measure of the privacy level granted by a collection of
released data, where respondents can be re-identified (or the uncertainty about their identity lower
under a predefined threshold k) by linking private data with public data collections.

Damiani et al. [24,(35,[37] evaluate the exposure to inference due to the adoption of hash-based
indexing methods. Inference exposure is measured by taking into account the prior knowledge of
the attacker, thus introducing two different scenarios. In the first scenario, called Freq+DB*, the
attacker is supposed to know, in addition to the encrypted database (DBk), the domains of the
plaintext attributes and the distribution of plaintext values (Freq) in the original database. In
the second scenario, called DB+DB¥, the attacker is supposed to know both the encrypted (DBF)
and the plaintext database (DB). In both scenarios, the exposure measure is computed as the
probability for the attacker to correctly map index values onto plaintext attribute values. The
authors show that, to guarantee a higher degree of protection against inference, it is convenient
to use a hash-based method that generates collisions. In case of a hash-based method where the
collision factor is equal to 1, meaning that there is no collision, inference exposure measure depends
only on the number of attributes used for indexing. In the DB+DB* scenario, the exposure grows
as the number of attributes used for indexing grows. In the Freq+DB* scenario, the attacker can
discover the correspondences between plaintext and indexing values by comparing their occurrence
profiles. Intuitively, the exposure grows as the number of attributes with a different occurrence
profile grows. For instance, considering relation Employee in Figure 2.2(a), we can notice that
both Salary and the corresponding index Is have a unique value with one occurrence only, that
is, 20 and p, respectively. We can therefore conclude that the index value corresponding to 20 is
p, and that no other salary value is mapped into p as well.

Damiani et al. [37] extend the inference exposure measures presented in [24] 35] to produce an
inference measure that can be associated with the whole relation instead of with single attributes.
The authors propose two methods for aggregating the exposure risk measures computed at at-
tribute level. The first method exploits the weighted mean operator and weights each attribute a;
proportionally with the risk connected with the disclosure of the values of a;. The second one ex-
ploits the OWA (Ordered Weighted Averaging) operator, which allows the assignment of different
importance values to different sets of attributes, depending on the degree of protection guaranteed
by the indexing method adopted for the specific subset of attributes.

Agrawal et al. [4] evaluate the exposure to inference due to the adoption of OPESS as an index-

2.5. Integrity of outsourced data 23

ing method, under the Freq+DBF scenario. They prove that the solution they propose is intrinsi-
cally secure, due to the flat frequency distribution of index values and to the additional guarantee
given by scaling method, which avoids the combination of the attackers frequency knowledge with
the knowledge of the indexing method adopted.

2.5 Integrity of outsourced data

The database outsourcing scenario usually assumes the server to be “honest-but-curious”, and that
clients and data owners trust it to faithfully maintain outsourced data. However, this assumption
is not always applicable and it is also important to protect the database content from improper
modifications (data integrity). The approaches proposed in the literature have the main goal of
detecting unauthorized updates of remotely stored data [56, (73, 74, 92]. Hacigiimiis et al. [56]
propose to add a signature to each tuple in the database. The signature is computed by digitally
signing, with the private key of the owner, a hash value obtained through the application of a
hash function to the tuple content. The signature is then added to the tuple before encryption.
When a client receives a tuple, as a result of its query, it can verify if the tuple has been modified
by an entity different from the data owner. The verification process consists in recomputing the
hash over the tuple content and checking whether there is a match with the value stored in the
tuple itself. In addition to tuple level integrity, also relation level integrity (i.e., absence of non
authorized insertions and deletions of tuples) needs to be preserved. Therefore, for each relation,
a signature computed on the basis of the tuples in the relation is added. An advantage of the
proposed method is that relation level signature does not need to be recomputed any time a tuple
is inserted or deleted because the old signature can be adapted to the new content, thus saving
computation time at the data owner side.

Since an integrity check performed on each tuple in the result set of a query can be quite
expensive, Mykletun et al. [73] propose methods for checking the signature of a set of tuples in a
single operation. The first method, called condensed RSA, works only if the tuples in the set have
been signed by the same user; the second method, which is based on bilinear mappings and is less
efficient than condensed RSA, is called BGLS (from the name of the authors who first proposed
this signature method [18]) and works even if the tuples in the set have been signed by different
users. A major drawback of these solutions is that they do not guarantee the immutability property.
Immutability means that it is difficult to obtain a valid aggregated signature from a set of other
aggregated signatures. To solve this problem, Mykletun et al. [72] propose alternative solutions
based on zero knowledge protocols.

Narasimha and Tsudik [74] present another method, called Digital Signature Aggregation and
Chaining (DSAC), that is again based on hash functions and signature. Here, the main goal is to
evaluate whether the result of a query is complete and correct with respect to the database content.
This solution builds over each relation chains of tuples, one for each attribute that may appear
in a query, that are ordered according to the attribute value. The signed hash associated with a
tuple is then computed by composing the hash value associated with the immediate predecessors
of the considered tuple in all the chains. This solution is quite expensive when there are different
chains associated with a relation.

Sion [92] proposes a method to ensure result accuracy and guarantee that the server correctly
executes the query on the remote data. The method works for batch queries and is based on
the pre-computation of tokens. Basically, before outsourcing the database, the data owner pre-

24 2. Related work

computes a set of queries on plaintext data and associates, with each query, a token computed
by using a one-way cryptographic hash function on the query results, concatenated with a nonce.
Any set of batch queries submitted to the server contains then a subset of pre-computed queries,
along with the corresponding tokens, and fake tokens. The server, when answering, has to indicate
which are the queries in the batch set that correspond to the given tokens. If the server correctly
individuates which tokens are fake, the client is guaranteed that the server has executed all the
queries in the set.

2.6 Privacy protection of databases

Often encryption of the whole database containing sensitive data is an overdo, since not all the
data are sensitive per se but only their association needs protection. To reduce the usage of
encryption in data outsourcing, thus improving query execution efficiency, it is convenient to
combine fragmentation and encryption techniques [2]. In [2] the authors propose an approach
where privacy requirements are modeled simply through confidentiality constraints (i.e., sets of
attributes whose joint visibility must be prevented) and are enforced by splitting information
over two independent database servers (so to break associations of sensitive information) and by
encrypting information only when strictly necessary. By assuming that only trusted clients know
the two service providers (each of which is not aware of the existence of the other server), sensitive
associations among data can be broken by fragmenting the original data. When fragmentation
is not sufficient for solving all confidentiality constraints characterizing the data collection, data
encryption can be exploited. In this case, the key used for encrypting the data is stored on one
server and the encrypted result on the other one. Alternatively, other data obfuscation methods can
be exploited; the parameter value is stored on one server and the obfuscated data on the other one.
Since the original data collection is divided on two non-communicating servers, the evaluation of
queries formulated by trusted users requires the presence of a trusted client for possibly combining
the results coming from the two servers. The original query is split in two subqueries operating
at each server, which results are then joined and refined by the client. The process of query
evaluation becomes therefore expensive, especially if fragmentation does not take into account the
query workload characterizing the system (i.e., when attributes frequently appearing in the same
query are not stored on the same server). After proving that identifying a fragmentation that
minimizes query execution costs at the client side is NP-hard (this problem can be reduced to the
hypergraph coloring problem), the authors propose a heuristic algorithm producing good results.

While presenting an interesting idea, the approach in [2] suffers from several limitations. The
main limitation is that privacy relies on the complete absence of communication between the two
servers, which have to be completely unaware of each other. This assumption is clearly too strong
and difficult to enforce in real environments. A collusion among the servers (or the users accessing
them) easily breaches privacy. Also, the assumption of two servers limits the number of associations
that can be solved by fragmenting data, often forcing the use of encryption. The solution presented
in Chapter[4 overcomes the above limitations: it allows storing data even on a single server and
minimizes the amount of data represented in encrypted format, therefore allowing for efficient
query execution.

A related line of work is represented by [13| 14], where the authors exploit functional dependen-
cies to the aim of correctly enforcing access control policies. In [14] the authors propose a policy
based classification of databases that, combined with restriction of the query language, preserves

2.7. Access control enforcement in the outsourcing scenario 25

the confidentiality of sensitive information. The classification of a database is based on the concept
of classification instance, which is a set of tuples representing the combinations of values that need
to be protected. On the basis of the classification instance, it is always possible to identify the
set of allowed queries, that is, the queries whose evaluation return tuples that do not correspond
to the combinations represented in the classification instance. In [13] the authors define a mech-
anism for defining constraints that reduce the problem of protecting the data from inferences to
the enforcement of access control in relational databases.

2.7 Access control enforcement in the outsourcing scenario

Traditional works on data outsourcing assume all users to have complete access to the whole
database by simply knowing the (unique) encryption key adopted for data protection. However,
this simplifying assumption does not fit current scenarios where different users may need to see
different portions of the data, that is, where selective access needs to be enforced, also because the
server cannot be delegated such a task. Adding a traditional authorization layer to the current
outsourcing scenarios requires that when a client poses a query, both the query and its result have
to be filtered by the data owner (who is in charge of enforcing the access control policy), a solution
that however is not applicable in a real life scenario. More recent researches [70, [102] have
addressed the problem of enforcing selective access on outsourced encrypted data by combining
cryptography with authorizations, thus enforcing access control via selective encryption. Basically,
the idea is to use different keys for encrypting different portions of the database. These keys are
then distributed to users according to their access rights.

The naive solution for enforcing access control through selective encryption consists in using a
different key for each resource in the system, and in communicating to each user the set of keys
associated with the resources she can access. This solution correctly enforces the policy, but it
is very expensive since each user needs to keep a number of keys that depends on her privileges.
That is, users having many privileges and, probably, often accessing the system, will have a greater
number of keys than users having a few privileges and, probably, accessing only rarely the system.
To reduce the number of keys a user has to manage, access control mechanisms based on selective
encryption exploit key derivation methods. A key derivation method is basically a function that,
given a key and a piece of publicly available information, allows the computation of another key.
The basic idea is that each user is given a small number of keys from which she can derive all the
keys needed to access the resources she is authorized to access.

To the aim of using a key derivation method, it is necessary to define which keys can be derived
from another key and how. Key derivation methods proposed in the literature are based on the
definition of a key derivation hierarchy. Given a set of keys K in the system and a partial order
relation < defined on it, the corresponding key derivation hierarchy is usually represented as a pair
(K,=), where Vk;, k; € K, kj < k; iff k; is derivable from k;. Any key derivation hierarchy can be
graphically represented through a directed acyclic graph, having a vertex for each key in K, and a
path from k; to k; only if k; can be derived from k;. Depending on the partial order relationship
defined on K, the key derivation hierarchy can be: a chain (i.e., < defines a total order relation);
a tree; or a directed acyclic graph (DAG). The different key derivation methods can be classified
on the basis of the kind of hierarchy they are able to support, as follows.

o The hierarchy is a chain of vertices [85]. Key k; of a vertex is computed on the basis of key
k; of its (unique) direct ancestor (i.e., k; = f(k;)) and no public information is needed.

26 2. Related work

o The hierarchy is a tree [54./85, 86]. Key k; of a vertex is computed on the basis of key k; of its
(unique) parent and on the publicly available label I; associated with k; (i.e., k; = f(k;,;)).

o The hierarchy is a DAG [6, 18, 31, 167,69, 87, 91]. Since each vertex in a DAG can
have more than one direct ancestor, key derivation methods are in general more complex
than the methods used for chains or trees. There are many proposals that work on DAGs;
typically they exploit a piece of public information associated with each vertex of the key
derivation hierarchy. In [8], Atallah et al. introduce a new class of methods that maintain a
piece of public information, called token, associated with each edge in the hierarchy. Given
two keys, k; and k; arbitrarily assigned to two vertices, and a public label [; associated with
k;, a token from k; to k; is defined as t; j=k; & h(k;,l;), where & is the n-ary xor operator
and h is a secure hash function. Given ¢; ;, any user knowing k; and with access to public
label [;, can compute (derive) k;. All tokens t; ; in the system are stored in a public catalog.

It is important to note that key derivation methods operating on trees can be used for chains of
vertices, even if the contrary is not true. Analogously, key derivation methods operating on DAGs
can be used for trees and chains, while the converse is not true.

Key derivation hierarchies have also been adopted for access control enforcement in contexts
different from data outsourcing. For instance, pay-tv systems usually adopt selective encryption
for selective access enforcement and key hierarchies to easily distribute encryption keys [12, 79,
[100]. Although these applications have some similarities with the DAS scenario, there
are important differences that do not make them applicable for data outsourcing. First, in the
DAS scenario we need to protect stored data, while in the pay-tv scenario streams of data are the
resources that need to be protected. Second, in the DAS scenario key derivation hierarchies are
used to reduce the number of keys each user has to keep secret, while in the pay-tv scenario a key
derivation hierarchy is exploited for session key distribution.

The main problem any solution adopting selective encryption suffers from is that they require
data re-encryption for policy updates, thus causing the data owner’s intervention any time the
policy is modified. The selective encryption solution proposed in Chapter[3 is organized to both
reduce the client burden in data access and the data owner intervention in policy updates.

2.8 Safe data integration

Data outsourcing scenarios typically assume data to be managed by a unique external server, man-
aging sensitive information. As already noted for solutions combining fragmentation and encryption
for privacy purposes, data may also be stored at different servers. Furthermore, emerging scenarios
often require different parties to cooperate with other parties to the aim of sharing information and
perform distributed computations. Cooperation for query execution implies data to flow among
parties. Therefore, it is necessary to provide the system with solutions able to enforce access con-
trol restrictions in data exchange for distributed query evaluation. Indeed, classical works on the
management of queries in centralized and distributed systems 26, 64, [101] cannot
be exploited in such a scenario. These approaches in fact describe how efficient query plans can be
obtained, but do not take into consideration constraints on attribute visibility for servers. However,
in light of the crucial role that security has in the construction of future large-scale distributed
applications, a significant amount of research has recently focused on the problem of processing
distributed queries under protection requirements. Most of these works 166, 75]

2.9. Chapter summary 27

are based on the concept of access pattern, a profile associated with each relation/view where
each attribute has a value that may either be 7 or o (i.e., input or output). When accessing a
relation, the values for all 7 attributes must be supplied, to obtain the corresponding values of
o attributes. Also, queries are represented in terms of Datalog, a query language based on the
logic programming paradigm. The main goal of all these works is that of identifying the classes of
queries that a given set of access patterns can support; a secondary goal is the definition of query
plans that match the profiles of the involved relations, while minimizing some cost parameter (e.g.,
the number of accesses to data sources). In Chapter[5, we propose a complementary approach
to access patterns that can be considered a natural extension of the approach normally used to
describe database privileges in a relational schema; our approach introduces a mechanism to define
access privileges on join paths; while access patterns describe authorizations as special formulas in
a logic programming language for data access. Also, the model presented in Chapter [5] explicitly
manages a scenario with different independent subjects who may cooperate in the execution of a
query, whereas the work done on access patterns only considers two actors, the owner of the data
and a single user accessing the data.

In [80], the authors propose a model based on the definition of authorization views that implic-
itly define the set of queries that a user can view. A query is allowed if it can be answered using
only the information in the authorization views regulating the system. An interesting advantage
of this model is the exploitation of referential integrity constraints for the automatic identification
of security compliance of queries with respect to views. It is interesting to note that the approach
in operates at a low level since it analyzes the integration with a relational DBMS optimizer
and focuses on the consideration of “instantiated” queries (i.e., queries that present predicates
that force attributes to assume specific values) aiming at evaluate compatibility of the instantiated
queries with the authorized views. The approach proposed in Chapter|5 operates at a higher level,
proposing an overall data-model characterizing views and focusing on the data integration scenario
at a more abstract level.

Sovereign joins [3] represent an interesting alternative solution for secure information sharing.
This method is based on a secure coprocessor, which is involved in query execution, and exploits
cryptography to grant privacy. The advantage of sovereign joins is that they extend the plans
that allow an execution in the scenario we present; the main obstacle is represented by their high
computational cost, due to the use of specific asymmetric cryptography primitives, that make them
currently not applicable when large collections of sensitive information must be combined.

2.9 Chapter summary

Database outsourcing is becoming an emerging data management paradigm that introduces many
research challenges. In this chapter, we focused on the solutions known in the literature for solving
problems related to query execution and access control enforcement. For query execution, different
indexing methods have been discussed. These methods mainly focus on supporting specific kind
of queries and on minimizing the client burden in query execution. Fragmentation has also been
proposed as a method for reducing encryption and improving query execution performance. Access
control enforcement is instead a relative new issue for the DAS scenario and has not been deeply
studied. The most important proposal for enforcing access control on outsourced encrypted data
is based on selective encryption and key derivation strategies. Finally, the evaluation of queries
when outsourced data are distributed at different servers requires a deeper collaboration among

28 2. Related work

servers as well as mechanisms regulating the exchange of data among the collaborating parties.
This problem has been addressed in some proposals that are based on the access pattern concept.

In the following of this thesis, we will analyze more in depth the access control, proposing a new
mechanism based on selective encryption, and we will study a solution to the well known problem
of dynamically manage access control updates. We will also focus on the usage of fragmentation for
reducing encryption, trying to overcome the limitations of the proposal in [2]. Furthermore, we will
address the problem related to the execution of queries on distributed data, modeling authorized
data flows among involved parties in a simple while powerful manner.

3

Selective encryption to enforce access control

Data outsourcing is emerging today as a successful paradigm allowing users and organizations to
exploit external services for the distribution of resources. A crucial problem to be addressed in
this context concerns the enforcement of selective authorization policies and the support of policy
updates in dynamic scenarios.

In this chapter, we present a novel solution for the enforcement of access control and the
management of its evolution. Encryption is the traditional way in which a third party can be
prevented from accessing information it would have otherwise access to, either because it controls
a channel transmitting it or because it reads its stored representation. Our proposal is based on
the application of selective encryption as a means to enforce authorizations. Also, the model here
proposed represents a first solution for efficiently managing policy updates, limiting the adoption
of expensive re-encryption techniques.

3.1 Introduction

Contrary to the vision of a few years ago, where many predicted that Internet users would have in a
short time exploited the availability of pervasive high-bandwidth network connections to activate
their own servers, users are today, with increasing frequency, resorting to service providers for
disseminating and sharing objects they want to make available to others.

The continuous growth of the amount of digital information to be stored and widely distributed,
together with the always increasing storage, support the view that service providers will be more
and more requested to be responsible for the storage and the efficient and reliable distribution
of content produced by others, realizing a “data outsourcing” architecture on a wide scale. This
important trend is particularly clear when we look at the success of services like YouTube, Flickr,
Blogger, MySpace, and many others in the “social networking” environment.

When storage and distribution do not involve publicly releasable objects, selective access tech-
niques must be enforced. In this context, it is legitimate for the data owner to demand the data
not to be disclosed to the service provider itself, which, while trustworthy to properly carry out
the object distribution functions, should not be allowed access to the object content.

30 3. Selective encryption to enforce access control

The problem of outsourcing object management to a “honest-but-curious” service has recently
received considerable attention by the research community and several advancements have been
proposed. The different proposals require the owner to encrypt the data before outsourcing them
to the remote server. Most proposals assume that the data are encrypted with a single key only [24,
155 [58]. In such a context, either authorized users are assumed to have the complete view on the
data or, if different views need to be provided to different users, the data owner needs to participate
in the query execution to possibly filter the result computed by the service provider.

A relatively limited research effort has been dedicated to the integration of access control and
encryption. A traditional observation of the community working on access control is indeed that
the two concepts have to be carefully kept distinct, following the classical principle of “Separation
between policy and mechanism”. Cryptography is traditionally a “mechanism” for the protection
of information, whereas access control focuses on the models and solutions for the representation
of “policies”. While the separation between authorization-based access control and cryptographic
protection has been beneficial, we maintain that in the data outsourcing scenario such a combina-
tion can prove successful.

In this chapter we present an approach merging permissions and encryption and allowing access
control to be outsourced together with the data. The significant advantage is that the data owner,
while specifying the policy, need not to be involved in its enforcement. The owner only defines
access permissions and generates the corresponding encryption keys, tuning the protection on
sensitive data. To give users different access rights, all the owner has to do is to ensure that each
user can compute the right set of decryption keys needed to access the objects she is authorized
to see.

The idea of using different encryption keys for different objects is in itself not new [12,70,79,94],
but the problem of applying it in the data outsourced scenario introduces several challenges that
have not been investigated in previous proposals. First of all, it is desiderable to define an approach
to generate and distribute to each user a single encryption key, supporting fast and secure derivation
of the set of keys needed to access the set of data the user is authorized to access. Our basic
technique fulfills this requirement and is independent from any specific data model; also, it does
not rely on any specific authorization language, as the translation of the access control policy into
a key derivation scheme is completely transparent to the owners.

Building on the base model we propose a two-layer approach to enforce selective encryption
without requesting the owner to re-encrypt the objects every time there is a change in the autho-
rization policy. The first layer of encryption is applied by the data owner at initialization time
(when releasing the data for outsourcing), the second layer of encryption is applied by the service
provider itself to take care of dynamic policy changes. Intuitively, the two-layer encryption allows
the owner to outsource, besides the object storage and dissemination, the authorization policy
management, while not releasing data to the provider.

Finally, we provide a characterization of the different views of the objects by different users
and characterize potential risks of information exposures due to dynamic policy changes. The
investigation allows us to conclude that, while an exposure risk may exist, it is identifiable. This
allows the owner to address the problem and minimize it at design time.

An important strength of our solution is that it does not substitute the current proposals [35,
(58], rather it complements them, enabling them to support encryption in a selective form and
easily enforce dynamic policy changes.

3.2. Relational model 31

3.1.1 Chapter outline

The remainder of this chapter is organized as follows. Section presents preliminary concepts
on relational databases that will be used in the following of the thesis. Section proposes an
access control system based on selective encryption and key derivation techniques. Section 3.4]
introduces the definition of minimal encryption policy and shows that the problem of computing a
minimal encryption policy is NP-hard, while Section[3.5 presents a heuristic algorithm for solving
this problem in polynomial time. Section illustrates a solution for efficiently manage policy
updates in the model previously introduced. Section 3.7/ proposes a solution based on two layers of
encryption for managing policy updates without resorting to re-encryption. Section[3.8 illustrates
the management of policy updates in this scenario. Section [3.9] presents an evaluation of the
collusion risk to which data are exposed. Section[3.10] presents the experimental results obtained
by the implementation of the heuristic algorithm proposed for computing a minimal encryption
policy. Finally, Section presents our concluding remarks.

3.2 Relational model

In the rest of this thesis, for simplicity, we will refer our discussion to the well known relational
database model, while noting that all the discussions and results proposed also apply to other
models (e.g., XML). We note also that the emphasis on relational databases must not be considered
a limitation. First, relational database technology currently dominates the management of data
in most scenarios where collections of sensitive information have to be integrated over a network;
even if a system offers access to the data using Web technology, the data offered by the system
are extracted from a relational database and a description of the access policy in terms of the
underlying relational structure offers a high degree of flexibility. Second, for integrated solutions
based on Web technology, particularly systems relying on the use of Web services, it is always
possible to model the structure of the exported data in terms of a relational representation, and in
this situation a description of the access policy according to our model, rather than using a policy
description on services invocations, typically provides a more robust and flexible identification of
the security requirements of the application.

3.2.1 Basic concepts and notation

We use the standard notations of the relational database model. Formally, let A4 be a set of
attributes and D be a set of domains. At the schema level, a relation is characterized by a name
R and a set {ay, ..., a,} of attributes, where each «; is defined on a domain D; € D,i =1,...,n.
Notation R(ay,...,a,) represents a relation schema R over the set {ay,...,a,} of attributes; R.x
refers to the set {a1, ..., an} of attributes in the relation. At the schema level, a database is
characterized by a name R and a set {Ry,...,R,,} of relation schemas. At the instance level, a
relation r over schema R(a1,...,a,) is a set of tuples over set {aq,...,a,}. A tuple ¢t over a set of
attributes {a1,...,a,} is a function that associates with each attribute a; a value v € D;. Given
an attribute ¢ and a set A of attributes, t[a] denotes the value of attribute a in ¢ and ¢[A] the
sub-tuple composed of all values of attributes in A.

Each relation has a primary key which is the attribute, or the set of attributes, that uniquely
identifies each tuple in the relation. Given a relation R;, K; C R;.x denotes R;’s primary key
attributes. Primary key attributes cannot assume NULL values and two tuples in the relation

32 3. Selective encryption to enforce access control

cannot assume the same value for the primary key. This latter condition implies the existence
of a functional dependency between the primary key of a relation and any other attribute in the
relation. Given a relation R(a1,...,a,) and two non-empty subsets A; and A; of the attributes
{a1,...,a,}, there is a functional dependency on R between A; and A; if for each pair of tuples
t;, t,, of r with the same values on attributes in A;, ¢; and ¢, have also the same values on
attributes in A;. Without loss of generality, we assume that only functional dependencies given
by the primary key hold in the relations. This assumption does not limit the applicability of our
solution since it is similar to the common database schema requirement that the relations satisfy
the Boyce-Codd Normal Form (BCNF), to avoid redundancies and undesirable side-effects during
update operations, and it is usually achievable using adequate decomposition procedures [49].

The primary key K; of a relation R; can also appear, or more precisely, be referenced by a set
of attributes F'Kj, in another relation R;. In such a case, FKj, called foreign key, can assume only
values that appear for K; in the instance of R;. This is formalized by the definition of referential
integrity constraint which, assuming for simplicity absence of NULL values for the foreign key, is as
follows.

Definition 3.1 (Referential integrity). Given two relation schemas R;,R; € R and a set of at-
tributes FK; C Rj.x, there is a referential integrity constraint from FK; to K; if and only if for
any possible instance r; of R; and r; of Rj, Vt; € rj there exists a tuple t; € r; such that t;[FK]

In the following, we use (FKj, K;) to denote a referential integrity constraint between FK; and
K;. Also, T denotes the set of all referential integrity constraints defined over R.

3.3 Access control and encryption policies

Considering the data outsourcing scenario described in Section [2.2, we present a formal model for
representing access control and encryption polices along with the public catalog necessary for users
to compute the encryption keys necessary to access data and interacting with the server.

3.3.1 Access control policy

We assume that the data owner defines a discretionary access control policy to regulate access to
the distributed objects, which may be defined at different granularity (i.e., an object can be a cell,
a tuple, an attribute, or even a whole relation) without the need of any adaptation to the model
proposed in the following, which assumes that each tuple represents a distinct object. Consistently
with the scenario described, we assume access by users to the outsourced objects to be read-only
while write operations are to be performed at the owner’s site (typically by the owner itself).
Permissions that need to be enforced through encryption are of the form (user,object)ﬁ Give a set
U of users and a set O of objects (i.e., resources), we define an authorization policy over U and O
as follows.

Definition 3.2 (Authorization policy). Let U and O be the set of users and objects in the system,
respectively. An authorization policy over U and O, denoted A, is a triple (U, O, P), where P is
a set of permissions of the form (u,o), with uw € U and o € O, stating the accesses to be allowed.

LFor the sake of simplicity, we do not deal with the fact that permissions can be specified for groups of users and
groups of objects. Our approach supports dynamic grouping, thus subsuming any statically defined group.

3.3. Access control and encryption policies 33

01 0203040506070809 o1
AI0OOOOOI1I1O0T1
Bjoo1110011
C/l0oo1110001
D110001111
EO0OO0OO0O0O01111
FIOoooo0o1111

(a) (b)

Figure 3.1 An example of access matrix (a) and authorization policy graph (b)

The set of permissions can be represented through an access matrix M 4, with a row for each user
uel and a column for each object 0€O [84]. Each entry M 4[u,o] is set to 1 if u can access o; 0
otherwise. Given an access matrix M 4 over sets U and O, acl(o) denotes the access control list
of o (i.e., the set of users that can access o).

We model an authorization policy as a directed and bipartite graph G 4 having a vertex for each
user u € U and for each object 0 € O, and an edge from u to o for each permission (u,0) € P to
be enforced. Since our modeling of the problem and its solution will exploit graphs, we explicitly
define G 4 as follows.

Definition 3.3 (Authorization policy graph). Let A = (U, O, P) be an authorization policy. The
authorization policy graph over A, denoted G4, is a graph (Vu, E4), where Vi = U U O and
E4 ={(u,0): (u,0) € P}.

In the following, we will use A, to denote reachability of vertices in graph G 4. Consequently,

we will use u—2+0 and (u,0) € P indistinguishably to denote that user w is authorized to access
object o according to policy A.

It is easy to see that the access matrix M 4 corresponds to the adjacency matrix? of the autho-
rization policy graph G4. Figure[3.1]illustrates an example of authorization policy with 6 users,
9 objects, and 26 permissions, reporting the access matrix and the corresponding authorization
policy graph.

3.3.2 Encryption policy

Our goal is to represent the authorization policy by means of proper object encryption and key
distribution. We assume, for efficiency reasons, to adopt symmetric encryption. A naive solution

2Being the graph bipartite and directed, we consider the adjacency matrix to report only rows and columns that
correspond to users and objects, respectively.

34 3. Selective encryption to enforce access control

to our goal would consist in encrypting each object with a different key and assigning to each user
the set of keys used to encrypt the objects she can access. Such a solution is clearly unacceptable,
since it would require each user to manage as many keys as the number of objects she is authorized
to view.

To avoid users having to store and manage a huge number of (secret) keys, we exploit a key
derivation method. Among all the key derivation methods, the proposal in [8] minimizes the amount
of re-encrypting and re-keying that must be done following any change in the authorization policy.
The method is based on the definition and computation of public tokens. Let K be the set of
symmetric encryption keys in the system. Given two keys k; and k; in K, a token ¢; ; is defined
as t; j=k;j®h(k;,l;), where [; is a publicly available label associated with k;, @ is the bitwise xor
operator, and h is a deterministic cryptographic function. The existence of a public token ¢;
allows a user knowing k; to derive key k;, through token ¢; ; and public label /;. Since keys need to
remain secret, while tokens are public, the use of tokens greatly simplifies key management. Key
derivation via tokens can be applied in chains: a chain of tokens is a sequence t;;...t, ; of tokens
such that ¢. 4 directly follows ¢, ; in the chain only if b = c.

A major advantage of using tokens is that they are public and allow the user to derive multiple
encryption keys, while having to worry about a single one. Exploiting tokens, the release to the
user of a set of keys K = {ky,...,k,} can be equivalently obtained by the release to each user of a
single key k;€ K and the publication of a set of tokens allowing the (direct or indirect) derivation
of all keys kj€ K,j # i. In the following, we use K to denote the set of symmetric keys in the
system, 7 to denote the set of tokens defined in the system, and £ to denote the set of labels
associated with the keys in I and used for computing the tokens in 7.

Since tokens are public information, we assume to store them on the remote server (just like the
encrypted data), so any user can access them. We model the relationships between keys through
tokens allowing derivation of one key from another, via a graph, called key and token graph. The
graph has a vertex for each pair (k,l) denoting key k and corresponding label I. There is an edge
from a vertex (k;, ;) to a vertex (kj,l;) if there exists a token ¢; ; allowing the derivation of k;
from k;. The graph is formally defined as follows.

Definition 3.4 (Key and token graph). Let I be a set of keys, L be a set of publicly available
labels, and T be a set of tokens defined on them. A key and token graph over KC, L, and T, denoted
Gk 1, is a graph (Vic 7, Ex 1), where Vic 7 ={{ki, l;) : k; € IC, l; € L is the label associated with k;}
and E}QT = {(<k‘l, ll>, <k3j, lj>) : ti,j S T}

The graphical representation of keys and tokens nicely captures the derivation relationship
existing between keys, which can be either direct, by means of a single token, or indirect, via a
chain of tokens, corresponding to a path in the key and token graph.

The definition of tokens allows us to easily support the assumption that each user can be
released only a single key and that each object can be encrypted by using a single key. Note that
these are not simplifying or limiting assumptions, rather they are desiderata that we impose our
solution to satisfy. We then require our solution to operate under the following assumption.

Assumption 3.1. Fach object can be encrypted with only one key. Each user can be released only
one key.

We also assume that each key is uniquely identified through the label associated with it. A key
assignment and encryption schema ¢ determines the labels of the keys assigned to users and of
the keys used for encrypting objects and is defined as follows.

3.3. Access control and encryption policies 35

Figure 3.2 An example of encryption policy graph

Definition 3.5 (Key assignment and encryption schema). Let U, O,K,L be the set of users,
objects, keys, and labels in the system, respectively. A key assignment and encryption schema
over U, O, K, L is a function ¢ : U U O — L that associates with each user ue U the label | €
L identifying the (single) key k in K released to her and with each object o€ O the label | € L
identifying the (single) key k in K with which the object is encrypted.

We are now ready to introduce the definition of encryption policy as follows.

Definition 3.6 (Encryption policy). Let U and O be the set of users and objects in the system,
respectively. An encryption policy over U and O, denoted &, is a 6-tuple (U, O, K, L, $,T), where
KC is the set of keys defined in the system, L is the set of corresponding labels, ¢ is a key assignment
and encryption schema, and T is a set of tokens defined on K and L.

The encryption policy can be conveniently represented via a graph by extending the key and
token graph to include a vertex for each user and each object, and adding an edge from each user
vertex u to the vertex (k,l) such that ¢(u)=[and from each vertex (k,) to each object o such
that ¢(0)=I. We can think of the encryption policy graph as a graph obtained by merging G4
with Gi 7, where instead of directly linking each user u with each object o she can access, we pass
through the vertex (k;,l;) such that [;=¢(u), the vertex (k;,l;) such that [;=¢(0), and possibly a
chain of keys/tokens connecting them. The encryption policy graph is formally defined as follows.

Definition 3.7 (Encryption policy graph). Let &€ = (U, O,IC, L, ¢,T) be an encryption policy.
The encryption policy graph over £, denoted Ge, is a graph (Ve, E¢) where:

o Ve =VisrUUUO;

36 3. Selective encryption to enforce access control

o Eg=ExrU{(u,k,1)):uelUNl=0¢(u)} U{({(k,1),0):0€ ONIl=¢(0)},

where Vic 7 and Ex 1 are as in Definition|3.4, that is, Vicr ={(ki, ;) : k; € KA l; € L is the label
assoctated with k;} and Ex 7 = {((ki, l;), (kj, ;) : ti; € T}.

Figure[3.2 illustrates an example of encryption policy graph, where dotted edges represent the
key assignment and encryption schema (function ¢) and solid edges represent the tokens (set 7).

In the following, we will use £, to denote the reachability of vertices in graph G¢ (e.g., Ai>06).
By the definition of tokens, a user can retrieve (via her own key and the set of public tokens) all
the keys of the vertices reachable from the vertex whose label [is equal to ¢(u). The objects
accessible to a user according to an encryption policy are therefore all and only those reachable
from w in the encryption policy graph G¢. Our goal is then to translate an authorization policy A
into an equivalent encryption policy £, meaning that A and £ allow exactly the same accesses, as
formally defined in the following.

Definition 3.8 (Policy equivalence). Let A = (U,O,P) be an authorization policy and € =
U, O,K,L,p,T) be an encryption policy. A and € are equivalent, denoted A = E, iff the following
conditions hold:

15 A
oVYueU,0€O: u—o = u—o

A &
oVYueld,0eO: u—o0o = u—o

For instance, it is easy to see that the authorization policy in Figure[3.1 and the encryption
policy represented by the encryption policy graph in Figurel3.2 are equivalent.

3.3.3 Token management

To allow users to access the outsourced data, a portion of the encryption policy £ must be made
publicly available and therefore stored on the server. The only component of the encryption policy
& that cannot be publicly released is the set K of keys while all the other components can be
released without compromising the protection of the outsourced data. The set 7 of tokens, the set
L of labels, and the key assignment and encryption schema ¢(0) over O are therefore stored on
the server in the form of a catalog composed of two tables: LABELS and TOKENS. Table LABELS
corresponds to the key assignment and encryption schema ¢ over O. For each object o in O, table
LABELS maintains the correspondence between the identifier of o (attribute obj_id) and the label
o(0) (attribute label) associated with the key used for encrypting o. Table TOKENS corresponds to
the set 7 of tokens. For each token ¢; ; in 7, table TOKENS includes a tuple characterized by three
attributes: source and destination are the labels [; and [; associated with k; and k;, respectively,
and token_value is the token value computed as t; j=k;®h(k;,l;). Figure [3.3 illustrates tables
LABELS and TOKENS corresponding to the encryption policy represented in Figure[3.2. Note that
the information about the key assignment and encryption schema ¢(u) over U does not need to be
outsourced since each user knows the label associated with her key.

Whenever a user wishes to access an object o, she queries the catalog to follow a chain of tokens
that, starting from her own key k, allows the user to derive the key associated with the object.
Figure[3.4] illustrates the algorithm that receives as input the object identifier o, the key k of u,
and the label ¢(u) associated with k, and computes the key kgest with which object o is encrypted.
The algorithm is basically composed of two steps.

3.3. Access control and encryption policies 37

LABELS TOKENS

obj_id | label source | destination | token_value
01 7 l1 l12 k12®h(k1,l12)
02 ls I l13 k13®h(k1,l13)
03 lg I l1s k15®h(k1,l15)
04 10 I2 lg ko®h(k2,l9)
05 l11 l2 l1o k10@h(k2,l10)
06 l12 l2 l11 k11@h(ka,l11)
o7 l13 l2 l14 k14@h(ka2,l14)
08 l14 l2 l15 k15@h(ka,l15)
09 l15 I lg ko®h(ks,lg)
I3 l1o k10®h(k3,l10)

I l11 k11@h(k3,l11)

I3 l1s k15@h(ks,l15)

ly Iz kr@h(ka,l7)

lg Is kg®h(ka,lg)

la l12 k12@h(ka,l12)

Iy l13 k13@h(ka,113)

la l14 k14®h(ka,l14)

n lis k15®h(ka,li5)

I5 l13 k12®h(ks,l12)

l5 l14 k13@h(ks,113)

I5 l1s k14@h(ks,l14)

ls l15 k15@h(ks,l15)

lg l12 k12@h(ke,l12)

lg l13 k13@h(ke,l13)

le l14 k14@h(ke,l14)

lg l1s k15®h(ke,l15)

Figure 3.3 Catalog for the encryption policy represented in Figure[3.2]

The first step is performed server-side and consists in executing function FindPath that, given
a label ¢(u) and an object o, retrieves the shortest token chain from ¢(u) to ¢(o) by querying
table TOKENS. Function FindPath first determines ¢(o) by querying table LABELS and then
computes the shortest path in the key and token graph through a shortest path algorithm (an
improved version of Dijkstra working on DAGs), which exploits the topological order of vertices.
The function then builds backward the path from current=¢(0) to ¢(u). At each iteration of the
while loop, the function follows pred[current], which is an array that contains the label of the
predecessor of vertex current in the path previously computed, and adds to stack chain the token
in TOKENS from pred[current] to current.

The second step is evaluated client-side and consists in deriving keys following the chain of
tokens (if not empty) returned by FindPath and stored in stack chain, and terminating with
the computation of the key used for encrypting object o. For instance, consider the catalog in
Figure and suppose that C, with ¢(C) = I3, wants to access o4. Function FindPath(ls,04)
first queries table LABELS for retrieving the label associated with object o4, which is ¢(04) = 110,
and then finds the shortest path from I3 to [1¢9. The returned chain is composed of one token only,
corresponding to tuple (I3,l10,k10Dh(ks,l10)) of table TOKENS. The algorithm then derives key k1
(i.e., the key used for encrypting o4) through user’s secret key ks and the unique token extracted
from chain.

38 3. Selective encryption to enforce access control

INPUT

object o to be accessed
user’s key k

label ¢(u) of the user’s key

OouTPUT
key kgest with which o is encrypted

MAIN

/* server-side query */

chain := FindPath(¢(u),0)

/* client-side computation */

ksource := k

if chain # 0 then /* user u is authorized to access o */
t := popr(chain)

repeat
kdest 1= t[token_value]®h(ksource,t[destination])
ksource = Kdest

t := por(chain)
until {=NULL
return(kgest)

FINDPATH(from,o)
Let t € LABELS : t[obj_id]=o0
to := t[label]
Topologically sort Vi 7 in Gx, 1
for each veVx, 7 do

dist[v] := oo

pred[v NULL
dist[from] := 0
for each v; Vi 7 do /* visit vertices in topological order */

for each (v;,v;)€Ex, 7 do /* the weight of each arc is 1 */

if dist[v;]>dist[v;]+1 then
dist[v;] := dist[v;]+1
pred[v;] := v;

chain := ()
current := to
while current#from A current#NULL do

Let t € TOKENS : t[source]=pred[current] A t[destination]=current

PUSH(chain,t)

current := pred|[current)
if current=NULL then

return(f)
else
return(chain)

Figure 3.4 Key derivation process

3.4 Minimal encryption policy

A straightforward approach for translating an authorization policy A into an equivalent encryption
policy £ consists in associating with each user a different key, encrypting each object with a different
key, and producing and publishing a token ¢, , for each permission (u,0) € P. The encryption
policy graph in Figure[3.2]has been generated by translating the authorization policy in Figure 3.1]
with this approach. While simple, this translation generates as many keys as the number of users
and objects, and as many tokens as the number of permissions in the system. Even if tokens, being
public, need not to be remembered or stored by users, producing and managing a token for each
single permission can be unfeasible in practice. Indeed, each access to an encrypted object requires
a search across the catalog (see Section and therefore the total number of tokens is a critical

3.4. Minimal encryption policy 39

Figure 3.5 An example of encryption policy graph over {A, B,C, D}

factor for the efficiency of accesses to remotely stored data.

This simple solution can be improved by grouping users with the same access privileges and
by encrypting each object with the key associated with the set of users that can access it. To this
purpose, we can exploit the hierarchy among sets of users induced by the partial order relation-
ship based on set containment (C) to create an encryption policy graph Ge=(Vg,Eg), with Ve=
Vic,r UU U O, where Vi 7 includes a vertex for each possible subset U of U, and Eg¢ includes:

o an edge (v;,v;) for each possible pair of vertices v;,v;€Vic,7 such that the set U; of users
represented by v; is a subset of the set U; of users represented by v; and the containment
relationship is direct;

o an edge (u;,v;) for each user u; €U such that v;€Vi 7 and the set of users represented by v;
is {u; };

o an edge (vj;,05) for each object 0,€0 such that v;€Vi 7 and the set of users represented by
v; is acl(oy).

As an example, consider the portion of the authorization policy in Figure[3.1] that is defined
on the set {A, B, C, D} of users. Figure[3.5 illustrates the encryption policy graph over {A,
B, C, D} defined as previously described, where each vertex v; is marked with the set of users,
denoted v;.acl, that represents. It is interesting to note that the subgraph induced by Vi 7 has
the particularity of being a n-stratified graph, where n is the number of users in the system (i.e.,
n =|U|). Each strata, which we call level, contains all vertices that represent a set of users with
the same cardinality. For instance, in the encryption policy graph in Figure/3.5/the vertices at level
1 are vy, v2, vs, and vy4. In the following, the level of a vertex v € Vic 7 will be denoted level(v),
equal to |v.acl|.

40 3. Selective encryption to enforce access control

By assigning to cach vertex v € Vi 7 of the graph a pair (v.key,v.label), corresponding to a
key and label, the authorization policy can be enforced by encrypting each object with the key
of the vertex corresponding to its access control list (e.g., object o5 should be encrypted with
the key associated with the vertex representing {B, C'}) and by assigning to each user the key
associated with the vertex representing the user in the graph. This means that the encryption
policy corresponding to this graph is such that the sets K and £ of keys and labels, respectively,
include all keys and labels associated with vertices in Vi 7. The key assignment and encryption
schema ¢ is such that for each user u € U, ¢p(u) = v.label, where v is the vertex representing
the user, (i.e., v.acl = {u}) and for each object 0 € O, ¢(0) = v.label, where v is the vertex
representing acl(o;) (i.e., v.acl = acl(o;)). Finally, for each edge (v;,v;) in Eg, with v;,v; € Vic 7,
there is a token in 7" that allows the derivation of key v;.key from key v;.key.

The advantage of this solution, with respect to the trivial one above-mentioned, is that poten-
tially a key can be used to encrypt more than one object. The disadvantage is that it defines more
keys than actually needed and requires the publication of a great amount of information on the
remote server, thus causing an expensive key derivation process at the user-side. For instance, in
the encryption policy graph in Figure[3.5 vertex vig is not need for enforcing the authorization
policy since its key is not used for encrypting any object. The presence of such a vertex only
increases the size of table TOKENS stored on the server without giving any benefit. We are then
interested in finding a minimal encryption policy equivalent to a given authorization policy and
that minimizes the number of tokens to be maintained by the server.

Definition 3.9 (Minimal encryption policy). Let A = (U, O, P) be an authorization policy and
E=U,0,K,L,$,T) be an encryption policy such that A= E. & is minimal with respect to A iff
AE =UO0K L ¢ T such that A= &' and |T'| <|T|.

Given an authorization policy A, different minimal encryption policies may exist and our goal
is to compute one of them, as stated by the following problem definition.

Problem 3.1 (Min-EP). Given an authorization policy A = (U, O, P), determine a minimal
encryption policy € = U,O0,K, L, $,T).

Unfortunately, it turns out that Problem [3.1 is NP-hard, as the following theorem states.
Theorem 3.1. The Min-EP problem is NP-hard.

Proof. The considered problem is NP-hard since it can be reduced to the Minimum Set Cover
(MSC) problem, which can be formulated as follows: given a universal set Uset= {aq,...,a,} and
a set of subsets of Uset, S = {S1,...,Sn}, find the smallest subset C of S such that U:il S; €
C =Uset.

Given a universal set Uset and a set S of its subsets, we define a corresponding authorization
policy A = (U, O, P) in polynomial time. For each item a; in Uset, there is a user u; in U. For each
subset S = {aj1,...,a5m,} in S, there is an object o; with acl(0;)=S; and a set R; of m; —1
objects ojk, k= 1,...,m; — 1, with acl(o; x)={aj1,...,a;x}. Finally, a further object o, with
acl(oy)="Uset is added to O.

As an example, let Uset={A,B,C,D,E} and § = {S = {A,B,C},S2 = {B,D},S; =
{B,D,E}}. The corresponding authorization policy is characterized by 5 users, A, B, C,
and D. Initially, 3 objects, o1 with acl(o1)={A, B,C}, oy with acl(o2)={B,D}, and o3
with acl(o3)={B,D,E}, are added to O, followed by o011 with acl(o11)={A}, 012 with
acl(o1,2)={A, B}, and 091 with acl(01,1)={B}, since duplicates are removed.

3.4. Minimal encryption policy 41

An encryption policy E=(U, O, K, L, ,T) equivalent to A is characterized by a key and token
graph with a vertex for each user, which key is known to the user itself, and a vertex for each acl
value, which key is used to encrypt the objects characterized by the represented acl. Therefore,
there is a path in the graph from each vertex representing a user u to each vertex representing
an acl value containing w. To this purpose, each vertex v€Gx 7, besides vertices v such that
¢(u)=v.label, must have at least two incoming edges in the graph (i.e., tokens). Specifically, the
staring point of these tokens must cover all users represented by v. By construction, for each
vertex v representing a set {uy, ..., ug} of user, but the vertex representing U, there is a vertex v’
representing {u1,...,ur_1}. Therefore, v is covered by v’ and with the vertex representing {uy}.
The encryption policy minimal with respect to 7 is the encryption policy minimizing the number
of incoming tokens in vertex v, representing U, since the addition of vertices would not produce
benefits.

The solution to the corresponding minimum set covering problem is obtained from the solution
to the corresponding Min-EP problem as follows. For each edge (v,v;) ending in v, v can
either represent a subset of & belonging to & or not. In the latter case, v is substituted with its
nearest descendant representing a subset belonging to S. Such a descendant must exist since, by
construction, we generate additional vertices representing only subsets of items appearing in S.
Since the set of direct ancestors of v represents a cover for U, then the subsets they represent are
a minimum set cover for Uset. O

We then propose a heuristic approach for solving Problem [3.1] that tries to reduce the user’s
overhead in deriving keys through a simplification of the encryption policy graph that consists in
removing non necessary vertices, while ensuring a correct key derivability. A further important
observation is that, beside the vertices needed for the enforcement of the authorization policy, other
vertices can be included if they are useful for reducing the size of the catalog, even if their keys are
not used for encrypting objects. We now discuss more in the details these two basic observations.

3.4.1 Vertices and edges selection

From the previous discussion, it is immediate to see that the vertices in Vic 7 strictly needed
for the enforcement of the authorization policy are the vertices representing:) singleton sets of
users, whose keys are needed to derive all the other keys used for decrypting objects in the users’
capabilities; and i) the acls of the objects, whose keys are needed for decrypting such objects. In
the following, we refer to these vertices as material. The material vertices must then be connected
in the graph in such a way that each user u € U is able to derive the keys of all objects she is
entitled to access. This means that the encryption policy graph must include at least one path from
the vertex v; representing user u (i.e., vertex v; such that v;.acl = {u}) to all material vertices v;
such that u€v;.acl. Since our main goal is to keep at minimum the number of tokens managed by
the server and since each edge in the encryption policy graph corresponds to a token, our problem
is then to connect the material vertices, thus creating an encryption policy equivalent to a given
authorization policy and with the minimum number of edges/tokens. To solve this problem, we
observe that the direct ancestors of a vertex must form a set covering for it. Indeed, since for
each user u the encryption policy graph must include a path from the vertex representing it and
all vertices v; such that u€v;.acl and, by construction, there is an edge (v;,v;) iff v;.acl C v;.acl,
vertex v; must have at least a direct ancestor vy, such that v € vi.acl. An encryption policy graph

42 3. Selective encryption to enforce access control

corresponding to an encryption policy equivalent to a given authorization policy satisfies therefore
the following local cover property.

Theorem 3.2 (Local cover). Let A be an authorization policy and £ be an encryption policy. If
€ is equivalent to A, the encryption policy graph Ge= (Ve ,Eg) over &, with Ve= Vicr UU U O,
satisfies the local cover property stating that Yv; € Vic 7, with |v;.acl|> 1, v;.acl = Uj {vj.acl :
(’Uj,Ui) S Eg}.

Proof. By induction, we prove that Vv; € Vic 7 the local cover property is satisfied.

o For all v; such that |v;.acl|= 1, v; is correctly covered by definition.

o Let us suppose that for all v; such that |v;.acl|< n, v; is correctly covered. We now prove
that also all vertices v; with |v;.acl|=n + 1 are correctly covered.

By definition, V(u, R) € p, ui»R, that is there exists a path in Gg from u to R. This means
that there exists a path from the vertex v;, such that v;.acl={u}, to the vertex v;, such
that vj.acl=acl(R). Therefore, there exists an edge (v,v;) € Ex 7 such that uev.acl. Also,
by construction, v.aclCv;.acl. As a consequence |v.acl|< n. By hypothesis, v is correctly
covered. We then conclude that v; is correctly covered.

O

Our approach to create an encryption policy graph works bottom up, starting from the vertices
at the highest level to the vertices at the lowest level. For each vertex v at level [, its possible
direct ancestors are first searched among the material vertices at level [— 1, then at level | — 2,
and so on, until all the material vertices directly connected to v form a set covering for v. The
rationale behind this bottom up strategy is that, in principleﬁ , by searching first among the vertices
at higher levels, the number of direct ancestors and therefore of edges for connecting them to v
should be less than the number of direct ancestors needed for covering vertex v when such vertices
are chosen according to other approaches. As an example, consider the authorization policy in
Figure[3.1l Here, we have ten material vertices representing the following sets of users: {A}, {B},
{C}, {D}, {E}, {F}, {BC}, {ADEF}, {BDEF}, and {ABCDEF?}. Consider now the material
vertex representing {ABCDEF} and suppose to compute a set covering for it by choosing the
appropriate direct ancestors from the given material vertices. If we apply the bottom up strategy
previously described, the possible direct ancestors for {ABCDEF'} are first chosen among the
vertices at level: 5, which is empty; 4, where there are two material vertices (i.e., {ADEF},
{BDEF}) that can be chosen as direct ancestors for {ABCDEF'}; 3, which is empty; and then
2, where vertex {BC'} is chosen. The final set covering for {ABCDEF} is {{ADEF}, {BDEF},
{BC'}}, which requires three edges for connecting the vertices in the set covering to the vertex
representing {ABCDEF}. Another possible set covering for {ABCDEF} is, for example, {{A},
{B}, {C}, {D}, {E}, {F}}, which instead requires six edges.

This simple approach for computing a set covering may however introduce redundant edges.
For instance, with respect to the previous example, since {ADEF} and {BDEF} are selected
before {BC'}, it is easy to see that the edge from the vertex representing { BDEF} to the vertex

3Since this bottom up strategy is a heuristic that we apply for solving a NP-hard problem, the solution computed
through it may not be always the optimal solution. However, we will see in Section[3.10/that this heuristic produces
good results.

3.5. A2& algorithm 43

representing { ABCDEF} is redundant since each user in {BDEF'} is also a member of at least
one of the other two direct ancestors of the vertex representing { ABCDEF'}. The redundant edges
increase the number of tokens and are not useful for the enforcement of the authorization policy.
We are then interested in computing a non-redundant encryption policy graph defined as follows.

Definition 3.10 (Non-redundant encryption policy graph). Let A = (U, O, P) be an authorization
policy and € = U, O0,K,L,$,T) be an equivalent encryption policy. The encryption policy graph
Ge= (Ve,Eg), with Ve= Vic7U UU O, over € is non-redundant if Yv; € Vic 7, with |v;.acl|> 1,
V(vj,v;) € Eg, 3 u € vj.acl: Y(v,v;) € Eg, with v # v;, u & vy.acl.

Section will present in more details a heuristic algorithm for computing a non-redundant
encryption policy graph equivalent to a given authorization policy.

3.4.2 Vertices factorization

In addition to the material vertices, other vertices can be inserted into the graph whenever they
can reduce the number of tokens in the catalog. Consider, for example, the authorization policy in
Figure[3.1 and, in particular, the two material vertices representing {ADEF} and {BDEF'}. The
sets covering these two material vertices can only be the sets including the vertices representing
singleton sets of users, since there are no material vertices representing subsets of {ADEF'} or of
{BDEF}. The number of edges needed for connecting the vertices in the sets covering to { ADEF'}
and {BDEF} are then eight. Suppose now to add a non material vertex representing { DEF'}.
In this case, the set covering for {ADEF} is {{DEF}, {A}} and the set covering for {BDEF'}
is {{DEF}, {B}}, which require four edges for connecting them to {ADEF} and {BDEF},
respectively, and three edges for covering { DEF'} through {{D}, {E}, {F}} for a total of seven
edges against the eight edges of the previous case. Generalizing, it is easy to see that whenever
there are m vertices v, ..., v, that share n, with n > 2, ancestors vf,..., v}, it is convenient to
factorize the common ancestors by inserting an intermediate vertex v’, with v’.acl={J!"_,v}.acl,
and to connect each vertex v},i =1,...,n, to v/, and v/ to v;,j = 1,...,m, for saving tokens in
the catalog. In this way, the encryption policy graph includes n + m, instead of n - m, edges for
correctly covering vertices vq,...,v,. The advantage may appear small in this example, but the
experiments in Section[3.10 show that this optimization can produce significant gains in scenarios
with complex policies.

The factorization process is enforced during the construction of an encryption policy graph by
applying a bottom up strategy, starting from vertices at the highest level to the vertices at the
lowest level, and by comparing pairs of vertices at each time. The bottom up strategy guarantees
that the vertex added in the graph (if any) will appear at a level lower than the level of the current
pair of vertices and therefore it will be compared to the other vertices in the graph when the vertices
at that level will be analyzed. To limit the number of pairs of vertices analyzed, we consider only
pairs of vertices that have at least one common direct ancestor; the adaptation of the analysis
in [10] demonstrates that it is sufficient to consider these pairs, with a significant reduction in the
number of comparisons.

3.5 A2E algorithm

Our heuristic method for computing a minimal encryption policy is illustrated in Figure[3.6. The
algorithm takes an authorization policy A=(U, O, P) as input and returns an encryption policy £

44 3. Selective encryption to enforce access control

INPUT
authorization policy A=(U,0,P)

ouTPUT
encryption policy £ such that A =&

MAIN

Vi, =10

E)C,T = @

/* Initialization */

ACL := {acl(0):0€O0} U {{u}:ueld}
for acle ACL do

create vertex v

v.acl := acl

v.label := NULL

v.key := NULL

for each u€v.acl do v.counter[u] := 0

V}C,T = V}C,T] {U}
/* Phase 1: cover vertices without redundancies */
for I:=|U|...2 do
for each v;e{v:weVic,r A level(v)=l} do
CoverVertex(v;,v,.acl)
/* Phase 2: factorize common ancestors */
for l:=|U]...2 do
for each v;e{v:wveVik 7 A level(v)=l} do
Factorize(v;)
/* Phase 3: generate encryption policy */
GenerateEncryptionPolicy()

Figure 3.6 Algorithm for computing an encryption policy £ equivalent to A

equivalent to A and that satisfies Definition [3.10. To this purpose, the algorithm first computes
a key and token graph (Vi 7,FEx 7) and then generates the corresponding encryption policy, by
computing the set 7 of tokens and by defining the key assignment and encryption schema ¢. Each
vertex v in Vi 7 is associated with four variables: v.key represents the key of the vertex; v.label
represents the publicly available label associated with v.key; v.acl represents the set of users who
can derive v.key; v.counter[] is an array with one component for each user u in v.acl such that
v.counter|u] is equal to the number of direct ancestors of v whose acl contains user u (as we will
see, this information will be used to detect redundant edges).

The algorithm starts by creating the material vertices and by appropriately initializing the
variables associated with them. The algorithm is logically partitioned in three phases: i) cover
vertices that adds edges to the graph satisfying both local cover (Theorem[3.2) and non-redundancy
(Definition [3.10), i) factorize common ancestors that adds non material vertices for reducing the
number of edges in the graph, and iii) generate encryption policy. We now describe these three
phases more in details.

Phase 1: Cover vertices

To grant local cover and non redundancy in the key and token graph, the algorithm proceeds
bottom up, starting from level [= |U/| to 2, and for each material vertex v at level [, calls procedure
CoverVertex. Procedure CoverVertex takes a vertex v and a set tocover of users, corresponding
to v.acl, as input. The procedure first initializes two local variables: FEadded, representing the set
of edges that need to be added to the graph, is set to the empty set; and [, representing the level
of candidates direct ancestors for v, is set to level(v)—1.

3.5. A2& algorithm 45

COVERVERTEX (v,tocover)
Eadded := ()
1 := level(v) — 1
/* find a correct cover for users in tocover */
while tocover # 0 do
Vi = {viwi € Ve, A level(vy)=l A vi.aclCv.acl}
while tocover # 0 AV, # 0 do
extract v; from V;
if v;.aclNtocover# () then
tocover := tocover \ v;.acl
Eadded := Eadded U {(v;,v)}
for each u€v;.acl do
v.counter[u] := v.counter[u] + 1
l:=1—-1
/* remove redundant edges */
for each (v;,v)€Fadded do
if (Au:u€v;.acl A v.counter[u]= 1) then
Eadded := Eadded \ {(v;,v)}
for each u€v;.acl do
v.counter[u] := v.counter[u] — 1
Ex, 7 = E)C,T U Fadded

Figure 3.7 Procedure for covering material vertices and removing redundant edges

At each iteration of the outermost while loop, the procedure computes the set V; of vertices at
level [whose acl is a subset of v.acl and the innermost while loop checks if there are vertices in
V; that can be covered by v. To this purpose, the procedure randomly extracts a vertex v; from V;
and if v;.acl has at least a user in common with tocover, it removes from tocover the set of users
appearing in v;.acl and adds edge (v;,v) to Eadded. Also, for each user u in v;.acl, the procedure
increases v.counter|u] by one. The innermost while loop terminates when tocover becomes empty
or when all vertices in V; have been processed. Local variable [is then decreased by one and the
process is repeated, until tocover or V; become empty.

The procedure then checks if Fadded contains redundant edges. For each edge (v;,v) in Eadded,
if for all users in v;.acl, v.counter[u] is greater than one (remember that v.counter|u] keeps track
of the number of ancestors of v that include user u in their acls), then edge (v;,v) is redundant and
can be removed from Fadded. If this is the case, for each user u in v;.acl, the procedure decreases
v.counter[u] by one. The set Fadded of non redundant edges is then added to Ex 7.

Phase 2: Factorize acls

As a result of the previous phase, we have a key and token graph that guarantees that each user is
able to derive the keys of the objects she is authorized to access. The goal of this phase is to verify
if it is possible to add some additional vertices to reduce the number of edges in the graph. To this
purpose, the algorithm works bottom up, starting from level | = || to 2. For each vertex v; at
level [, the algorithm calls procedure Factorize on v;. For each vertex v; having at least a common
direct ancestor with v; (first for loop), procedure Factorize first initializes two local variables:
Eadded and Eremoved, representing the set of edges that need to be added to and removed from
the graph, respectively, are both set to the empty set. Procedure Factorize then determines the
set CommonAnc of direct ancestors common to v; and v;. If CommonAnc contains more than
two vertices, it means that v; and v; can conveniently be factorized by a vertex v covering both
v; and v; instead of the vertices in CommonAnc. Vertex v is covered, if it does not satisfy local
cover property, by the vertices in CommonAnc. Therefore, 2 - |CommonAnc| edges are removed

46 3. Selective encryption to enforce access control

FACTORIZE(v;)
for each v;€{v:3v,, (Va,vi)EEK, T A (Va,v)EEx, 7} do /* children of v;’s direct ancestors */
Eadded := 0
Eremoved := ()
CommonAnc := {vs: (va,0;)EEK, T A (va,v;)EEK, 7} /* common direct ancestors */
if |CommonAnc| > 2 then
/* create a new common ancestor for v; and v; */
U := U{va.acl:vg€ CommonAnc}
find the vertex v€Vi 7 with v.acl=U
case v of
#v; N #v;: Fadded := Eadded U {(v,v;), (v,v;)}
for each v, € CommonAnc do
Eremoved := Eremoved U {(vq,v;),(va,v;)}
= v;: Eadded := Eadded U {(vi,v;)}
for each v, € CommonAnc do
Eremoved := Eremoved U {(vq,v;)}
= wj: Eadded := Eadded U {(v;,v;)}
for each v, € CommonAnc do
Eremoved := Eremoved U {(vq,v;)}

UNDEF: create vertex v’
v'.acl == U
v’.label := NULL
v'.key := NULL
for each u€v’.acl do
v’.counter[u] := 0
Vic,r == Vie,r U {v'}
Eadded := Eadded U {(v',v;),(v',v;)}
for each v, € CommonAnc do
Eadded := Eadded U {(vq,v")}
Eremoved := Eremoved U {(va,v;),(va,v;)}
/* update counters */
for each (v;,v)€ Fadded do
for each u€v;.acl do
vy, .counter[u] := vp.counter[u] + 1
for each (v;,v,)€Eremoved do
for each u€v;.acl do
vp.counter|u] := vp.counter[u] — 1
Ex,7 := Ex,7 U Eadded \ Eremoved

Figure 3.8 Procedure for factorizing the common ancestors between vertices

from the graph, while at most 2 4 | CommonAnc| edges need to be added to the graph. Procedure
Factorize computes the union U among the acls associated with vertices in CommonAnc. The
procedure checks if the graph already includes a vertex v whose acl is equal to U and possibly
detects the set of edges that has to be added and removed from the graph. Three cases may then
occur. First, vertex v already exists and coincides neither with v; nor with v;. The two edges
from v to v; and from v to v; are inserted in Fadded, and all edges from the common ancestors
in CommonAnc to v; and to v; are inserted in Eremoved. Second, vertex v coincides with v;
(v;, resp.). The procedure inserts a new edge from v; to v; (from v; to v;, resp.) in Eadded and
all edges from the common ancestors in CommonAnc to v; (v;, resp.) are inserted in Eremoved.
Third, vertex v does not exist in the graph. The procedure creates a new vertex v’ and initializes
v’.acl to U and both v’.label and v'.key to NULL. The new vertex is then inserted in the graph
and the edges from the common ancestors in CommonAnc to v' are inserted in Fadded along with
the two edges from the new vertex v’ to v; and to v;. The edges from all the common ancestors in
CommonAnc to v; and to v; are instead inserted in Eremoved. The procedure then appropriately
updates variables vy,.counter|u] for all edges (v;,vp) in Fadded and Eremoved. Finally, the set

3.5. A2& algorithm 47

ERATEENCRYPTIONPOLICY()
0

]

0

/* generate keys */

for each v € Vi, 7 do
generate key k

GEN
K:
L
7

v.key := k
generate label [
v.label :=1

K:=K U {v.key}
L := L U {v.label}
/* compute tokens */
for each (v;,v;) € Ex,7 do
ti; = vj.key @ h(v;.key,v;.label)
7T :=TU {ti,j}
upload token t; ; on the server by adding it to table TOKENS
/* define key assignment and encryption schema */
for each u € U do
find the vertex v€Vi 7 with v.acl={u}
¢(u) = v.label
for each 0 € O do
find the vertex v€Vi, 7 with v.acl=acl(o)
encrypt o with key v.key
upload the encrypted version oF of o on the server
¢(0) = v.label
update table LABELS on the server

Figure 3.9 Procedure for creating an encryption policy

Ex 7 of edges is updated by adding edges in Fadded and by removing edges in Eremoved.

Phase 3: Generate £

The last phase of the algorithm generates the encryption policy corresponding to the key and
token graph computed during the previous phases. To this purpose, the algorithm calls procedure
GenerateEncryptionPolicy. First, the procedure initializes the set K of keys, the set £ of labels,
and the set 7 of tokens to the empty set. Then, for each vertex v in Vi 7, the procedure generates
akey k and a label and inserts them in IC and £, respectively. Also, for each edge (v;,v;) in Ex 7,
procedure GenerateEncryptionPolicy computes token ¢; ;, which is inserted in 7" and uploaded
on the server by inserting a corresponding tuple in table TOKENS. Finally, the procedure defines
the key assignment and encryption schema ¢ based on the labels previously generated. For each
user u, ¢(u) is defined as the label of the vertex representing the singleton set {u}, and for each
object o, ¢(0) is defined as the label of the vertex representing acl(o) in the graph. Also, each
object o is encrypted with the key of the vertex corresponding to ¢(0) and uploaded on the server;
table LABELS in the catalog is updated accordingly.

Example 3.1. Figure presents the execution, step by step, of the algorithm in Figure[3.6,
applied to the authorization policy in Figurel3.1. The algorithm first generates 10 material vertices:
v1, ..., Vg represent the singleton sets of users A, ..., F, respectively; vy represents BC; vg
represents ADEF'; vg represents BDEF; and vig represents ABCDEF .

Figure[3.10(a) illustrates the key and token graph obtained after the first phase of the algorithm.
Each vertex satisfies the local cover property and the graph does not include redundant edges. As
an example of how this graph has been obtained, consider vertex vig. Procedure CoverVertex first

48 3. Selective encryption to enforce access control

©v10lABCDEF)]

(v5[B)——————>v11[DEF]
(b) Phase 2
LABELS TOKENS
u|p(u) obj_id| label source |destination|token_value

Alvy.label 01 vy4.label v1.label vg.label t1,8
B|va.label 02 v4.label va.label v7.label to7
C'|vs.label 03 v7.label va.label vg.label tag
D|vy.label 04 vr.label v3.label v7.label 1254
E|vs.label 05 v7.label vq.label v11.label ta,11
F|vg.label 06 vg.label v5.label v11.label t5,11
o7 vg.label vg.label v11.label te,11
08 vg.label v7.label v10.label t7.10
09 |v10.label vg.label v10.label 8,10
v11.label vg.label ti11,8
v11.label vg.label ti1,9

(c) Phase 3

Figure 3.10 An example of algorithm execution

inserts in Fadded edges (vs,v10), (v, v10), and (v7,v19). Then, it removes edge (vg, v1p), since all
users in vg.acl can derive vig.key through vy or vg.

Figure [3.10(D) illustrates the graph obtained after the second phase of the algorithm. Note that
the graph has a new vertex, vi1, which is inserted by procedure Factorize since vertices vg and
vy in the graph in Figure!3.10(a) have three common direct ancestors (i.e., vyq, vs, and vg). Here,
material vertices are represented with solid lines, while non material vertices are represented with
dotted lines.

Finally, Figurel3.10(c) illustrates the key assignment and encryption schema for users in U and
tables LABELS and TOKENS uploaded on the server by procedure GenerateEncryptionPolicy.

3.5. A2& algorithm 49

3.5.1 Correctness and complexity

We first introduce some lemmas necessary to prove that the encryption policy created by the
algorithm in Figure is equivalent to a given authorization policy.
First, we prove that users do not share encryption keys.

Lemma 3.1 (User key uniqueness). Given an authorization policy A=(U, O, P), the algorithm
in Figurel3.6 creates a key and token graph Gx 7=(Vi.7,Ex 1) and the corresponding encryption
policy E=U,O0,K, L, ¢, T) such that Vu;,u; €U, i # j = ¢(w;) # d(u;).

Proof. During the initialization phase, for each user u in the system, the algorithm creates a unique
vertex v and assigns {u} to v.acl. Since the algorithm never removes vertices from the graph, when
the algorithm calls procedure GenerateEncryptionPolicy the graph contains one vertex for each
user. Also, since we assume that procedure GenerateEncryptionPolicy correctly generates keys
(i.e., avoiding duplicates), at each iteration of the first for loop the procedure assigns a unique
key and a unique label to each vertex v in the graph, and therefore also to vertices representing
singleton sets of users. The key assignment and encryption schema function ¢ is then defined
based on the keys associated with the vertices representing singleton sets of users. For each user u,
the procedure sets ¢(u) to v.key, where v is the unique vertex in the graph such that v.acl={u}.
Consequently, we have the guarantee that different users are associated with different labels and,
also, with different keys. O

We also need to prove that both Theorem[3.2]and Definition[3.10 are satisfied by the encryption
policy graph generated by the algorithm in Figure[3.6.

Lemma 3.2 (Local cover and non-redundancy). Given an authorization policy A=(U, O, P), the
algorithm in Figure[3.6 creates a key and token graph Gx 7=(Vicr, Ex, 1) and the corresponding
encryption policy E=U, O, K, L, $,T) such that Ge satisfies local cover (Theorem[3.2) and is non
redundant (Definition]3.10).

Proof. We first prove that procedure CoverVertex(v,tocover) terminates and grants both Theo-
rem[3.2 and Definition[3.10l Then, we prove that procedure Factorize(v;) terminates and preserves
both local cover and non redundancy with respect to vertex v.

During the initialization phase, for each material vertex v created, the algorithm sets variable
v.counter|u] to 0 for each user u in v.acl.

Procedure CoverVertex. For each material vertex v; in Vic 7 the algorithm calls procedure
CoverVertex with v; and v;.acl as parameters, respectively.

The procedure is composed of two phases: the first phase finds a correct cover for v, and the
second removes redundant edges.

The first phase is composed of two nested while loops that in the worst case terminate when
variable tocover is empty. Variable tocover initially contains users in v.acl and no user is
inserted in tocover by the procedure. Also, the set of users in v;.acl, where vertex v; is
randomly extracted from the set V; of vertices at level [such that v;.aclCv.acl, is removed
from tocover only if v;.aclNtocover# (). Since [is decreased by one at each iteration of the
outermost while loop, [assumes also the value 1. When [becomes 1, V; contains the set of
vertices v; in Vi 7 such that v;.acl={u;}, for all u; in Y. Since v.aclCU, in the worst case
tocover becomes empty when [= 1 and the two while loops terminate. Since any time v;.acl

50

3. Selective encryption to enforce access control

is removed from tocover an edge (v;,v) is inserted in Fadded (and consequently in Ex 7),
when the two loops terminate (i.e., tocover becomes empty) vertex v is correctly covered.
Indeed, for each user w in v.acl there exists an edge (v;,v) such that u belongs to v;.acl.
Also, for each edge (v;,v) inserted in Eadded, v.counter|u] is increased by one for each u in
v;.acl, meaning that v.counter|u] represents the number of edges (v;,v) in Fadded such that
u belongs to v;.acl.

The second phase is composed of a for each loop that processes each edge (v;,v) in Fadded.
Since the first phase of the procedure terminates, Fadded contains a finite number of edges
and also this second phase terminates. Edge (v;,v) is removed from FEadded (and therefore
not inserted in Ex 7) only if v.counter[u] is greater than 1 for each user u belonging to
v;.acl, since there is at least another direct ancestor v; of v (besides v;) such that u belongs
to vj.acl. When (v;,v) is removed from Eadded, v.counter[u] is decreased by one for each
user u belonging to v;.acl, to keep v.counter[u] consistent with edges in Fadded. Since edge
(vi,v) is not removed if v.counter[u] is equal to 1 for at least a user, local cover of vertex v
is preserved. Also, since all edges incoming in v belong to Fadded and each edge in Fadded
is evaluated by the procedure, Definition [3.10]is satisfied for v.

Finally, Fadded is inserted in Ex 7, which were empty. Therefore both local cover and non
redundancy are satisfied for vertex v.

Procedure Factorize. For each material vertex v; in Vic 7 the algorithm calls procedure Fac-

torize with v; as parameter.

The first for each loop composing the procedure evaluates each vertex v; in Vic 7 having at
least a common direct ancestor with v;. Also, the nested for each loops process each vertex
Vg in the set CommonAnc of the direct ancestors common to v; and v;. Since the number of
vertices in Vic 7 and then also in CommonAnc is finite, the loops terminates. Analogously,
the for each loops operating on Fadded and Eremoved sets of edges terminate, since both
Eadded and Eremoved are initially set to the empty set and the finite for each loops on
vertices in CommonAnc insert edges in the two sets. Given a pair of vertices v; and vy,
procedure Factorize changes the set of direct ancestors of v; and v; iff they have at least
three or more common ancestors. In this case, the edges from the common ancestors, say
U1,. . .,Un, to v; and v; are removed and replaced by two edges from v’ to v; and v;, where v’
is a vertex such that v'.acl = vy.acl U...U vp,.acl. Tt immediately follows that local cover,
limited to vertices v; and v;, is satisfied. The same observation applies to vertex v’, which is
covered by v1,...,v,, that, by definition, form a cover for v’. Note that the same discussion
applies when vertex v’ coincides with v; or v;.

We note here that variables v.counter[u] are updated according to inserted and removed
edges.

We conclude that, since both CoverVertex and Factorize procedures are called on each vertex
v in Vic, 1, Ge satisfies both Theorem [3.2 and Definition O

By combining the results proved in Lemma 3.1] and in Lemma 3.2] we can conclude that the

encryption policy generated by the algorithm in Figure 3.6 is equivalent to a given authorization
policy.

3.5. A2& algorithm 51

Theorem 3.3 (Policy equivalence). Given an authorization policy A = (U, O, P), the algorithm
in Figure[3.6 creates a key and token graph Gx 7=(Vic. 7, Ex,r) and the corresponding encryption
policy E=(U, O, K, L, ¢, T) such that A= E.

Proof.
E=A

Procedure GenerateEncryptionPolicy defines an encryption policy £ that is based on
the key and token graph created by the first two phases of the algorithm in Figure [3.6.
In particular, the procedure defines an encryption policy such that: for each user u, ¢(u)
corresponds to the label of vertex v; representing the singleton set {u} (i.e., v;.acl =
{u}); and for each object o, ¢(0) corresponds to the label of vertex v; representing acl(o)
(i.e., vj.acl = acl(o)). Consider now the encryption policy graph corresponding to the
encryption policy £ created by procedure GenerateEncryptionPolicy, and suppose

that u->0. This is equivalent to say that the key and token graph includes a path
from the vertex v with label equal to ¢(u) to the vertex v; with label equal to ¢(o).
Also, since the key and token graph satisfies Theorem 3.2 (Lemma , we know that u
belongs to v;.acl = acl(o) and therefore the authorization policy A includes permission (u,0).

E=A

Suppose that us0. During the initialization phase, the algorithm inserts in the key and
token graph a vertex for each users in the systems and for each acl value for the objects in the
systems. Therefore, there is a material vertex v; such that v;.acl = {u}, and there is a material
vertex v; such that vj.acl = acl(o) in the key and token graph. Since the algorithm never
removes vertices and it creates a key and token graph that satisfies Theorem[3.2 (Lemmal3.2),
it is immediate to conclude that the key and token graph includes a path from v; to v; and
that the encryption policy graph obtained by defining an encryption policy complementing
the key and token graph, generated by procedure GenerateEncryptionPolicy, includes a
path from u to o.

O

The following theorem proves that the encryption policy generated by the algorithm in Fig-
ure[3.6 presents a total number of keys and tokens that is less than the number of users, resources,
and permissions composing a given authorization policy, thus greatly reducing the overhead on the
users in deriving the keys of the resources they are entitled to access (as also the experiments in
Section [3.10 show).

Theorem 3.4. Given an authorization policy A = (U,O,P), the algorithm in Figure [5.6
creates a key and token graph Gx 1=(Vic1,Ex,1) and the corresponding encryption policy
E=U,0,K, L, 0, T) such that | CUT |[<|[UUOUTP |.

Proof. Since all the sets involved in the union operations are disjoint, we need to prove that
K|+ |T|<|U|+ |0+ |P].

The number of keys created by the algorithm is equal to the number of vertices in the key
and token graph while the number of tokens is equal to the number of edges. With respect to the
vertices, the algorithm creates a vertex for each user in U, for each acl associated with objects in

52 3. Selective encryption to enforce access control

O, plus some additional vertices inserted during Phase 2. Since two or more objects may share the
same acl, it is easy to see that what we need to prove is that the number of vertices inserted in
Phase 2 plus the number of tokens is less than the number of permissions. First, consider the graph
created after Phase 1, where there is no additional vertex besides the material vertices. In this
case, it is easy to see that the number of edges (i.e., tokens) in the graph is less than the number
of permissions. Indeed, if there are m objects that share the same acl that is composed by n users,
the graph will include n tokens instead of n - m tokens. Consider now Phase 2. Here, procedure
Factorize adds a vertex iff the pair of vertices currently analyzed have n > 2 common parents. In
this case, 2-n edges are removed from the graph and at most n + 2 edges are inserted. This means
that at least the number of tokens in the catalog decreases by one and therefore the number of
additional vertices plus the number of tokens remains lower than the number of permissions. [

Finally, we prove that the time complexity of the proposed algorithm is polynomial in time.

Theorem 3.5 (Complexity). Given an authorization policy A = (U,O,P), the algorithm in Fig-
urel3.6 generates an encryption policy € = (U, O, K, L, ¢, T), with A= &, in O((|O|+|Vic 7|*)-|U]).

Proof. The complexity of the algorithm is obtained by evaluating the complexity of the operations
performed during the initialization and of the two phases composing it.

Initialization. The for loop composing the initialization phase requires time proportional to
|[U|+ O] - |U]|, since the inner most for loop has constant cost for vertices representing
singleton sets of users.

Phase 1. The algorithm calls procedure CoverVertex for each material vertex v in Vi 7.
In the worst case, the two nested while loops check all vertices v; in Vi 7 such that
level(v;)<level(v), with a computational cost proportional to | Vic.7 |* - |U].

The following for each loop checks each edge (v;,v)€Fadded and evaluates and possibly
updates the value of variable v.counter|u] for each u belonging to acl(v;). In the worst case,
the cost of this loop is proportional to | Ex 7| - |U|.

Since | Ex 7| is upperbounded by | Vic.7 |* in any graph, the overall complexity of the first
phase of the algorithm is proportional to | Vic.7 |* - [U].

Phase 2. The algorithm calls procedure Factorize for each vertex v; in Vi 7. The first for each
loop checks all vertices with at least a common ancestor with v;, which in the worst case are
all vertices in Vi 7. The procedure then finds the common direct ancestors by considering
the edges incident in v; and v;. Since the maximum number of direct ancestors of a vertex
v; is equal to |v;.acl|, the costs of this operation is proportional to |U/|. The for each loops
nested in the case instruction evaluate all the vertices in CommonAnc, which are at most
|U|. Since both Fadded and Eremoved are filled in by these loops, they contain a number of
elements linear in |U|.

The overall complexity of the second phase of the algorithm is therefore proportional to
| Vier |2 U

3.6. Policy updates 53

Phase 3. The algorithm finally calls procedure GenerateEncryptionPolicy, which is composed
of four for each loops, checking vertices, edges, users, and objects in the order.

The overall complexity of the third phase of the algorithm is therefore proportional to
Vie.r I + U] + 0.

Overall, the time complexity is proportional to (|O] + |Vic.7|?) - [U]. If we assume that all
operations performed by procedures Cover Vertex, Factorize and GenerateEncryptionPolicy
have a constant cost and ¢;q, is the maximum cost, the time complexity is in O(¢ma.((|O] +
Vie,r?) - 1U])) = O((10] + Vie.r P) - [U)). O

3.6 Policy updates

Since the authorization policy is likely to change over time, the corresponding encryption pol-
icy needs to be re-arranged accordingly. The possible policy update operations are: 1) inser-
tion/deletion of a user; 2) insertion/deletion of an object; and &) grant/revoke of an permission.
We note that the insertion/deletion of users has an impact on the encryption policy only when the
user gains permissions. In this case, inserting (deleting, resp.) a user implies granting (revoking,
resp.) all the permissions in which the user is involved. Analogously, the insertion/deletion of
objects has an impact on the encryption policy only when the object is made accessible to users.
Therefore, inserting (deleting, resp.) an object implies granting (revoking, resp.) all the permis-
sions in which the object is involved. For this reason, we focus on the grant and revoke operations.
Also, we assume that each operation always refers to a single user u and a single object o; extension
to sets of users and objects is immediate.

The grant and revoke operations on the authorization policy A are translated into operations
that appropriately update the encryption policy graph, to guarantee that £ is equivalent to A
also after grant/revoke operations. Creating from scratch the encryption policy graph any time
a grant or revoke operation is executed obviously grants policy equivalence, but is too expensive,
since it requires to re-generate the whole set of keys and tokens and to re-encrypt all the objects in
the system. Therefore, we propose a strategy that updates the existing encryption policy graph,
changing only the portions of the graph that are affected by the grant or revoke operation.

3.6.1 Grant and revoke

Any grant/revoke request for a user v on an object o has the effect of changing the set of users
that can access o and always requires the data owner to decrypt and to re-encrypt the object with
a new key that should be (directly or indirectly) derivable only by the users that belong to the
new access control list. Figure [3.11] illustrates procedure GrantRevoke that implements both
grant and revoke operations. The procedure takes as input a user w, an object o, and the type
of operation that has to be executed, which can be either ‘grant’ or ‘revoke’, and modifies the
encryption policy accordingly. First, the procedure retrieves vertex v,;q whose acl corresponds to
the current acl of o and sets acl(0) to the old acl to which is added (grant) or removed (revoke) user
u. Since, according to our approach (see Section(3.4), each object has to be encrypted with the key
associated with the vertex that represents its acl, the procedure checks the existence of a vertex
Unew I the encryption policy graph representing the new value of acl(o). If such a vertex does
not exist, vertex vy, is created and inserted in the graph (procedure CreateNew Vertex). The

54 3. Selective encryption to enforce access control

GRANTREVOKE(u,0,operation)
/* update the access control list of o */
find the vertex vo1q with veiq.label = ¢(0)
case operation of
‘grant’: acl(o) 1= voq.acl U {u}
‘revoke’: acl(o) := voiq.acl \ {u}

find the vertex vpew With vyew.acl = acl(o)
if v, ¢ =UNDEF then

Unew := CreateNewVertex(acl(o))
#(0) := Unew.label

/* re-encrypt object o */

download the encrypted version 0" of o from the server
decrypt o" with key vo14.key to retrieve the original object o
encrypt o with key vy ew.key

upload the new encrypted version 0" of o on the server
update LABELS on the server

DeleteVertex(voiq)

Figure 3.11 Procedure for granting or revoking permission (u, o)

CREATENEWVERTEX(U)

/* initial key and token graph vertices and edges */
Vo := Vi, 7

Ey := Ex, 1

/* create the new vertex */

create vertex v

v.acl := U

v.key := NULL

v.label := NULL

for each u € v.acl do v.counter[u] := 0

/* connect v, remove redundancies, and factorize common ancestors */
CoverVertex(v,v.acl)
Factorize(v)
/* update encryption policy */
UpdateEncryptionPolicy(Vy,Eq)
for each v;€{v;:(v;,vn)E(Eo\Ex,7)} do
DeleteVertex(v;)
return(v)

Figure 3.12 Function that inserts a new vertex representing U

procedure then downloads the object from the server, decrypts it through v,4.key, re-encrypts it
through v,,e.-key, and uploads the new encrypted version of o on the server. Finally, the procedure
calls DeleteVertex on vertex v,;q4 that checks if vertex v,;4 is still needed or if it can be removed
from the graph.

The insertion and removal of vertices in the encryption policy graph are realized through
function CreateNewVertex in Figure 3.12 and procedure DeleteVertex in Figure[3.13] Note
that function CreateNew Vertex and procedure DeleteVertex are based on the same operations
(i.e., CoverVertex and Factorize) used by the algorithm in Figure[3.6] for initially creating the
encryption policy graph, but they operate locally to the vertex inserted in or removed from the
graph.

Function CreateNew Vertex receives as input a set U of users and returns the vertex v inserted
in the graph and representing U. The function first copies the current sets Vi 7 of vertices and
Ejx 1 of edges in two local variables Vj and Ey, respectively. This copy is needed to determine the
updates in the set of vertices and edges in the graph in such a way to modify the encryption policy

3.6. Policy updates 55

DELETEVERTEX (v)
if (Jv.acl| > 1)A(Bo€O:¢p(0o)=v.label) then
/* direct ancestors and descendants of v */
Anc := {v;:(v;,v)EEK T}
Desc := {v;:(v,v;)€EEx 7}
if (|Desc| - |Anc|)<(|Desc| + |Anc])) then
/* initial key and token graph vertices and edges */
Vo = Vk, T
Ey := Ex, 1
/* update the key and token graph */
Ex,1 = Ex,7 \ {(v,v:)€Exc,7}U{(vi,v)E€EEK,T})
for each (v,v;)€Ey do
for each ucv.acl do

v;.counter[u] := v;.counter[u]—1
tocover := {u:u€v;.acl A\ v;.counter[u]=0}
CoverVertex(v;,tocover)
Factorize(v;)

Vic,r = Vi, — {v}

/* update encryption policy */

UpdateEncryptionPolicy(Vy,Eo)

for each v; €{v;:(vj,vy)€(Eo\Ex,7)} do
DeleteVertex(v;)

Figure 3.13 Procedure for deleting vertex v

accordingly. Indeed, the presence of a new vertex requires the generation of a new key and label
and the removal of a vertex requires the deletion of the corresponding key and label. Analogously, a
new edge requires the generation of the corresponding token, which is then stored in table TOKENS,
and the removal of an edge requires the deletion of the corresponding token from table TOKENS.
Function CreateNewVertex creates a new vertex v whose variable v.acl is set to Uwhile v.key
and v.label are both set to NULL. This new vertex is appropriately covered by other vertices in the
graph by calling: procedure CoverVertex on v and v.acl, thus ensuring that the vertex is inserted
without introducing redundant edges and in such a way that local cover (Theorem|[3.2) is satisfied;
and procedure Factorize, which determines whether the new vertex has more than two direct
ancestors in common with other vertices in the graph. Function CreateNewVertex then calls
procedure UpdateEncryptionPolicy in Figure[3.14. This procedure takes as input the copies
of the old sets of vertices and edges stored in V) and Ej, respectively, and updates the encryption
policy by generating and adding the new keys and labels associated with the new vertices, by
computing and adding the new tokens corresponding to the new edges, and by removing the keys,
labels, and tokens that are not anymore needed. Finally, for each vertex v; that appears as starting
point of a removed edge, CreateNew Vertex calls procedure DeleteVertex to check whether
vertex v; can be removed from the graph. Note that we do not call procedure DeleteVertex on
the vertices appearing as ending point of removed edges since, by definition, they correspond to
material vertices or have at least two incoming edges and therefore are always useful (or, in the
worst case, ineffective) for reducing the number of tokens in the encryption policy graph.
Procedure DeleteVertex receives as input a vertex v and removes it from the graph if it is
neither necessary for policy enforcement nor useful for reducing the size of 7. Indeed, if the key
associated with v is no more used for encrypting any object and is no more needed for factorizing
common ancestors, vertex v and all its ingoing and outgoing edges are removed. At this point, the
direct descendants of v violate the local cover property since, by construction (see Lemmal3.2), the
graph has no redundant edges and therefore the removed edge was need to satisfy such a property.
For each direct descendant v;, procedure DeleteVertex first calls procedure CoverVertex on v;

56

3. Selective encryption to enforce access control

UPDATEENCRYPTIONPOLICY (V,E)
for each ve(Vic,7\V) do /* new vertices */
generate key k

v.key := k
generate label [
v.label :=1

K :=K U {v.key}
L := L U {v.label}
for each (v;,v;)€(Ex,7\E) do /* new edges */
ti; = vj.key @ h(v;.key,v;.label)
7T :=TU {ti,j}
upload token t; ; on the server by adding it to table TOKENS
for each ve(V\Vic,7) do /* vertices removed */
K=K\ {v.key}
L:= L\ {v.label}
for each (v;,v;)€(E\Ex,7) do /* edges removed */
T:=7T\{ti;}

remove t; ; from the table TOKENS on the server

Figure 3.14 Procedure for updating the encryption policy

and on the set of users that do not belong to any other ancestor of v;, and then calls procedure
Factorize on v;. Like for procedure CreateNew Vertex, the encryption policy is appropriately
updated through procedure UpdateEncryptionPolicy. Finally, for each vertex v; that appears
as a starting point of a removed edge, DeleteVertex recursively calls itself to check whether or

not vertex v; can be removed from the graph.

Example 3.2. Consider the encryption policy depicted in Figures[3.10(b) and (c).

Figure|3.15

tllustrates the key and token graph and table LABELS resulting from granting D access to o3 and
revoking F' access to og. (Note that for all users u in U, we do not report ¢(u) since grant/revoke

operations do not change it.)

o GrantRevoke(D,o03,grant): first the procedure identifies the vertex whose key is necessary

for decrypting o3, that is, vr. Then, acl(os) is updated by inserting D. Since there is not
a vertex with acl={BCD}, procedure CreateNewVertex is called with U={BCD} as a
parameter. Il creates and inserts in the graph a new vertex via, where vi2.acl={BCD}.
Then, o3 is downloaded from the server, decrypted through v7.key, encrypted with vis.key,
and then uploaded on the server. Finally, procedure DeleteVertex is called with v7 as a
parameter and, since vy.key is used to encrypt o4 and o5, vertex vy is not removed from the
graph.

GrantRevoke(F,os,revoke): first the procedure identifies the vertex whose key is necessary
for decrypting os, that is, vg. Then, acl(os) is updated by removing F. Since there is not
a vertex with acl={BDE}, procedure CreateNewVertex is called with U={BDE} as a
parameter. It creates and inserts in the graph a new vertex vis, where viz.acl={BDE}.
Then, og is downloaded from the server, decrypted through vg.key, encrypted with vi3.key,
and uploaded on the server. Then, procedure DeleteVertex is called with vy as a parameter.
Since vg.key was only used for encrypting os, vg is no more a useful vertexr and is removed
from the graph. The procedure recursively calls itself with vo and with vi1 as a parameter.
Vertex vy is not removed since it corresponds to user B while vertex vy is removed from the
graph.

3.6. Policy updates 57

LABELS

obj-id|label
01,02 |v4.label
o3 |vyo.label
04,05 |v7.label
0g,07 |vg.label
og |vg.label
09 |v10.label

v10[ABCDEF]

v11[DEF]

(a) GrantRevoke(D,o3,grant)

LABELS

obj_id|label
01,02 |vg.label
03 |v12.label
04,05 |v7.label
06,07 |vs.label
og |vi3.label
og |v10.label

v10[ABCDEF)

(b) GrantRevoke(F,o0g, revoke)

Figure 3.15 Examples of grant and revoke operations

3.6.2 Correctness

We now prove that the procedure implementing the grant and revoke operations preserves policy
equivalence. To this aim, we first need to show that both vertex insertion and deletion are correct
(i.e., they preserve policy equivalence).

First, we prove that the updates to the encryption policy graph made by procedure DeleteV-
ertex do not affect policy equivalence.

Lemma 3.3. Let A= (U,O,P) be an authorization policy and E=U, O, K, L, d,T) be an encryp-
tion policy, such that A = E. Procedure DeleteVertex in Figurel3.13 generates a new encryption
policy &' =(U,0,K', L', ¢', T") such that A= E'.

Proof. Since we assume that A = £ when procedure DeleteVertex is called, we will consider
only keys and tokens updated by the procedure. Specifically, as already noted when proving
Theorem [3.3, the conditions necessary for granting policy equivalence between A and £ are the
following:

1. for each user u, ¢(u) corresponds to the label of vertex v; representing the singleton set {u}
(i.e., vi.acl = {u});

58 3. Selective encryption to enforce access control

2. for each object o, ¢(o) corresponds to the label of vertex v; representing acl(o) (i.e., v;.acl

= acl(0));

3. the key and token graph satisfies Theorem [3.2] (local cover) and Definition[3.10 (non redun-
dancy).

We then prove that procedure DeleteVertex satisfies all these conditions.

Procedure DeleteVertex does not modify the key assignment and encryption schema and does
not remove a vertex v if there exists a user u or an object o such that ¢(u)=v.label or ¢(o)=v.label.
Therefore the first and the second conditions are satisfied.

For each descendant v; of the removed vertex v, procedure DeleteVertex calls procedures
CoverVertex on v; and tocover, where tocover contains the subset of users in v;.acl such that
v;.counter[u]=0. Since v;.counter[u] always represents the number of direct ancestors of v; such
that u belongs to their acl, it is not necessary to cover other users. Also, variables v.counter|[u] are
updated on the basis of the edges incident in v removed from the graph. Procedure UpdateEn-
cryptionPolicy simply translates the updates on Gx 7 in the equivalent updates on £ components,
therefore local cover and non redundancy are preserved by procedure DeleteVertex.]

We then prove that also the updates to the encryption policy graph made by procedure Cre-
ateNewVertex do not affect policy equivalence.

Lemma 3.4. Let A = (U, O, P) be an authorization policy and E=U,O,K,L,$,T) be an en-
cryption policy, such that A = E. Function CreateNew Vertex in Figure|3.12 generates a new
encryption policy &'=U,0,K', L', ¢', T") such that A= E'.

Proof. Since we assume that A = £ when function CreateNew Vertex is called, we will consider
only keys and tokens updated by the function. We then prove that function CreateNew Vertex
satisfies all the conditions mentioned in the Proof of Lemma [3.3]

Function CreateNewVertex does not modify the key assignment and encryption function
and removes vertices only through procedure DeleteVertex, therefore the first and the second
conditions are satisfied.

Also, function CreateNew Vertex calls procedures Cover Vertex and Factorize on the new
vertex v, granting then that the key and token graph satisfies Theorem and Definition
(Lemma [3.2)). Procedure UpdateEncryptionPolicy simply translates the updates on G 7 in
the equivalent updates on £ components, therefore the two properties are preserved by function
CreateNewVertex. L]

By combining the results proved by Lemmal3.3 and by Lemma(3.4, we conclude that the encryp-
tion policy modified by procedure GrantRevoke in Figure 3.11]is equivalent to the authorization
policy modified by the same procedure, on the basis of a grant or revoke operation.

Theorem 3.6. Let A = (U,O,P) be an authorization policy and E=U, O, K, L, ,T) be an en-
cryption policy, such that A = £. Procedure GrantRevoke in Figure |3.11 generates a mew
authorization policy A" = (U, O, P') and a new encryption policy &' =(U,O,K', L', ¢', T") such that
A =¢£.

Proof. Since we assume that A = £ when procedure GrantRevoke is called, we will consider only
users and objects for which the encryption and authorization policies change.

3.7. Two-layer encryption for policy outsourcing 59

Grant. &' — A’
Consider user u and object o. From the procedure, it is easy to see that o is encrypted
with a key such that from the key of the vertex with label ¢’(u) it is possible to derive the
key of the vertex with label ¢’(o) through 7", since ¢'(0) is set t0 vnew.key, which can be
reached from vertex v with v.acl={u} (for the correctness of function CreateNew Vertex,

Lemma[3.4). Therefore, we have that uso.

E=A ,

Consider user u and object o. From the insertion of u in acl(0), we have that uso. Also, o
is encrypted with a key such that the key of the vertex with label ¢’(0) can be derived from
the key of the vertex with label ¢’(u), for the correctness of function CreateNew Vertex

(Lemmal3.4). Therefore, we have that uso.

Revoke. & = A’
Consider user u and object 0. From the procedure, it is easy to see that o is encrypted with
a key such that from the key of the vertex with label ¢'(u) it is not possible to derive the
key of the vertex with label ¢'(0) through 77, since ¢'(0) is set to Vyew.key, which can not
be reached from vertex v with v.acl={u} (for the correctness of procedure DeleteVertex,

A/
Lemma[3.3). Therefore, we have that u/—o.

Ee=A
_A/
Consider user u and object 0. From the removal of u from acl(0), we have that u/—o. Also,

o is encrypted with a key such that the key of the vertex with label ¢/(0) can not be derived
from the key of the vertex with label ¢'(u), for the correctness of procedure DeleteVertex

’

£
(Lemmal3.3). Therefore, we have that u/—o.

3.7 Two-layer encryption for policy outsourcing

The model described in previous sections assumes keys and tokens are computed, on the basis
of the existing authorization policy, prior to sending the encrypted objects to the server. When
permissions are updated by the data owner, as described in Section[3.8] the data owner interacts
with the service provider for modifying the token catalog and for re-encrypting the objects involved
in the update. Even if the computation and communication overhead caused by policy updates
is limited, the data owner may not have the computational or bandwidth resource availability for
managing policy changes.

To further reduce the data owner’s overhead, we put forward the idea of outsourcing to the
server, besides the object storage, the authorization management as well. Note that this delegation
is possible since the server is considered trustworthy to properly carry out the service. Recall,
however, that the server is not trusted with confidentiality (honest-but-curious). For this reason,
our solution has been designed taking into account, and therefore minimizing, the risk that the

60 3. Selective encryption to enforce access control

server colludes with users to breach data confidentiality (see Section/3.9). The solution we propose
enforces policy changes on encrypted objects themselves (without the need of decrypting them),
and can then be performed by the server.

3.7.1 Two-layer encryption

To delegate policy changes enforcement to the server, avoiding re-encryption for the data owner,
we adopt a two layer encryption approach. The owner encrypts the objects and sends them to the
server in encrypted form; the server can impose another layer of encryption (following directions
by the data owner).

We then distinguish two layers of encryption.

o Base Encryption Layer (BEL), performed by the data owner before transmitting data
to the server. It enforces encryption on the objects according to the policy existing at
initialization time.

o Surface Encryption Layer (SEL), performed by the server over the objects already en-
crypted by the data owner. It enforces the dynamic changes over the policy.

Both layers enforce encryption by means of a set of symmetric keys and a set of public tokens
between these keys (see Section 3.3), although some adaptations are necessary, as explained below.

In terms of efficiency, the use of a double layer of encryption does not appear as a significant
computational burden; experience shows that current systems have no significant delay when man-
aging encryption on data coming from either the network or local disks, as also testified by the
widespread use of encryption on network traffic and for protecting the storage of data on local file
systems [89].

Base Encryption Layer. Compared with the model presented in previous sections, in the BEL
level we distinguish two kinds of keys: derivation keys and access keys. Access keys are actually
used to encrypt objects, while derivation keys are used to provide the derivation capability via
tokens, that is, tokens can be defined only with the derivation key as starting point. Each derivation
key k is always associated with an access key k, obtained by applying a secure hash function to k&,
that is, k; = h(k). In other words, keys at the BEL level always go in pairs (k,k,). Note that both
the derivation and the access keys are associated with a unique label [and [,, respectively. The
rationale for this evolution is to distinguish the two roles associated with keys, namely: enabling
key derivation (applying the corresponding tokens) and enabling object access. The reason for
which such a distinction is needed will be clear in Section [3.8]

The BEL level is characterized by an encryption policy E=(U, O, Ky, Lb, ¢b, Tp), where U, O,
and 7, are as described in Section 3.3, K, is the set of (derivation and access) keys defined at BEL
level, and L}, is the set of publicly available labels associated with both derivation and access keys.
The key assignment and encryption schema ¢, : U U O — L}, associates with each user u€ U the
label I corresponding to the derivation key released to the user by the data owner and with each
object o€ O the label [, corresponding to the access key with which the object is encrypted by
the data owner.

Also at BEL level, the set K}, of keys and the set 7y of tokens can be graphically represented
through the corresponding key and token graph, which now has a vertex b for each pair of encryption

3.7. Two-layer encryption for policy outsourcing 61

w|p(u) o|op(0)
Alby.label 01,02 |by.label,
B|bs.label 03,04,05 | by . label,
C'|bs.label 06,07 | bs.label,
D |by.label og |bg.label,
E|bs.label 09 |b1g.label,
F'|bg.label
(a) BEL
. u () 0[4(0)
s104] Alsy.label 01, . .,09 [NULL
Bss.label
(32[3])‘ C'|s3.label
D |sy.label
E|s5.label
F|s¢.label
(b) Delta_SEL
s1[A] u‘¢s(u) 0‘¢s(0)
Alsy.label 01,02 |S4.label
@ Bss.label 03,04,05 | s7.label
C'|s3.label 06,07 | Ss.label
D |sy.label og|sg.label
FE|s5.label 09 |s10.label
=201 F'|sg.label
s5[F]
selF]

(c) Full_SEL

Figure 3.16 An example of BEL and SEL combination (Delta_SEL and Full_SEL)

and access keys and labels ((k,l),(ka,l5)) and an edge (b;,b;) if there is a token in 7 allowing the
derivation of either k; or kj, from k;. Graphically, a vertex is simply represented by b and tokens
leading to derivation keys are distinguished from tokens leading to access keys by using dotted lines
for the latter. Each vertex b; in the key and token graph is characterized by: a derivation key along
with the corresponding label, denoted b;.key and b;.label, respectively; an access key along with
the corresponding label, denoted b;.key, and b;.label,, respectively. The corresponding encryption
policy & is graphically represented by an encryption policy graph Gg, as described in Section[3.3,

where notation u-0 indicates that there exists a path connecting u to o, both following tokens
and applying secure hash function h. Note that dotted edges can only appear as the last step of a
path in the graph (since they allow the derivation of access keys only). Figure[3.16]a) illustrates
an example of BEL key and token graph and key assignment and encryption schema enforcing the
authorization policy in Figure[3.1.

62 3. Selective encryption to enforce access control

Surface Encryption Layer. At the SEL level there is no distinction between derivation and
access keys (intuitively a single key carries out both functions). The SEL level is therefore charac-
terized by an encryption policy E=(U, O, Ks, Ls, ¢s, T¢) that is defined and graphically represented
as described in Section [3.3. This means that the set Kg of keys and the set 75 of tokens can be
graphically represented through a key and token graph having a vertex s for each pair (k,l) defined
at SEL and an edge (s;,s;) if there is a token in 7 allowing the derivation of k; from k;. Each
vertex s in the graph is characterized by: a key, denoted s.key, and corresponding label, denoted
s.label; and the set of users, denoted s.acl, who can derive s.key. The corresponding encryption
policy & is graphically represented by an encryption policy graph as described in Section [3.3,

where notation u-=0 indicates that there exists a path connecting u to o.

BEL and SEL combination. In the two-layer approach, each object can then be encrypted twice:
at the BEL level first, and at the SEL level then. Users can access objects only passing through
the SEL level. Fach user u receives two keys: one to access the BEL and the other to access the
SEL Users will be able to access objects for which they know both the keys (BEL and SEL) used
for encryption.

The consideration of the two levels requires to restate the definition of policy equivalence, which
is now defined as follows.

Definition 3.11 (Policy equivalence). Let A = (U,O,P) be an authorization policy, &, =
U, 0, Ky, Ly, dp, Tp) be a BEL level encryption policy, and & = (U, O, K, Ls, s, Ts) be a SEL level
encryption policy. A and the pair (Ey, &) are equivalent, denoted A = (&, &), iff the following
conditions hold:

£ &
oVueU,0€0: (u—>0 A u—>0)= w250

& s
o Vuel,0€0 u0 = (u-20 A u-50)

In principle, any encryption policy at BEL and SEL can be specified as long as their combination
is equivalent to the authorization policy. Let A be the authorization policy at the initialization
time and let &, be the encryption policy at the BEL level, which is equivalent to A (i.e., A = &).
We envision two basic approaches that can be followed in the construction of the two levels.

Full_SEL. The SEL encryption policy is initialized to reflect exactly (i.e., to repeat) the BEL en-
cryption policy: for each derivation key in BEL a corresponding key is defined in SEL; for
each token in BEL, a corresponding token is defined in SEL. Note that the set Ks of keys
and the set 7; of tokens form a key and token graph which is isomorphic to the one existing
at the BEL level and, therefore, also Gg, is isomorphic to Gg,. The key assignment and en-
cryption policy assigns to each user u a unique label ¢s(u)=v;.label (and therefore a unique
key vs.key) corresponding to ¢p(u)=vy.label. Also, it assigns to each object o a unique label
¢s(0)=vs.label (and therefore a unique key vs.key) corresponding to ¢p(0)=vy.label,. The
SEL encryption policy models exactly the BEL encryption policy, and hence, by definition, is
equivalent to the authorization policy (i.e., A = &).

4To simplify key management, the user key for SEL can be obtained by the application of a secure hash function
from the user key for BEL. In this case, the data owner needs to send in the initialization phase to the server the
list of SEL keys of each user.

3.8. Policy updates in two-layer encryption 63

Delta_SEL. The SEL policy is initialized to not carry out any over-encryption. Each user u is
assigned a unique label ¢s(u)=v;.label, and therefore a unique key vs.key. No encryption is
performed on objects, that is, Vo € O, ¢s(0) = NULL. The SEL level itself does not provide
any additional protection at start time, but it does not modify the accesses allowed by BEL.

We note that a third approach could be possible, where the permission enforcement is com-
pletely delegated at the SEL level and the BEL simply applies a uniform over-encryption (i.e., with
the same key released to all users) to protect the plaintext content from the server’s eyes. We do
not consider this approach as it presents a significant exposure to collusion (see Section [3.9).

It is easy to see that all the approaches described produce a correct two layer encryption. In
other words, given a correct encryption policy at the BEL level, the approaches produce a SEL level
such that authorization policy A and the pair (&,,&) are equivalent.

The reason for considering both the Full_SEL and Delta_SEL approaches is the different perfor-
mance and protection guarantees that they enjoy. In particular, Full_ SEL always requires double
encryption to be enforced (even when permissions remain unvaried), thus doubling the decryption
load of users for each access. By contrast, the Delta_SEL approach requires double encryption only
when actually needed to enforce a change in the permissions. However, as we will see in Section[3.9,
the Delta_SEL is characterized by greater information exposure, which instead does not affect the
Full_SEL approach. The choice between one or the other can then be a trade-off between costs and
resilience to attacks.

We close this section with a remark on the implementation. In the illustration of our approach,
we always assume over-encryption to be managed with a direct and complete encryption and
decryption of the object, as needed. We note however that the server can, at the SEL level,
apply a lazy encryption approach, similar to the copy-on-write (COW) strategy used by most
operating systems, and actually over-encrypt the object when it is first accessed (and then storing
the computed encrypted representation); the server may choose also to always store the BEL
representation and then dynamically apply the encryption driven by the SEL when users access
the object.

3.8 Policy updates in two-layer encryption

While in the basic model described in Section [3.3, policy updates are demanded and regulated by
the owner, the two-layer approach enables the enforcement of policy updates without the need for
the owner to re-encrypt, and to resend objects to the server. By contrast, the owner just adds (if
necessary) some tokens at the BEL level and delegates policy changes to the SEL level by possibly
requesting the server to over-encrypt the objects. The SEL level (enacted by the server) receives
over-encryption requests by the BEL level (under the control of the data owner) and operates
accordingly, adjusting tokens and possibly encrypting (and/or decrypting) objects.

Before analyzing grant and revoke operations in this new scenario, we first describe the working
of over-encryption at the SEL level.

3.8.1 Over-encrypt

The SEL level regulates the update process through over-encryption of objects. It receives from
the BEL requests of the form Over-encrypt(O,U) corresponding to the demand to the SEL to

64 3. Selective encryption to enforce access control

make the set O of objects accessible only to users in U. Note here that the semantics is different
in the two different encryption modes. In the Full_SEL approach, over-encryption must reflect the
actual authorization policy existing at any given time. In other words, it must reflect, besides the
- dynamic - policy changes not reflected in the BEL, also the BEL policy itself. In the Delta_SEL
approach, over-encryption is demanded only when additional restrictions (with respect to those
enforced by the BEL) need to be enforced. As a particular case, here, the set U of users may be ALL
when - while processing a grant operation - the BEL determines that its protection is sufficient and
therefore requests the SEL not to enforce any restriction and to possibly remove an over-encryption
previously imposed.

Let us then see how the procedure works. Procedure Over-encrypt takes a set O of objects
and a set U of users as input. First, it checks whether there exists a vertex s whose key s.key
is used to encrypt objects in O and the set of users that can derive s.key is equal to U, that is,
s.acl=U. If such a vertex exists, objects in O are over-encrypted with a key that reflects the current
acl of objects in O and the procedure terminates. Note that since all objects in O share the same
key, it is sufficient to check the above condition on any of the objects o’ in O. Otherwise, if the
objects in O are currently over-encrypted, they are first decrypted through the key of the vertex s
such that s.label=¢s(0"). Also, vertex s is possibly removed from Gg, by procedure DeleteVertex.
Then, if the set of users that should be allowed access to the objects in O by the SEL is not ALL,
over-encryption is necessary. (No operation is executed otherwise, since U=ALL is the particular
case of Delta_SEL approach discussed above.) The procedure checks then the existence of a vertex
s such that the set of users that can derive key s.key (i.e., belonging to s.acl) corresponds to U.
If such a vertex does not exist, it is created and inserted into the encryption policy graph at the
SEL level by function CreateNew Vertex. Then, for each object o in O, the procedure encrypts
o through s.key and updates ¢s(0) and table LABELS accordingly.

3.8.2 Grant and revoke

Consider first procedure Grant in Figure[3.17, which handles a request to grant user u access to
object 0. The BEL level starts and regulates the update process as follows. First, acl(o) is updated
to include u. Then, the procedure retrieves the vertex b; whose access key b;.key, is the key with
which o is encrypted. If the object’s access key cannot be derived by u, then a new token from
user’s key b;.key, where b; is a vertex such that ¢,(u)=b;.label, to b;.key, is generated and added
to the token catalog. Note that the separation between derivation and access keys for each vertex
allows us to add a token only giving u access to the key used to encrypt object o, thus limiting
the knowledge of each user to the information strictly needed to guarantee equivalence with the
authorization policy. Indeed, knowledge of b;.key, is a necessary condition to make o accessible by
u. However, there may be other objects o’ that are encrypted with the same key b;.key, and which
should not be made accessible to u. Since releasing b;.key, would make them accessible to u, they
need to be over-encrypted so to make them accessible to users in acl(o’) only. Then, the procedure
determines if such a set of objects O’ exists. If O’ is not empty, the procedure partitions O’ in
sets such that each set S C O’ includes all objects characterized by the same acl, denoted acls.
For each set S, the procedure calls Over-encrypt(S, aclg) to demand SEL to execute an over-
encryption of S for users in aclg. In addition, the procedure requests the SEL level to synchronize
itself with the policy change. Here, the procedure behaves differently depending on the encryption
model assumed. In the case of Delta_SEL, the procedure first controls whether the set of users that
can reach the object’s access key (i.e., the set of users uelf such that b;.key, can be computed

3.8.

Policy updates in two-layer encryption

65

BEL

SEL

GRANT (u,0)

acl(o) := acl(o) U {u}
find the vertex b; with bj.label, = ¢p(0)

£
if u7i>o then
find the vertex b; with b;.label = ¢p(u)
ti; = bj.keys @ h(b;.key,b;.label,)
To :=Tp U {ti;}
upload token t; ; on the server by storing it in table TOKENS

O’ := {0 :0’ ;ﬁo/\d)b(o’):@,(o)/\Elueu:uio/\uQGCZ(o/)}
if O’ # 0 then
Partition O’ in sets such that each set S
contains objects with the same acl aclg
for each set S do
Over-encrypt(acls,S)
case encryption model of

&
Delta_SEL: if {u:uelA u—b>b1}:acl(o) then

Over-encrypt(ALL,{o})
else

OVER-ENCRYPT(U,0)

let o’ be an object in R
if (3 s :s.label=g¢s(0’)As.acl=U) then
exit
else
if ¢s(0’) # NULL then
find the vertex s with s.label=¢s(0)
for each 0€0O do
decrypt o with s.key
DeleteVertex(s)
if U#ALL then
find the vertex s with s.acl=U
if s=UNDEF then
s := CreateNewVertex(U)
for each 0€0O do
¢s(0) 1= s.label
encrypt o with s.key
update LABELS on the server

Over-encrypt(acl(o),{o})
Full_SEL: Over-encrypt(acl(o),{o})

REVOKE(u,0)
acl(o) := acl(o) — {u}
Over-encrypt(acl(o),{o})

Figure 3.17 Procedures for granting and revoking permission (u,0)

knowing b;.key, with ¢, (u)=b;.label) corresponds to acl(o). If so, the BEL encryption suffices and
no protection is needed at the SEL level, and therefore a call Over-encrypt({o}, ALL) is requested.
Otherwise, a call Over-encrypt({o},acl(0)) requests the SEL to make o accessible only to users in
acl(o). In the case of Full_SEL, this is done by always calling Over-encrypt(o,acl(0)), requesting
the SEL to synchronize its policy so to make o accessible only by the users in acl(0).

Consider now procedure Revoke in Figure[3.17, which revokes from user u access to object o.
The procedure updates acl(r) to remove user u and calls Over-encrypt({o},acl(0)) to demand
SEL to make o accessible only to users in acl(o).

In terms of performance, the grant and revoke procedures only require a direct navigation of
the BEL and SEL structures and they produce the identification of the requests to be sent to the
server in a time which, in typical scenarios, will be less than the time required to send the messages
to the server.

Example 3.3. Consider the two layer encryption policy depicted in Figure [3.16. Figures!3.18
and[3.19 illustrate the evolution of the corresponding key and token graphs and of both ¢p(0) and
os(0) for objects in O when the following grant and revoke operations are executed. Note that we do
not report ¢p(u) and ¢s(u) for users in U since they never change due to grant/revoke operations.
Note also that the key and token graph at SEL level evolves exactly as described in Examplel3.2.

o Grant(D,o3): first acl(oz) is updated by inserting D. Then, since access key by.key, used
to encrypt oz cannot be derived from the derivation key of vertex by corresponding to ¢p(D),
the data owner adds a BEL token allowing to compute br.key, from by.key. Since br.key, is

66

3. Selective encryption to enforce access control

01,02
03,04,05
06,07

by.label,
b7 .label,
bg.label,
bg.label,
b10 . labela

Grant(D,o03)

o ¢s(0)

s1[A] 01,...,03 |NULL
04,05 | S7.label

s2[Bl) 06, - - ,09 |[NULL
s7[BC])

54[D]

s61F]

Delta_SEL - Over-encrypt(BC,{04,05})
Over-encrypt(ALL,03)
o|¢s(0)

S11A] >(sg[ADEF))

s4.label
s12.label
s7.label
sg.label
Sg.label
s10.label

03
04,05
06,07

o8

09

s10[ABCDEF]

Full_ SEL - Over-encrypt(BC,{04,05})
Over-encrypt(BCD,{o3})

Figure 3.18 An example of grant operation

also used to encrypt objects o4 and o5, which D is not authorized to view, these objects have
to be over-encrypted in such a way that they are accessible only to users B and C. In the
Delta_SEL scenario, Over-encrypt creates a new vertex sy, with s7.acl=BC, for objects o4
and o5. The protection of object o3 at BEL level is instead sufficient and no over-encryption
is needed (i.e., procedure Over-encrypt is called with U=ALL). In the Full_SEL scenario
objects 04 and os are already correctly protected, os is instead over-encrypted with the key
of vertex si2, which is created and inserted in the graph by function CreateNew Vertex.
Finally, procedure DeleteVertex is called with s; as a parameter and, since s7.key is used
to encrypt o4 and os, vertex sy is not removed from the graph.

3.8. Policy updates in two-layer encryption 67

01,02 by .label,
03,04,05 |b7.label,
06,07 |bg.label,
og |bg.label,

09 bm.labela

3 | NULL
s7.label
NULL
s13.label
NULL

®s(0)

s4.label

P 03 |s12.label
~_ 04,05 | s7.label
‘/’ 06,07 | ss.label
og|s13.label

s10[ABCDEF] 0o Slo‘label

Full_SEL - Over-encrypt(BDE {os})

Figure 3.19 An example of revoke operation

o Revoke(F,og): first acl(os) is updated by removing F. Since now acl(og) becomes { BEF},
object og has to be over-encrypted with a key that only this set of users can compute. Con-
sequently, both in the Delta_SEL and in the Full_SEL scenario, a new vertex si13 representing
BEF is created and its key is used to protect og. Also, in the Full_ SEL scenario, procedure
DeleteVertex is called with sg as a parameter. Since sg is no more a useful vertex, it is
removed from the graph. The procedure recursively calls itself with so and with s11 as a pa-
rameter. Vertex so is not removed since it corresponds to user B while vertex s11 is removed
from the graph.

68 3. Selective encryption to enforce access control

3.8.3 Correctness

We now prove that the procedures implementing the grant and revoke operations preserve policy
equivalence.

Theorem 3.7. Let A = (U,O,P) be an authorization policy, E,=U, O, Ky, L, db, Tp) be an
encryption policy at the BEL level, and E=(U, O, Ks, Ls, ¢s, Ts) be an encryption policy at the SEL
level such that A = (y,Es). Procedures in Figure|3.17 generate a new &' = U, O, Ky, Ly, b, Tp'),
& =U,0,K/), L, ¢, T, and A’ such that A" = (&', &).

Proof. Since we assume that A = (&, &) when procedures Grant and Revoke are called, we will
consider only users and objects for which the encryption and authorization policies change. Grant
and revoke are based on the correctness of over-encryption operations. We then examine it first.

Over-encrypt. We need to prove that over-encrypt(O,U) possibly encrypts all objects in
O with a key in such a way that a user «’ can derive such a key if and only if u' €U.
The only case we need to consider is when the set of users U is different from ALL (when
U=ALL, objects in O are not needed to be over-encrypted). Then, if the condition in the
first if statement is evaluated to true, objects in O are already correctly protected and
since the procedure terminates, the result is correct. Otherwise, objects in O are first
possibly decrypted and then encrypted with the correct key s.key or with a key assigned to
vertex s created through function CreateNewVertex(U). The correctness is guaranteed
by the correctness of both function CreateNewVertex and procedure DeleteVertex
(Lemmas 3.4 and [3.3).

Grant. (&,/,&') = A’

Consider user u and object 0. From the procedures in Figure [3.17] it is easy to see that
o1 (0) = ¢p(0) and also that there is a (set of) token allowing to derive the key of the vertex
with label ¢ (o) by knowing the vertex with label ¢f(u). From the case instruction and
by the correctness of Over-encrypt, either ¢.(0) = NULL or o is over-encrypted with a key
such that from the key of the vertex with label ¢.(0) it is possible to derive the key of the
vertex with label ¢.(0) through 7¢" (user w is included in the current acl(o)). Since the key
of the vertex with label ¢} (o) can be derived from the key of the vertex with label ¢{(u) and
the key of the vertex with label ¢.(0) can be derived from the key of the vertex with label
@L(u), we have that uo.

Consider now the set of objects O’ and suppose that O’ is not empty. For each subset S
of O', user u can now derive the key used to encrypt such a set of objects. This implies
that Yo' € S, ¢} (o) = ¢p(0’), which corresponding key can be computed starting from the
key of the vertex with label ¢f(u). However, by the correctness of Over-encrypt, a call
over-encrypt(S,aclg) guarantees that all objects o’ in S are over-encrypted with a key
such that Vo' € S, the key of the vertex with label ¢.(0’) is not derivable from the key of the
vertex with label ¢.(u) because aclg does not include user .

(&, &) = A
Consider user u and object o. From the first instruction in procedure Grant, we have that

w50, From the pseudocode in Figure[3.17, it is easy to see that ¢} (0) = ¢b(0) and that the

3.9. Protection evaluation 69

corresponding key can be computed knowing the key of the vertex with label ¢f (u). Also,
from the case instruction and by the correctness of Over-encrypt, either ¢.(0) = NULL or
o is over-encrypted with the key of the vertex with label ¢.(0) such that it can be derived
from the key of the vertex with label ¢.(u).

Revoke. (&/,&) = A
Consider user u and object o. A call Over-encrypt({o},acl(0)) is requested to de-
mand the SEL to make o accessible only to users in the current acl(o). We know

’

£
that u—>0. Also, from the correctness of Over-encrypt, it is easy to see that the key
of the vertex with label ¢.(0) cannot be computed from the key of the vertex with label ¢.(u).

(&), &)y = A

Consider user v and object o. From the first instruction in the procedure we have that

u#o. The subsequent call over-encrypt({o},acl(0)) makes object o no more accessible to
user u because o is over-encrypted with a key that is no more derivable by w (this property
is a consequence of the correctness of Over-encrypt), that is, the key of the vertex with
label ¢y (o) is still derivable from the key of the vertex with label ¢f(u) but the key of the
vertex with label ¢.(o) is not derivable from the key of the vertex with label ¢.(u).

O

3.9 Protection evaluation

Since the BEL and SEL encryption policies are equivalent to the authorization policy at initialization
time, the correctness of the procedures in Figure[3.17 ensures that the authorization policy A and
the pair (&, &) are equivalent. In other words, at any point in time, users will be able to access
only objects for which they have - directly or indirectly - the necessary keys both at the BEL and
at the SEL level.

The key derivation function adopted is proved to be secure [8]. We also assume that all
the encryption functions and the tokens are robust and cannot be broken, even combining the
information available to many users. Moreover, we assume that each user correctly manages her
keys, without the possibility for a user to steal keys from another user.

It still remains to evaluate whether the approach is vulnerable to attacks from users who access
and store all information offered by the server, or from collusion attacks, where different users (or
a user and the server) combine their knowledge to access objects they would not otherwise be able
to access. Note that for collusion to exist, both parties should gain in the exchange (as otherwise
they will not have any incentive in colluding).

To model exposure, we first examine the different views that one can have on an object o by
exploiting a graphical notation with object o in the center and with fences around o denoting the
barriers to the access imposed by the knowledge of the keys used for o’s encryption at the BEL
(inner fence) and at the SEL (outer fence). The fence is continuous if there is no knowledge of the
corresponding key (the barrier cannot be passed) and it is discontinuous otherwise (the barrier can
be passed). Figure[3.20 illustrates the different views that can exist on the object. On the left,
Figure[3.20(a), there is the view of the server itself, which knows the key at the SEL level but does

70 3. Selective encryption to enforce access control

Server’s view User’s view

- SEL SEL SEL . EL
i BEL ! i BEL | BEL BEL i BEL !
|) Vo b [i | |
H) Vo i 0 H |
1 H 1 1 1 H 1 1 1 !
| | L — 208 S I S (R ; : !
|] 1] !]

open locked sel_locked bel_locked

(a) (b) (©) (d) (e)

Figure 3.20 Possible views on object o

not have access to the key at the BEL level. On the right, there are the different possible views of
users, for whom the object can be:

o open: the user knows the key at the BEL level as well as the key at the SEL level (Fig-
ure(3.20(b));

o locked: the user knows neither the key at the BEL level nor the key at the SEL level (Fig-
ure [3.20(c));

o sel_locked: the user knows only the key at the BEL level but does not know the key at the
SEL level (Figurel3.20(d));

o bel_locked: the user knows only the key at the SEL level but does not know the one at the
BEL level (Figure[3.20(e)). Note that this latter view corresponds to the view of the server
itself.

By the authorization policy and the encryption policy equivalence (Theorem [3.7)), the open
view corresponds to the view of authorized users, while the remaining views correspond to the
views of non authorized users.

We now discuss possible information exposure, with the conservative assumption that users are
not oblivious (i.e., they have the ability to store and keep indefinitely all information they were
entitled to access).

3.9.1 Exposure risk: Full SEL

In the Full_SEL approach, at initialization time, BEL and SEL are completely synchronized. For
each user, an object is then protected by both keys or by neither: authorized users will have
the open view, while non authorized users will have the locked view. Figure[3.21 summarizes the
possible view transitions starting from these two views.

Let us first examine the evolution of the open view. Since objects at the BEL level are not
re-encrypted, the view of an authorized user can change only if the user is revoked the permission.
In this case, the object is over-encrypted at the SEL level, then becoming sel_locked for the user.
The view could be brought back to be open if the user is granted the permission again (i.e.,
over-encryption is removed).

Let us now examine the evolution of the locked view. For how the SEL is constructed and
maintained in the Full_ SEL approach, it cannot happen that the SEL grants a user an access that
is blocked at the BEL level, and therefore the bel_locked view can never be reached. The view

3.9. Protection evaluation 71

1 1
;0
[! SEL
\ BEL
r====" 1

locked

Figure 3.21 View transitions in the Full_SEL

SEL ____SEL

BEL BEL |
]

rant (U0) [

: i 3
|

ol

I

|

locked sel_locked open

Figure 3.22 From locked to sel_locked views

can instead change to open, in case the user is granted the permission to access the object; or to
sel_locked, in case the user is given the access key at the BEL level but she is not given that at the
SEL level. This latter situation can happen if the release of the key at the BEL level is necessary
to make accessible to the user another object o’ that is, at the BEL level, encrypted with the same
key as o. To illustrate, suppose that at initialization time objects o and o’ are both encrypted with
the same key and they are not accessible by user u (see the leftmost view in Figure[3.22). Suppose
then that u is granted the permission for o’. To make o’ accessible at the BEL level, a token is
added to make the key corresponding to label ¢,(0) derivable by u, where however ¢, (0)=ap(0).
Hence, o’ will be over-encrypted at the SEL level and the key corresponding to label ¢s(o’) made
derivable by u. The resulting situation is illustrated in Figurel3.22] where o’ is open and o results
sel_locked.

We now analyze what are the possible views of users that may collude. Users having the
open and the locked view need not be considered as they have nothing to gain in colluding. Also,
recall that in the Full_SEL approach, for what said previously, nobody (but the server) can have a
bel_locked view. This leaves us only with users having the sel_locked view. Since users having the
same views will not gain anything in colluding, the only possible collusion can happen between
the server (who has a bel_locked view) and a user who has a sel_locked view. In this situation, the
knowledge of the server allows lowering the outer fence, while the knowledge of the user allows
lowering the inner fence: merging their knowledge, they would then be able to bring down both
fences and enjoy the open view on the object. The risk of collusion then arises on objects for which
a user holds a sel_locked view and the user never had the permission to access the object (i.e., the
user never belonged to the acl of the object). Indeed, if a user would get access to an object she
previously had permission for, the user has no gain in colluding with the server.

Besides collusion between different parties, we also need to consider the risk of exposure due to
a single user merging her own views on an object at different points in time. It is easy to see that,
in the Full_SEL approach, where all non authorized users start with a locked view on the object

72 3. Selective encryption to enforce access control

__________ SEI SEL
- BEL BEL
r====" 1 | i
1 | 1 |
10 1 0
1 I 1 I
[| I |
open sel_locked
SEL SEL
L
BEL BEL
o [0}
bel_locked locked

Figure 3.23 View transitions in the Delta_SEL

(and transitions are as illustrated in Figure[3.21), there is no risk of exposure. Trivially, if the user
is released the key at the SEL level (i.e., it is possible for her to bring down the lower fence) it is
because the user has the permission for o at some point in time and therefore she is (or has been)
authorized for the object. There is therefore no exposure risk.

3.9.2 Exposure risk: Delta_ SEL

In the Delta_SEL approach, users not authorized to see an object have, at initial time, the bel_locked
view on it. From there, the view can evolve to be open, sel_locked, or locked. The view becomes
open in case the user is given the permission for o; it becomes sel_locked in the case the user is
given the permission for an object o’ that is, at the BEL level, encrypted with the same key as o;
it becomes locked if another user is given the permission for an object o’ that is, at the BEL level,
encrypted with the same key as o, thus implying that both BEL and SEL level keys are not known
to the user. View transitions are illustrated in Figure[3.23] It is easy to see that, in this case,
a single user by herself can then hold the two different views: sel_locked and bel_locked. In other
words a (planning-ahead) user could retrieve the object at initial time, when she is not authorized,
getting and storing at her side o’s bel_locked view. If, at a later point in time the user is released
the key corresponding to label ¢,(0) to make accessible to her another object o', she will acquire
the sel_locked view on o. Merging this with the past bel_locked view, she can enjoy the open view
on o. Note that the set of objects potentially exposed to a user coincides with the objects exposed
to collusion between that user and the server in the Full_SEL approach.

It is important to note that in both cases (Full_ SEL and Delta_SEL), exposure is limited to
objects that have been involved in a policy split to make other objects, encrypted with the same
BEL key, available to the user. Exposure is therefore limited and well identifiable. This allows the
owner to possibly counteract it via explicit selective re-encryption or by proper design (as discussed
in the next section).

The collusion analysis clarifies why we did not consider the third possible encryption scenario
illustrated in Section [3.7] In this scenario, all users non authorized to access an object would
always have the sel_locked view on it and could potentially collude with the server. The fact that
the BEL key is the same for all objects would make all the objects exposed (as the server would
need just one key to be able to access them all).

3.10. Experimental results 73

3.9.3 Design considerations

From the analysis above, we can make the following observations on the Delta_SEL and the Full_SEL
approaches.

o Ezxposure protection. The Full_SEL approach provides superior protection, as it reduces the
risk of exposure, which is limited to collusion with the server. By contrast, the Delta_SEL
approach exposes also to single (planning-ahead) users.

o Performance. The Delta_SEL approach provides superior performance, as it imposes over-
encryption only when required by a change in permissions. By contrast, the Full_SEL approach
always imposes a double encryption on the objects, and therefore an additional load.

From these observations we can draw some criteria that could be followed by a data owner
when choosing between the use of Delta_SEL or Full_SEL. If the data owner knows that:

o the access policy will be relatively static, or

o sets of objects sharing the same acl at initialization time represent a strong semantic rela-
tionship rarely split by policy evolution, or

o objects are grouped in the BEL in fine granularity components where most of the BEL vertices
are associated with a single or few objects,

then the risk of exposing the data to collusion is limited also in the Delta_SEL approach, which can
then be preferred for performance reasons.

By contrast, if permissions have a more dynamic and chaotic behavior, the Full_ SEL approach
can be preferred to limit exposure due to collusion (necessarily involving the server). Also, the
collusion risk can be minimized by a proper organization of the objects to reduce the possibility
of policy splits. This could be done either by producing a finer granularity of encryption and/or
better identifying object groups characterized by a persistent semantic affinity (in both cases, using
in the BEL different keys for objects with identical acl).

3.10 Experimental results

An important issue for the success of the presented techniques is their scalability. The potential for
their adoption would be greatly compromised if they were not applicable in large-scale scenarios.
A natural verification of their adaptability to large configurations could start from the extraction
of a complex authorization policy from a large system, with the goal of computing an equivalent
encryption policy using the approach presented above. Unfortunately, there is no large scale
access control system available today producing a significant test for the techniques presented in
this chapter. The most structurally rich access policies are today those that characterize large
enterprise scenarios, but these policies typically exhibit a relatively poor structure, which can be
represented in our system with a limited number of tokens and almost no effort on the part of the
construction algorithm. We then need to follow a different strategy to obtain a robust guarantee
on the ability of the proposed system to scale well, building a simulated scenario exhibiting large
scale and articulated policies. As we describe later, a single experiment was not sufficient and we

74 3. Selective encryption to enforce access control

3500 T T T T

only material vertices
with non material vertices -------

3000

2500

Number of Tokens

2000

1500 ! ! ! !
1250 1500 1750 2000

Number of Users

Figure 3.24 Number of tokens for the DBLP scenario

designed two series of experiments, covering different configurations that solicited the system in
two distinct ways.

The first scenario starts from the premise that data outsourcing platforms are used to support
the exchange and dissemination of objects among the members of a user community. The idea
then is to use a description of the structure of a large social network to derive a number of object
dissemination requests. We identified as a source for the construction of a large social network the
coauthor relationship represented within the DBLP bibliography index. DBLP [39] is a well-known
bibliographic database that currently indexes more than one million articles. The assumption at
the basis of the first series of experiments is that each paper represents an object that must be
accessible by all its authors.

The social network of DBLP coauthors has been the subject of several investigations, showing
that this network has a structure similar to that of other social networks, synthetically classified
as a power-law or self-similar structure. We implemented a C+4 program that starts from a
random author and considers all his/her publications and coauthors; then, one of the coauthors is
randomly chosen and his/her publications and corresponding coauthors are iteratively retrieved,
extending the user population and the set of objects. We then built a token-based encryption
policy corresponding to the access policy where every author has access to all the papers that
he/she has authored or co-authored.

The first metric we considered in the experiments is the number of tokens required for the
representation of the access policy. The graph in Figure [3.24] presents how the number of tokens
increases with the number of users. We observe that the growth is linear and that the number of
tokens remains low (with 2000 authors, we have 3369 tokens).

Another important metric was the one evaluating the impact of the identification of candidate
non-material vertices. This optimization presented a very limited benefit in the DBLP scenario,
as visible from Figure (18 tokens gained out of 3369, thanks to the introduction of 12 non-

3.10. Experimental results 75

75000 only material vertices
with non material vertices -------

50000

Number of Tokens

25000

Number of Users

Figure 3.25 Number of tokens for the championship scenario

material vertices). The rationale is that the structure of the social network is relatively sparse.
As it has been demonstrated by other investigations on the structure of self-similar networks, they
are characterized by a few nodes which present a high level of connectedness, whereas most of
the network nodes are loosely connected with a few other nodes and form small strictly connected
communities. Then, the construction of a token-based encryption policy for a situation like this
produces a relatively simple graph, with relatively few tokens. This is a positive and important
property, which demonstrates that our approach is immediately applicable to large social networks,
with an efficient construction.

Taking into account the behavior emerging from the above experimental scenario, it became
interesting to test the behavior of the system in a more difficult configuration, with a complex
access control policy. We were specifically interested in evaluating the benefit produced by the
application of the optimization introduced in this chapter. As representative of a potential selective
dissemination scenario, we consider the case study, also analyzed in [34, [40], of a sport news
database. The chosen service manages a system with ¢ teams, where each team is composed by
pt players and is coordinated by one manager. The service is supposed to be used by s team
supporters, referred in the following as subscribers. Moreover, a set of reporters follows the league
and uses the service to work with ¢r teams. The reporters are grouped into sets of rm elements, each
of which coordinated by one manager. In the considered scenario, each subject (team manager,
reporter, reporter manager, and subscribers) can subscribe to any number of objects, partitioned
between player news and team news. Consistently with [34,[40], the set of permissions granted to
subscribers is modeled to be quite large to evaluate the algorithms in a significant scenario. The
number of team news accessed by each subscriber, along with the player news of the same team,
follows a Zipf distribution that increases with the number s of subscribers.

The novel results presented in Figure[3.24 (continuous line) show the number of tokens required
for the representation of the policy. It is immediate to observe that the number of tokens required

76 3. Selective encryption to enforce access control

per user is significantly higher, due to the more intricate structure of the policy in this experimental
setup. Still, the number of tokens after the application of the optimization techniques increases
linearly with the increase in the number of users, with no sign of divergence for extremely large
configurations. The graph in Figure shows the advantage produced by the identification of
non-material vertices. It is immediate to observe that the advantage is significant, with a 82%
reduction on average on the number of tokens.

Overall, the experiments allow us to express two important claims. First, the approach pre-
sented in this chapter is able to manage large scenarios, particularly when the access policy presents
a structure analogous to that exhibited by social networks. Second, for complex access policies that
present a complex structure and would otherwise require a significant number of tokens per user,
the use of the optimization techniques introduced by this chapter is able to provide a significant
reduction in the complexity, keeping at a manageable level the total number of tokens required for
the representation of the policy.

3.11 Chapter summary

There is an emerging trend towards scenarios where data management is outsourced to an external
service providing storage capabilities and high-bandwidth distribution channels. In this context,
selective release requires enforcing measures to protect the data confidentiality from both unau-
thorized users as well as “honest-but-curious” servers. Current solutions provide protection by
exploiting encryption in conjunction with proper indexing capabilities, but suffer from limitations
requiring the involvement of the owner every time selective access is to be enforced or the access
policy is modified. This chapter presents a model that efficiently organizes the use of cryptographic
services for the management of an access control policy, while allowing efficient access to data by
optimizing the public catalog structure. Since the most important problem arising when using
cryptography as a way for enforcing access control is policy updates management, we introduced
the idea of enforcing the authorization policy by using a two-layer selective encryption. Our solu-
tion offers significant benefits in terms of quicker and less costly realization of authorization policy
updates and general efficiency of the system. We believe these benefits to be crucial for the success
of emerging scenarios characterized by a huge collection of data that have to be distributed in a
selective way to a variety of users.

4

Combining fragmentation and encryption to
protect data privacy

Traditional solutions for granting data privacy rely on encryption. However, dealing with encrypted
data makes query processing expensive. In this chapter, we propose a solution to enforce privacy
over data collections combining data fragmentation with encryption. We model privacy require-
ments as confidentiality constraints expressing the sensitivity of the content of single attributes
and of their associations. We then use encryption as an underlying (conveniently available) mea-
sure for making data unintelligible, while exploiting fragmentation to break sensitive associations
among attributes. We introduce both exact and heuristic algorithms computing a fragmentation
that tries to minimize the impact of fragmentation on query efficiency.

4.1 Introduction

Information is probably today the most important and valued resource. Private and governmental
organizations are increasingly gathering vast amounts of data, which are collected and maintained,
and often include sensitive personally identifiable information. In such a scenario guaranteeing the
privacy of the data, be them stored in the system or communicated to external parties, becomes a
primary requirement.

Individuals, privacy advocates, and legislators are today putting more and more attention on
the support of privacy over collected information. Regulations are increasingly being established
responding to these demands, forcing organizations to provide privacy guarantees over sensitive
information when storing, processing or sharing it with others. Most recent regulations (e.g.,
see [22] and [78]) require that specific categories of data (e.g., data disclosing health and sex life,
or data such as ZIP and date of birth that can be exploited to uniquely identify an individual [83])
to be either encrypted or kept separate from other personally identifiable information (to prevent
their association with specific individuals). Information privacy guarantees may also derive from
the need of preventing possible abuses of critical information. For instance, the “Payment Card
Industry (PCI) Data Security Standard” [77] forces all the business organizations managing credit

78 4. Combining fragmentation and encryption to protect data privacy

card information (e.g., VISA and MasterCard) to apply encryption measures when storing data.
The standard also explicitly forbids the use of storage encryption as natively offered by operating
systems, requiring access to the encryption keys to be separated from the operating system services
managing user identities and privileges.

This demand for encryption is luckily coupled today with the fact that the realization of cryp-
tographic functions presents increasingly lower costs in a computer architecture, where the factor
limiting system performances is typically the capacity of the channels that transfer information
within the system and among separate systems. Cryptography then becomes an inexpensive tool
that supports the protection of privacy when storing or communicating information.

From a data access point of view, however, dealing with encrypted information represents a
burden since encryption makes it not always possible to efficiently execute queries and evaluate
conditions over the data. In fact, a straightforward approach to guarantee privacy to a collection
of data could consist in encrypting all the data. This technique is, for example, adopted in the
database outsourcing scenario [35, 55], as discussed in Chapters[2 and [3l The assumption under-
lying approaches applying such an encryption wrapper is that all the data are equally sensitive
and therefore encryption is a price to be paid to protect them. This assumption is typically an
overkill in many scenarios. As a matter of fact, in many situations data are not sensitive per se;
what is sensitive is their association with other data. As a simple example, in a hospital the list
of illnesses cured or the list of patients could be made publicly available, while the association
of specific illnesses to individual patients is sensitive and must be protected. Hence, there is no
need to encrypt both illnesses and patients if there are alternative ways to protect the association
between them.

A promising approach to protect sensitive data or sensitive associations among data is rep-
resented by the combined use of fragmentation and encryption. Fragmentation and encryption
provide protection of data in storage or when disseminated ensuring no sensitive information is
disclosed neither directly (i.e., present in the database) nor indirectly (i.e., derived from other in-
formation present in the database). With this design, the data can be outsourced and stored on an
untrusted server, typically obtaining lower costs, greater availability, and more efficient distributed
access. The advantage of having only part of the data encrypted is that all the queries that do not
require to reconstruct confidential information will be managed more efficiently and securely. Also,
the idea that the higher-level privilege is only used when strictly necessary represents a concrete
realization of the “least privilege” principle.

We frame our work in the context of relational databases. The reason for this choice is that
relational databases are by far the most common solution for the management of the data subject
of privacy regulations; also, they are characterized by a clear data model and a simple query
language that facilitate the design of a solution. We note, however, that our model could be easily
adapted to the protection of data represented with other data models (e.g., records in files or XML
documents).

As discussed in Chapter [2, the combined use of fragmentation and encryption to protect con-
fidentiality has been initially proposed in [2], where information is stored on two separate servers
and protection relies on the hypothesis that the servers cannot communicate. This assumption
is clearly too strong in any practical situation. Our solution overcomes the above limitations: it
allows storing data even on a single server and minimizes the amount of data represented only in
encrypted format, therefore allowing for efficient query execution.

This chapter, after introducing confidentiality constraints as a simple, yet powerful, way to
capture privacy requirements, presents three different approaches for the design of a fragmentation

4.2. Confidentiality constraints 79

that looks carefully at performance issues. The first approach tries to minimize the number of
fragments composing the solution, the second is based on the affinity between pairs of attributes,
and the third exploits a complete query workload profile of the system. Then, we introduce
a complete search algorithm that computes an optimal fragmentation satisfying confidentiality
constraints, which can be adapted to each of the three optimization models. Also, for each cost
model considered, we propose an ad hoc heuristic algorithm working in polynomial time. Our
approach also manages encrypted indexes, trying to analyze the vulnerability of sensitive data due
to their introduction. The experimental results support the quality of the solutions produced by
the three heuristics, with respect to the result computed by the complete search strategy.

4.1.1 Chapter outline

The remainder of the chapter is organized as follows. Section [4.2] formally defines confidentiality
constraints. Sections 4.3 presents our model for enforcing confidentiality constraints by combin-
ing fragmentation and encryption. Section introduces the definition of minimal fragmentation
and shows that it is a NP-hard problem. Section [4.5 describes a complete search approach that
efficiently visits the solution space lattice. Section[4.6 introduces the definition of vector-minimal
fragmentation and presents a heuristic algorithm for computing a fragmentation satisfying such a
definition. Section[4.7]introduces the concept of attribute affinity. Section 4.8] presents a heuristic
algorithm for computing a fragmentation guided by the affinity. Section [4.9 introduces the cost
model based on query workload. Section presents an algorithm for computing a fragmenta-
tion guided by the cost of query execution. Section[4.11]illustrates how queries formulated on the
original data are mapped into equivalent queries operating on fragments. Section [4.12] discusses
the introduction of indexes on encrypted attributes. Section [4.13 presents the experimental re-
sults obtained by the implementation of both complete search and heuristic algorithms. Finally,
Section [4.14 presents our concluding remarks.

4.2 Confidentiality constraints

We consider a scenario where, consistently with other proposals (e.g., [2, 83]) the data to be
protected are represented with a single relation r over a relation schema R(ay,...,a,), containing
all the information that need to be protected. For simplicity, when clear from the context, we will
use R to denote either the relation schema R or the set of attributes in R (instead of using R.x).

We model in a quite simple and powerful way the privacy requirements through confidentiality
constraints, which are sets of attributes, as follows.

Definition 4.1 (Confidentiality constraint). Let A be a set of attributes, a confidentiality con-
straint ¢ over A is:

1. a singleton set {a} C A, stating that the values of the attribute are sensitive (attribute
visibility); or
2. a subset of attributes in A, stating that the association among values of the given attributes

is sensitive (association visibility).

While simple, a confidentiality constraint supports the definition of different confidentiality
requirements that may need to be expressed, such as the following.

80 4. Combining fragmentation and encryption to protect data privacy

PATIENT
[SS [Name [Occupation [Sickness [ZIP] CO:{SSN} .
— ¢1=1{Name,Occupation}
123-45-6789 A. Smith Nurse Latex al. 94140 co={Name,Sickness}
987-65-4321 B. Jones Nurse Latex al. 94141 c3={0ccupation,Sickness,ZIP}
246-89-1357 C. Taylor Clerk Latex al. 94140
135-79-2468 | D. Brown Lawyer Celiac 94139
975-31-8642 E. Cooper | Manager Pollen al. 94138
864-29-7531 F. White Designer Nickel al. 94141
(a) (b)

Figure 4.1 An example of plaintext relation (a) and its well defined constraints (b)

o The values assumed by some attributes are considered sensitive and therefore cannot be stored
in the clear. For instance, phone numbers or email addresses can be considered sensitive
values (even if not associated with any identifying information).

o The association among values of given attributes is sensitive and therefore should not be
released. For instance, while the list of (names of) patients in a hospital as well as the list of
illnesses are by themselves not confidential, the association of patient’s names with illnesses
is considered sensitive.

Note that constraints specified on the association among attributes can derive from different
requirements: they can correspond to an association that explicitly needs protection (as in the
case of names and illnesses above) or to associations that could cause inference on other sensitive
information. As an example of the latter, consider a hospital database, suppose that the names of
patients are considered sensitive, and therefore cannot be stored in the clear, and that the associa-
tion of the Occupation together with the ZIP code can work as a quasi-identifier (i.e., Occupation
and ZIP can be used, possibly in association with external information, to help identifying patients
and therefore to infer, or reduce uncertainty about, their names) [30] 83]. This inference channel
can be simply blocked by specifying a constraint protecting the association of the Occupation
with the ZIP code. As another example, consider the case where attribute Name is not considered
sensitive, but its association with Sickness is. Suppose again that the Occupation together with
the ZIP code can work as a quasi-identifier (then potentially leaking information on names). In
this case, an association constraint will be specified protecting the association among Occupation,
ZIP, and Sickness, implying that the three attributes should never be accessible together in the
clear.

We are interested in enforcing a set of well defined confidentiality constraints, formally defined
as follows.

Definition 4.2 (Well defined constraints). A set of confidentiality constraints C = {cy,...,cm} is
said to be well defined iff Vei, ¢; € C,i # J, ¢ € ¢j and cj € c;.

According to this definition, a set of constraints C over A cannot contain a constraint that is a
subset of another constraint. The rationale behind this property is that, whenever there are two
constraints ¢;, ¢; and ¢; is a subset of ¢; (or vice versa), the satisfaction of constraint ¢, implies
the satisfaction of constraint c; (see Section , and therefore c¢; is redundant.

4.3. Fragmentation and encryption for constraint satisfaction 81

Example 4.1. Consider the Patient relation in Figure|/.1(a), containing the information about
the patients of a hospital. The privacy requirements that the hospital needs to enforce, either due
to legislative or internal restrictions, are illustrated in Figure 4.1(b):

o ¢q is a singleton constraint stating that the list of SSN of patients is considered sensitive;

o ¢y and co state that the association between Name and Occupation, and the association
between Name and Sickness, respectively, are considered sensitive;

o c3 states that the association among Occupation, ZIP, and Sickness s considered sensitive
(the rationale for this is that Occupation and ZIP are a quasi-identifier [83]).

Note that also the association of patients’ Name and SSN is sensitive and should be protected.
However, such a constraint is not specified since it is redundant, given that SSN by itself has been
declared sensitive (c¢p). As a matter of fact, protecting SSN as an individual attribute implies
automatic protection of its associations with any other attribute.

4.3 Fragmentation and encryption for constraint satisfac-
tion

Our approach to satisfy confidentiality constraints is based on the use of two techniques: encryption
and fragmentation.

o Encryption. Consistently with how the constraints are specified, encryption applies at the
attribute level, that is, it involves an attribute in its entirety. Encrypting an attribute
means encrypting (tuple by tuple) all its values. To protect encrypted values from frequency
attacks [88], we assume that a salt, which is a randomly chosen value, is applied to each
encryption (similarly to the use of nonces in the protection of messages from replay attacks).

o Fragmentation. Fragmentation, like encryption, applies at the attribute level, that is, it
involves an attribute in its entirety. Fragmenting means splitting sets of attributes so that
they are not visible together, that is, the associations among their values are not available
without access to the encryption key.

It is straightforward to see that attribute visibility constraints can be solved only by encryption.
By contrast, an association visibility constraint could be solved by either: i) encrypting any (one
suffices) of the attributes involved in the constraint, so to prevent joint visibility, or i) fragmenting
the attributes involved in the constraint so that they are not visible together. Given a relation r
over schema R and a set of confidentiality constraints C on it, our goal is to fragment R granting
constraints satisfaction. However, we must also ensure that no constraint can be violated by
recombining two or more fragments. In other words, there cannot be attributes that can be
exploited for linking. Since encryption is differentiated by the use of the salt, the only attributes
that can be exploited for linking are the plaintext attributes. Consequently, ensuring that fragments
are protected from linking translates into requiring that no attribute appears in clear form in more
than one fragment. In the following, we use the term fragment to denote any subset of a given set
of attributes. A fragmentation is a set of non overlapping fragments, as captured by the following
definition.

82 4. Combining fragmentation and encryption to protect data privacy

f1 fa I3
[salt | enc | Name | [salt | enc [Occupation | [salt [enc | Sickness [ZIP |
S1 « A. Smith St n Nurse S$13 v Latex al. 94140
So B B. Jones sg 0 Nurse S14 3 Latex al. 94141
S3 0 C. Taylor Sg L Clerk S15 T Latex al. 94140
S4 § D. Brown S10 K Lawyer S16 P Celiac 94139
S5 5 E. Cooper S11 A Manager S17 o Pollen al. 94138
Sg ¢ F. White S12 I Designer S18 T Nickel al. 94141

(a) (b) (c)

Figure 4.2 An example of physical fragments for the relation in Figure[4.1(a)

Definition 4.3 (Fragmentation). Let R be a relation schema, a fragmentation of R is a set of
fragments F={F1,...,F,}, where F; C R, fori = 1,...,m, such that YF;,,F; € F,i # j :
F,NF; =0 (fragments do not have attributes in common).

In the following, we denote with FZ] the i-th fragment in fragmentation F; (the su-
perscript will be omitted when the fragmentation is clear from the context). For in-
stance, with respect to the plaintext relation in Figure [4.1(a), a possible fragmentation is
F={{Name},{Occupation},{Sickness,ZIP}}.

At the physical level, a fragmentation translates to a combination of fragmentation and encryp-
tion. Each fragment F' is mapped into a physical fragment containing all the attributes of F' in the
clear, while all the other attributes of R are encrypted. The reason for reporting all the original
attributes (in either encrypted or clear form) in each of the physical fragments is to guarantee
that any query can be executed by querying a single physical fragment (see Section [4.11). For
the sake of simplicity and efficiency, we assume that all attributes not appearing in the clear in a
fragment are encrypted all together (encryption is applied on subtuples). Physical fragments are
then defined as follows.

Definition 4.4 (Physical fragment). Let R be a relation schema, and F={F1,...,Fn} be a frag-
mentation of R. For each F;={a;,,...,a;, } € F, the physical fragment of R over F; is a relation
schema Fi(m,enc,ail s- ..y 0;,), where salt is the primary key, enc represents the encryption of all
the attributes of R that do not belong to the fragment, XORed (symbol @) before encryption with
the salt.

At the level of instance, given a fragment F;={a;,,...,a;, }, and a relation r over schema R,
the physical fragment F; of F; is such that each plaintext tuple ¢ € 7 is mapped into a tuple ¢ € f,
where f, is a relation over F; and:

o tlend = E(t[R — Fi] ® t[sall])
o tla;,] = tla;,), forj=1,...,n

Figure [4.2] illustrates an example of physical fragments for the relation schema in Figure [4.1]a)
that does not violate the well defined constraints in Figure[4.1(b).

The algorithm in Figure[4.3]shows the construction and population of physical fragments. When
the size of the attributes exceeds the size of an encryption block, we assume that encryption of
the protected attributes uses a Cipher Block Chaining (CBC) mode [88], with the salt used as the
Initialization Vector (IV); in the CBC mode, the clear text of the first block is actually encrypted

4.4. Minimal fragmentation 83

INPUT
A relation r over schema R
C ={c1,...,cm} /* well defined constraints */

ouTPUT
A set of physical fragments {F1,...,F;}
A set of relations {f,...,f;} over schemas {F'y,...,[";}

MAIN
Cs :={ceC: |c| >1} /* association visibility constraints */
Aj :={a€R: {a}¢C}
F := Fragment (A, Cy)
/* define physical fragments */
for each F={a;,...,a; } €F do
define relation ' with schema: F(salt, enc, Aiqse e s00p)
/* populate physical fragments instances */
for each tcr do
i[salt] := GenerateSalt(F,t)
tlenc] := Ep(t[aj, ... aj,] ®t[salt]) /* {aj,... aj,}=R—F */
for each a€F do [a] := t[a]
insert & inf

Figure 4.3 Algorithm that correctly fragments R

after it has been combined in binary XOR with the IV. Note that the salts, which we conveniently
use as primary keys of physical fragments (ensuring no collision in their generation), need not be
secret, because knowledge of the salts does not help in attacking the encrypted values as long as
the encryption algorithm is secure and the key remains protected.

4.4 Minimal fragmentation

We first formally discuss the properties we require to candidate fragmentations to ensure efficient
query execution.

4.4.1 Correctness

Given a schema R and a set of confidentiality constraints C on it, a fragmentation satisfies all
constraints if no fragment contains in the clear all the attributes which visibility is forbidden by a
constraint. The following definition formalizes this concept.

Definition 4.5 (Fragmentation correctness). Let R be a relation schema, F be a fragmentation
of R, and C be a set of well defined constraints over R. F correctly enforces C iff VF € F,¥c € C:
¢ L F (each individual fragment satisfies the constraints).

Note that this definition, requiring fragments not to be a superset of any constraint, implies
that attributes appearing in singleton constraints do not appear in any fragment (i.e., they are
always encrypted). Indeed, as already noted, singleton constraints require the attributes on which
they are defined to appear only in encrypted form.

In this chapter, we specifically address the fragmentation problem and therefore focus only on
the association visibility (i.e., non singleton) constraints C; C C and on the corresponding set Ay
of attributes to be fragmented, defined as Ay= {a € R : {a} ¢C}.

84 4. Combining fragmentation and encryption to protect data privacy

4.4.2 Maximal visibility

The availability of plaintext attributes in a fragment allows an efficient execution of queries. There-
fore, we aim at minimizing the number of attributes that are not represented in the clear in any
fragment, because queries using those attributes will be generally processed inefficiently. In other
words, we prefer fragmentation over encryption whenever possible and always solve association
constraints via fragmentation.

The requirement on the availability of a plain representation for the maximum number of
attributes can be captured by imposing that any attribute not involved in a singleton constraint
must appear in the clear in at least one fragment. This requirement is formally represented by the
definition of maximal visibility as follows.

Definition 4.6 (Maximal visibility). Let R be a relation schema, F be a fragmentation of R, and
C be a set of well defined constraints over R. F maximizes visibility iff VaeAy: IF € F such that
ack.

Note that the combination of maximal visibility together with the definition of fragmentation
(Definition imposes that each attribute that does not appear in a singleton constraint must
appear in the clear in exactly one fragment (i.e., at least for Definition [4.6, at most for Defini-
tion [4.3). In the following, we denote with § the set of all possible fragmentations maximizing
visibility. Therefore, we are interested in determining a fragmentation in § that satisfies all the
constraints in the system.

4.4.3 Minimum number of fragments

Another important aspect to consider when fragmenting a relation to satisfy a set of constraints is
to avoid excessive fragmentation. In fact, the availability of more attributes in the clear in a single
fragment allows a more efficient execution of queries on the fragment. Indeed, a straightforward
approach for producing a fragmentation that satisfies the constraints while maximizing visibility
is to define as many (singleton) fragments as the number of attributes not appearing in singleton
constraints. Such a solution, unless demanded by the constraints, is however undesirable since it
makes any query involving conditions on more than one attribute inefficient.

A simple strategy to find a fragmentation that makes query execution efficient consists in
finding a minimal fragmentation, that is, a correct fragmentation that maximizes visibility, while
minimizing the number of fragments. This problem can be formalized as follows.

Problem 4.1 (Minimal fragmentation). Given a relation schema R, a set C of well defined con-
straints over R, find a fragmentation F of R such that all the following conditions hold:

1. F correctly enforces C (Definition[4.5);
2. F mazimizes visibility (Definition[4.6);

3. AF' satisfying the two conditions above such that the number of fragments composing F' is
less than the number of fragments composing F.

The minimal fragmentation problem is NP-hard, as formally stated by the following theorem.

Theorem 4.1. The minimal fragmentation problem is NP-hard.

4.4. Minimal fragmentation 85

Proof. The proof is a reduction from the NP-hard problem of minimum hypergraph coloring [50],
which can be formulated as follows: given a hypergraph H(V, E), determine a minimum coloring
of H, that is, assign to each vertex in V a color such that adjacent vertices have different colors,
and the number of colors is minimized.

Given a relation schema R and a set C of well defined constraints, the correspondence between
the minimal fragmentation problem and the hypergraph coloring problem can be defined as fol-
lows. Any vertex v; of the hypergraph H corresponds to an attribute a; € Ay. Any edge e; in
‘H, which connects v;,,...,v;,, corresponds to a constraint ¢;={a;,,...,a;.}, ¢; € Cy. A fragmen-
tation F={F1(a1,,...,01,),---, Fplap,,...,ap)} of R satisfying all constraints in C corresponds
to a solution S for the corresponding hypergraph coloring problem. Specifically, S uses p colors
and {vy,,...,v1, }, corresponding to the attributes in F'1, are colored using the first color, vertices
{viy, ..., vi; }, corresponding to the attributes in F;, are colored with the i-th color, and vertices
{Vpy, ..., Up }, corresponding to the attributes in F'p,, are colored using the p-th color. As a conse-
quence, any algorithm finding a minimal fragmentation can be exploited to solve the hypergraph
coloring problem. O

The hypergraph coloring problem has been extensively studied in the literature, reaching in-
teresting theoretical results. In particular, assuming NP # Z PP, there are no polynomial time
approximation algorithms for coloring k-uniform hypergraphs with approximation ratio O(n!'=¢)

for any fixed € > 0 [60, 65] .}

4.4.4 Fragmentation lattice

To characterize the space of possible fragmentations and the relationships among them, we first
introduce the concept of fragment vector as follows.

Definition 4.7 (Fragment vector). Let R be a relation schema, C be a set of well defined constraints
over R, and F={F1,..., F,} be a fragmentation of R mazimizing visibility. The fragment vector
Vr of F is a vector of fragments with an element Vr[a] for each a € Ay, where the value of Vr[a]
is the unique fragment F;€F containing attribute a.

Example 4.2. Let F = {{Name},{Occupation},{Sickness,ZIP}} be a fragmentation of the rela-
tion schema in Figure 4.1(a). The fragment vector is the vector Vr such that:

o Vr[Name|={Name};

o Vr[Occupation]={0ccupation};

o Vr[Sickness|=Vx[ZIP|={Sickness,ZIP}.

Fragment vectors allow us to define a partial order between fragmentations as follows.

Definition 4.8 (Dominance). Let R be a relation schema, C be a set of well defined constraints
over R, and F, F' be two fragmentations of R mazimizing visibility. We say that F' dominates
F, denoted F=F', iff Ve[a|TVrlal,V a € Ay. We say F < F' iff FXF and F # F'.

n a minimization framework, an approximation algorithm with approximation ratio p guarantees that the cost
C' of its solution is such that C/C* < p, where C* is the cost of an optimal solution [50]. On the contrary, we
cannot perform any evaluation on the result of a heuristic.

86 4. Combining fragmentation and encryption to protect data privacy

N[O[S|Z

NO|S|Z

NOS|Z

NS|O|Z N|OS|Z

NOZ|S NO|SZ NSZ|O NS|0Z NZ\OS‘ N|OSZ

=

NOSZ

Figure 4.4 An example of fragmentation lattice

Definition 4.8 states that fragmentation 7' dominates fragmentation F if 7’ can be computed
from F by merging two (or more) fragments composing F.

Example 4.3. Let F;={{Name,ZIP}, {Occupation,Sickness}} and Fy={{Name},
{Occupation,Sickness}, {ZIP}} be two fragmentations of the relation schema in Figure j.1(a).
Since F1 can be obtained from Fo by merging fragments {Name} and {ZIP}, it results that Fo<F1.

The set § of all possible fragmentations maximizing visibility, together with the dominance
relationship just introduced, form a lattice, as formally stated in the following definition.

Definition 4.9 (Fragmentation lattice). Let R be a relation schema, and C be a set of well defined
constraints over R. The fragmentation lattice is a pair (§, <), where § is the set of all fragmen-
tations of R maximizing visibility and < is the dominance relationship among them, as defined in

Definition[4.8.

The top element F 1 of the lattice represents a fragmentation where each attribute in A, appears
in a different fragment. The bottom element F of the lattice represents a fragmentation composed
of a single fragment containing all attributes in A;. As an example, Figure [4.4] illustrates the
fragmentation lattice for the example in Figure/4.1, with A ;={Name, Occupation, Sickness, ZIP}.
Here, attributes are represented with their initials and fragments are divided by a vertical line.
Furthermore, fragmentations that correctly enforce (Definition [4.5) constraints in Figure |4.1(b)
appear as solid boxes, while fragmentations that violate at least a constraint appear as dotted
boxes.

An interesting property of the fragmentation lattice is that given a non correct fragmentation
Fi, any fragmentation F; such that F;=<F; is non correct.

Theorem 4.2. Given a fragmentation lattice (§,=<), VF;, F; € § such that F;=F;, F; non cor-
rect = F; non correct.

Proof. If F; is not correct, then 3c€Cy and JFieF; such that ¢CF*®. Since F;j=F;, by Defini-
tion [4.8] EIFjé}'j such that F*CFJ. Then ¢CF'CF7, and Fj is not correct. O

By construction, each path in the lattice is characterized by a locally minimal fragmentation,
which is the fragmentation such that all its descendants in the path correspond to non correct
fragmentations. Intuitively, such locally minimal fragmentations can be determined either via a

4.5. A complete search approach to minimal fragmentation 87

NjOIs|z |

NO|S|Z NS[O|z [xzois |[nlosiz | Nlozls [Njoisz |

ZIN TN

NOS|Z ' NOZ|S = NO|SZ ' NSZ|O = NS|0Z Nz|@‘ N|0SZ

NOSz

Figure 4.5 A fragmentation tree for the fragmentation lattice in Figure[4.4

top-down visit or via a bottom-up visit of the lattice. The number of fragmentations at level 4
(i-e., the solutions composed of (n — i) + 1 fragments) of the lattice is {," .}, which is the number
of Stirling of the second kind [53]. As a consequence, |§| = 3, = 0"{,",} = By, which is the
Bell number [53]. The second level of the lattice then contains a quadratic number of solutions
(O(n?)), and an exponential number of fragmentations (O(2")) resides in the first to last level.
The top-down strategy, exploiting the fact that the number of fragments increases while going
down in the lattice, seems then to be more convenient. In the following section, we then propose
an exact algorithm that performs a top-down tree traversal of the lattice (i.e., each fragmentation
is visited at most once) and that generates only a subset of all possible fragmentations.

4.5 A complete search approach to minimal fragmentation

Although the number of possible fragmentations in § is exponential in [A¢|, the set of attributes
to be fragmented is usually limited in size and therefore a complete search evaluating the different
fragmentations maximizing visibility could be acceptable. To ensure the evaluation of each correct
fragmentation maximizing visibility exactly once, we define a fragmentation tree as follows.

Definition 4.10 (Fragmentation tree). Let (§,=) be a fragmentation lattice. A fragmentation
tree of the lattice is a spanning tree of (§,=) rooted in F.

We propose here a method for building a fragmentation tree over a given fragmentation lattice.
To this aim, we assume the set Ay of attributes to be totally ordered, according to a relation-
ship, denoted <4, and assume that in each fragment F' attributes are maintained ordered, from
the smallest, denoted F.first, to the greatest, denoted F.last. We then translate the order re-
lationship among attributes into an order relationship among fragments within a fragmentation,
by considering fragments to be ordered according to the order dictated by their smallest (.first)
attribute. Since, within a fragmentation, each attribute appears in exactly one fragment, the frag-
ments in each fragmentation are totally ordered. Each fragmentation F is then a sequence, denoted
F =[Fy,..., F,], of fragments, where Vi,j =1,...,n: i < j, F,.first <4 Fj.first. In this case, we
say that fragment F; precedes fragment Fj in fragmentation F. Given two fragments Fj, F; with
i < j, we say that I} fully precedes F; iff all attributes of F; are smaller than all attributes in F},
that is, Fj.last <4 F}.first. Note that full precedence is only a partial ordering.

To ensure tree traversal and therefore to avoid computing a fragmentation twice, we exploit the
precedence relationship among fragments and associate with each fragmentation F = [F},..., F,]

88 4. Combining fragmentation and encryption to protect data privacy

a marker F; that is the non singleton fragment such that Vj > i, F}; is a singleton fragment. For
the root, the marker is its first fragment. Intuitively, the marker associated with a fragmentation
denotes the starting point for fragments to be combined to obtain children of the fragmentation
(as a combination with any fragment preceding it will produce duplicate fragmentations). We then
define an order-based cover for the lattice as follows.

Definition 4.11 (Order-based cover). Let (§, <) be a fragmentation lattice. An order-based cover
of the lattice, denoted T(V,E), is an oriented graph, where V.= §, and VF,, F. € V, (Fp,Fe)
€ E iff, being F?, the marker of F, there exists i,j with m < i and F? fully preceding F;’, such
that:

o VI <jl#i, Ff =FP;
o Ff =F[F};

oVl>j, Ff :Fl’;l.

As an example, consider the order-based cover in Figure [4.5, where <4 is the lexicographic
order. It is built on the fragmentation lattice in Figure 4.4 and the underlined fragments are the
markers. Given fragmentations F,=[N|O|S|Z] and F.=[N|OS|Z], edge (F,,F.) belongs to 7 since
for i = 2 and j = 3 we have that F{=F=N; Fs=F)F}=0S; and F§=F} ,=Z7. The order-based
cover so defined corresponds to a fragmentation tree for the lattice, as stated by the following
theorem.

Theorem 4.3. The order-based cover T of a lattice (F, <) is a fragmentation tree for (F, <) with
root F.

Proof. T is a fragmentation tree for (§,=<) if: (1) each vertex at level ¢ (but the root F) has
exactly one parent at level i — 1, and (2) each edge of T is an edge in (§, <X).

1. Each wvertex has at most one parent. Suppose, by contradiction, that a vertex
F=[F,,...,F,_4] is a child of two different vertices in 7, say Fi=[F}{,...,F}] and
Fo=[F2,... ,F2]. Therefore, there exists a fragment F;, in F obtained as Fillell. Analo-

gously, there exists a fragment F;, in F obtained as F}, F},.

Suppose also, without loss of generality, i1 < io. By Definition[4.11, for each F in F, k # i1,
there exists a fragment F}, in F such that F} =F} and ki > k (either k1 = k or k; = k+1).
Therefore, there exists a non singleton fragment Fllel-2 with [> i5. As a consequence,
l > iy, thus the marker for F; must be greater than or equal to i;, by definition. This

generates the contradiction.

Each vertex has at least one parent. Let F be a vertex at level ¢ (i # 1) in T (F£F7),
F, be its marker, and F),.last be the highest attribute in F},,. Consider fragmentation F,,
containing all the fragments in F but F,, and the two fragments obtained by splitting F,
into F,,,—{Fy,.last} and {F,,.last}. The marker of F, precedes m, since all the fragments
following F,, in F are singleton in F, as well. Also, the additional fragment {F),.last} is
singleton and it follows F?,, according to relationship <4 (since it is the maximum attribute).
Therefore, by Definition [4.11] there is an edge (F,,F) in 7, then F,, is parent of F and F,
has exactly one fragment more than F (i.e., F, is at level ¢ — 1).

4.5. A complete search approach to minimal fragmentation 89

FRAGMENT(A;,Cy)

for each a; €Ay do Fi-r := {a;} /* root of the search tree F1 */
marker[Fr] =1

Min := F~ /* current minimal fragmentation */

MinNumFrag := Evaluate(Min)

SearchMin(F) /* recursive call that builds the search tree */
return(Min)

SEARCHMIN (F,)
localmin := true /* minimal fragmentation */
for i:=marker[Fp]...(|Fp|-1) do

for j:=(i+1)...|F,| do

if F,ip.last<AFf.ﬁ7"st then /* F? fully precedes Ff */
for l:=1...|F,| do
case:
(I<j A 1#£i): Ff = FP

(I>3): =T
(1=1): Ff = FipFJP
marker[F.| =1
if SatCon(F;) then
localmin := false

SearchMin(F.) /* recursive call on correct fragmentation */
if localmin then
nf := Evaluate(F,)
if nf<MinNumFrag then
MinNumFrag := nf
Min := F,
SATCON(F)
for each CECf do
if ¢CF then return(false)
return(true)

Figure 4.6 Function that performs a complete search

be an edge in 7. By Definition [4.11] it

2. Each edge in T is an edge in (§,=). Let (F, .7: c)

follows that F,=<F,, then (F,,F.) is an edge o
O

4.5.1 Computing a minimal fragmentation

Our complete search function, function Fragment in Figure[4.6] performs a depth first search on
the fragmentation tree 7 built as an order-based cover. Besides exploiting the tree structure, our
proposal takes advantage of the result of Theorem by pruning the fragmentation tree to avoid
the visit of subtrees composed only of fragmentations violating constraints (i.e., the children of a
non correct parent).

The function takes as input the set Ay of attributes to be fragmented and the set C; of well
defined non singleton constraints. The function uses variables: marker{F], representing the position
of the marker within fragmentation F; Min, representing the current minimal fragmentation; and
MinNumFrag, representing the number of fragments composing Min. First, the function initializes
variable Min to Ft and variable MinNumF'rag to the number of fragments in F+. Then, it calls
function SearchMin on F that iteratively builds the children of F1 according to Definition[4.11.
Function SearchMin(F,) is then recursively called on each fragmentation F., child of F,, only
if F. satisfies all the constraints (i.e., if function SatCon returns true). The function exploits
the fact that the number of fragments decreases while going down the lattice and compares Min

90 4. Combining fragmentation and encryption to protect data privacy

[SearchMin(}'p)[Fip[

e
=

F. [SatCon(Fy)[SearchMin(F.)[Evaluate(F,)] Min |

1
N[O[S[Z N[O [NOJS|Z false -
S |NS|O|Z false -
Z |NZ|O|S true NZ|O|S
O | S [N|OS|Z true N|OS|Z
Z |N|OZ|S true N|OZ|S
S | z |NjO|SzZ true N|O|SZ
NZ[O]S NZ|O| - = -
S — — _
0 | s |Nz|OS true NZ|0S
NZ]OS — - . - - 2 NZ[OS
N|OS|Z OS| Z |N|OSZ false - 3
N|OZ[S OZ| S = - - 3
N|O[SZ e - - - 3
(a)
Noslz Nsjolz [Nz Njolsz |

Figure 4.7 An example of the execution of function Fragment in Figure [4.6]

with a fragmentation only if it does not have correct children (i.e., it is a candidate minimal
fragmentation).

It is interesting to note that, by substituting the definition of the Evaluate function with
any other cost function monotonic with respect to the dominance relationship, the given function
Fragment can determine the minimum cost/maximum gain fragmentation in §.

The fragmentation tree generated by function Fragment in Figure[4.6 according to the order-
based cover introduced in Definition [4.11]is not balanced. Indeed, the fragmentation tree is built
by inserting the vertices in a specific order, starting from Ft and inserting, at each level of the
tree, the vertices from left to right. This implies that each vertex in the tree at the i-th level has,
as parent, the leftmost vertex in the (i — 1)-th level that satisfies Definition [4.11l Consequently,
as it is visible from Figure[4.5 the length of the paths from F+ to the leaves of the fragmentation
lattice decreases when moving from the left to the right in the tree.

Example 4.4. Figure|4.7 illustrates the execution, step by step, of function SearchMin applied
to Example[4.1. The columns of the table in Figure|.7(a) represent the call to SearchMin with its
parameter F; the fragments F¥ and FJp merged; the resulting fragmentation F.; the value of Sat-
Con on Ff; the possible recursive call to SearchMin(F.); the result of function Evaluate(F))
(i.e., the number of fragments in Fp), when computed; the updates to Min. Figure|4.7(b) il-
lustrates the tree built by the recursive calls of function SearchMin on the considered example,
with the number of fragments necessary for comparison with Min at the right of the corresponding
fragmentations. At the beginning, variable Min is initialized to [N|O|S|Z] and the corresponding
MinNumPFrag is set to 4. The function then calls function SearchMin on [N|O|S|Z]. At the
first iteration of the two for loops in SearchMin([N|O|S|Z]), fragments F¥=N and FY=0 are

4.5. A complete search approach to minimal fragmentation 91

merged, thus generating the fragmentation [NO|S|Z] that violates constraint c¢1. The second frag-
mentation generated is [NS|O|Z], which violates c3. The third fragmentation [NZ|O|S] is correct
and SearchMin([NZ|O|S]) is recursively called, which in turn calls SearchMin([NZ|OS]). Since
the two fragments in [NZ|OS] cannot be merged (Z £a O), SearchMin is not further called.
Therefore, the function compares the number of fragments composing [NZ|OS], which is 2, with
MinNumFrag and updates Min accordingly. The recursive calls on the other fragmentations are
processed in an analogous way. The final minimal fragmentation computed by the function is
[NZ|OS] with 2 fragments only.

4.5.2 Correctness and complexity

Before proving the complexity of function Fragment in Figure[4.6] we introduce a lemma, proving
that function Fragment computes all correct fragmentations, while it never generates more than
once the same solution.

Lemma 4.1. Function Fragment in Figure 4.0 visits all correct fragmentations in T ezactly
once.

Proof. The function starts from the root of 7 and recursively visits it with a depth-first strategy.
At each call of SearchMin(F),) it generates all the children of F,,, according to Definition [4.11,
by the first two for loops and the following if instruction. Since SearchMin is recursively called
only on correct solutions, the subtrees rooted at non correct children are not visited. However, by
Theorem no correct solution belongs to these subtrees.]

Theorem 4.4 (Correctness). Function Fragment in Figure /.6 terminates and finds a minimal
fragmentation (Problem[].1).

Proof. Function Fragment in Figure[4.6 always terminates since, at each recursive call, it combines
two of the fragments in the parent to compute its children. Therefore, the maximum reachable
depth is [Ay|.

We now prove that a solution F computed by this function over A; and C; is a minimal
fragmentation. According to Problem a fragmentation F is minimal if and only if (1) it is
correct, (2) it maximizes visibility, and (3)AF’ composed of less fragments than F and satisfying
the two conditions above. A fragmentation F computed by function Fragment in Figure 4.6]
satisfies these three properties.

1. The computed fragmentation F is correct since function SearchMin is recursively called only
on correct fragmentations F,, (i.e., when SatCon is true). Therefore only correct solutions
are assigned to the returned solution F (i.e., Min).

2. F is a fragmentation of R maximizing visibility, since any solution generated by the function
is obtained by merging fragments in F+. F 1 is a fragmentation maximizing visibility, since
it contains all attributes in Ay and each a€.Ay appears exactly in one fragment. The merge
operation in the SearchMin function simply concatenates two fragments into a single one,
thus producing a fragmentation F such that the condition of maximal visibility is satisfied.

3. F has minimum number of fragments, since the function visits all the correct solutions in
7 and compares MinNumFrag with the number of fragments in solutions having only non

92 4. Combining fragmentation and encryption to protect data privacy

correct children. By Definition 4.8, the correct solutions that are not compared with F have
a number of fragments greater or equal than F.

Therefore the solution F computed by function Fragment in Figure[4.6 is a minimal fragmenta-
tion. L]

Theorem 4.5 (Complexity). Given a set C={c1,...,cm} of constraints and a set A={ay,...,a,}
of attributes the complezity of function Fragment(A,C) in Figure[4.6is O(B,, - m) in time.

Proof. The proof comes directly from Lemma [4.1] In the worst case, each fragmentation in F,
which are O(B,,) in number, is generated exactly once by function Fragment in Figure 4.6, Also,
function SatCon is called once for each solution generated and checks if all constraints, which are
m in number, are satisfied. The overall time complexity is therefore O(B,, - m). O

4.6 A heuristic approach to minimize fragmentation

In this section, we present a heuristic algorithm for Problem 4.1/to be applied when the number of
attributes in the schema does not allow a complete exploration of the solution space. The heuristic
is based on the definition of vector minimality, which is then exploited to efficiently find a correct
fragmentation maximizing visibility.

A wvector-minimal fragmentation is formally defined as a fragmentation F that is correct, maxi-
mizes visibility, and all fragmentations that can be obtained from F by merging any two fragments
in F violate at least one constraint.

Definition 4.12 (Vector-minimal fragmentation). Let R be a relation schema, C be a set of well
defined constraints, and F be a fragmentation of R. F s a vector-minimal fragmentation iff all
the following conditions are satisfied:

1. F correctly enforces C (Definition[4.5);
2. F mazimizes visibility (Definition[4.6);
3. BF' satisfying the two conditions above such that F<F'.

According to this definition of minimality, it easy to see that while a minimal fragmentation is
also vector-minimal, the vice versa is not necessarily true.

Example 4.5. Consider fragmentations F1 and Fo of Example[4.5, and the set of constraints in
Figure 4.1(b). Since Fo<F1, Fao is not vector-minimal. By contrast, F1 is vector-minimal. As
a matter of fact, F1 contains all attributes of relation schema Patient in Figure|4.1(a) but SSN
(mazimal visibility); satisfies all constraints in Figure|4.1(b) (correctness); and no fragmentation
obtained from it by merging any pair of fragments satisfies the constraints.

4.6.1 Computing a vector-minimal fragmentation

The definition of vector-minimal fragmentation allows us to design a heuristic approach for Prob-
lem [4.1 that works in polynomial time and computes a fragmentation that, even if it is not nec-
essarily a minimal fragmentation, it is however near to the optimal solution, as the experimental
results show (see Section[4.13).

4.6. A heuristic approach to minimize fragmentation 93

FRAGMENT(A;,Cy)

A_ToPlace := Ay
C_ToSolve := Cy
Min = 0
for each a€ A_ToPlace do /* initialize arrays Con[] and N_con[] */
Conla] := {c¢ € C_-ToSolve: a € c}
N_conla] := |Conl[a]|
repeat
if C_ToSolve # 0 then
let attr be an attribute with the maximum value of N_con[]
for each ¢ € (Conlatir] N C_ToSolve) do
C_ToSolve := C_ToSolve — {c} /* adjust the constraints */
for each a € ¢ do N_con[a] := N_con[a]—1 /* adjust array N_conl[] */
else /* since all the constrains are satisfied, choose any attribute in A_ToPlace */
let attr be an attribute in A_ToPlace
A_ToPlace := A_ToPlace — {attr}
inserted := false /* try to insert attr into the existing fragments */
for each F € Min do /* evaluate if F' U {attr} satisfies the constraints */
satisfies = true
for each ¢ € Conlattr] do
if ¢ C (F U {attr}) then
satisfies := false /* choose the next fragment */
break
if satisfies then
F := F U {attr} /* attr has been inserted into F' */
inserted := true
break
if NOT inserted then /* insert attr into a new fragment */
add {attr} to Min
until A_ToPlace = 0
return(Min)

Figure 4.8 Function that finds a vector-minimal fragmentation

Our heuristic method starts with an empty fragmentation and, at each step, selects the attribute
involved in the highest number of unsolved constraints. The rationale behind this selection criterion
is to bring all constraints to satisfaction in a few steps. The selected attribute is then inserted into
a fragment that is determined in such a way that there is no violation of the constraints involving
the attribute. If such a fragment does not exist, a new fragment for the selected attribute is
created. The process terminates when all attributes have been inserted into a fragment. Figure 4.8]
illustrates function Fragment that implements this heuristic method. The function takes as input
the set Ay of attributes to be fragmented, and the set Cs of well defined non singleton constraints,
used to initialize variables A_ToPlace and C_ToSolve, respectively. It computes a vector-minimal
fragmentation Min of Ay as follows.

First, the function initializes Min to the empty set and creates two arrays Con|| and N_con/|]
that contain an element for each attribute a in A_ToPlace. Element Con[a] contains the set of con-
straints on a, and element N_con[a] is the number of non solved constraints involving a (note that,
at the beginning, N_con[a] coincides with the cardinality of Con[a]). The function then executes
a repeat until loop that, at each iteration, places an attribute attr into a fragment as follows. If
there are constraints still to be solved (C-ToSolve= () attr is selected as an attribute appearing in
the highest number of unsolved constraints. Then, for each constraint ¢ in Con[attr)NC_-ToSolve,
the function removes ¢ from C_ToSolve and, for each attribute a in ¢, decreases N_con[a] by
one. Otherwise, that is, if all constraints are solved (C_ToSolve= (}), the function chooses attr
by randomly extracting an attribute from A_ToPlace and removes it from A_ToPlace. Then, the

94 4. Combining fragmentation and encryption to protect data privacy

function looks for a fragment F' in Min in which attr can be inserted without violating any con-
straint including attr. If such a fragment F' is found, attr is inserted into F', otherwise a new
fragment {attr} is added to Min. Note that the search for a fragment terminates as soon as a
fragment is found (inserted=true). Also, the control on constraint satisfaction terminates as soon
as a violation to constraints is found (satisfies=false).

Example 4.6. Figure[4.9 presents the execution, step by step, of function Fragment in Figure|4.8
applied to the example in Figure|4.1. The left hand side of Figure[4.9 illustrates the evolution of
variables attr, Min, C_ToSolve, and A_ToPlace, while the right hand side graphically illustrates the
same information through a matriz with a row for each attribute and a column for each constraint.
If an attribute belongs to an unsolved constraint c;, the corresponding cell is set to X; otherwise,
if ¢; is solved, the cell is set to v'. At the beginning, Min is empty, all constraints are unsolved,
and all attributes need to be placed. In the first iteration, function Fragment chooses attribute
Name, since it is one of the attributes involved in the highest number of unsolved constraints.
The constraints in Con[Name] become now solved, N_conla;] is updated accordingly (for all the
attributes in the relation), and fragment {Name} is added to Min. Function Fragment proceeds
in an analogous way by choosing attributes Occupation, Sickness, and Zip. The final solution is
represented by fragmentation Min={{Name,ZIP}, {Occupation,Sickness}}, which corresponds to
the one computed by the complete search function in Figure 4.6

4.6.2 Correctness and complexity

The correctness and complexity of function Fragment in Figure [4.8 are stated by the following
theorems.

Theorem 4.6 (Correctness). Function Fragment in Figure[4.8 terminates and finds a vector-
minimal fragmentation (Definition[{.12).

Proof. Function Fragment in Figure[4.8 terminates since each attribute is considered only once,
and the repeat until loop is performed till all the attributes are extracted from A_ToPlace (which
is initialized to Ay).

We now prove that a solution F computed by this function over .4, and Cy is a vector-minimal
fragmentation. According to Definition [4.12] a fragmentation F is vector-minimal if and only if
(1) it is correct, (2) it maximizes visibility, and (3) AF":F<F' that satisfies the two conditions
above. A fragmentation F computed by function Fragment in Figure [4.8 satisfies these three
properties.

1. Function Fragment inserts attr into a fragment F if and only if FU{attr} satisfies the
constraints in Con[attr]. By induction, we prove that if FU{attr} satisfies constraints in
Conlattr], it satisfies all constraints in C.

If {attr} is the first attribute inserted into F', FU{attr}={attr}. Since attr € Ay, then the
set {attr} satisfies all constraints in C. Otherwise, if we suppose that F' already contains
at least one attribute and that it satisfies all constraints in C, then, by adding attr to F
the constraints that may be violated are only the constraints in Conlattr]. Consequently, if
FU{attr} satisfies all these constraints, it satisfies all constraints in C.

We can therefore conclude that F is a correct fragmentation.

4.6. A heuristic approach to minimize fragmentation 95

1 co ¢z | N_con|a;]
Name X X 2
Occupation | X X 2
Min=0 Sickness X X 2
C_ToSolve={cy,ca,c3} ZIP X 1
A_ToPlace={Name,Occupation,Sickness,ZIP} ToSolve yes yes yes
cgftr - Namf c1 co cg | Ncon|a
on|[Name|={c1,c2} ome 77 0
Occupation | v/ X 1
Min = {{Name}} Sickness v X 1
ZIP X 1
C_ToSolve = {c3} TG0l 7
A_ToPlace = {Occupation,Sickness,ZIP} oote yes

attr = Occupation

N i
ConlOccupation]={cy,c3} €1 _C2 C3 conla;]

Name v 0

Occupation | v/ v 0
Min = {{Name} ,{Occupation}} iigkness v j 8
C_ToSolve = () T -

A_ToPlace = {Sickness,ZIP}

attr = Sickness

N .
Con[Sickness]={ca,c3} €L _C2 C3 conla;]

Name v v 0
Occupation | v/ v 0
Min = {{Name},{Occupation,Sickness}} ;;;kness v \\; 8
C_ToSolve = ()
A_ToPlace = {ZIP} ToSolve v v
attr = 7
c1 co c3| Noconla;
Con[Z)={c3} — \/1 \/2 3 ; [as]
Occupation | v/ v 0
Min = {{Name,ZIP} {Occupation,Sickness}}} iigkness v j 8
C_ToSolve = ()
A_ToPlace = () ToSolve v v

Figure 4.9 An example of the execution of function Fragment in Figure[4.8

2. Since each attribute @ in Ay is inserted exactly into one fragment, function Fragment
produces a fragmentation F such that the condition of maximal visibility is satisfied.

3. By contradiction, let ' be a fragmentation satisfying the constraints in Cy, maximizes vis-
ibility, and such that F < F'. Let VF and V& be the fragment vectors associated with F

96 4. Combining fragmentation and encryption to protect data privacy

and F’, respectively.

First, we prove that F’ contains a fragment Vz[a;] that is the union of two different frag-
ments, Vr[a;] and Vr[a;], of F. Second, we prove that function Fragment cannot generate
two different fragments whose union does not violate any constraint. These two results gen-
erate a contradiction since Vz[a;], which contains Vr[a;]UVr[a,], is a fragment of F’, and
thus it does not violate the constraints.

(a) Since F < F', there exists a fragment such that Vr[a;] C V& [a;], and then there exists

an attribute a; (with j # ¢) such that a; € Vz[a;] and a;¢ Vr[a;]. Note that a;#a;
because, by definition, a; € Vg[a;] and a; € Vea;).
Vrla;] and Vg[a;] are the fragments that contain a;. We now show that, not
only a;€ Vg/[a,], but also the whole fragment Vr[a;]C Vr[a;]. Since, a;€ Ve [a;] and
a;€ Vi a;] we have that Ve [a;] = Velas], but since Vr[a;] C Ve/la;] we have that
Vrla;]C Ve la;] and therefore (Vrla;] U Vrla;]) C Viela,].

(b) Let Fyj, and Fy, be the two fragments computed by function Fragment, corresponding
to Vr[a;] and Vr[a,], respectively. Assume, without loss of generality, that h < k
(since the proof in the case h > k immediately follows by symmetry). Let aj, be the
first attribute inserted into Fj by the function. Recall that the function inserts an
attribute into a new fragment if and only if the attribute cannot be inserted into the
already-existing fragments (e.g., F',) without violating constraints. Therefore, the set
of attributes FpU{as, } violates a constraint as well as the set Vr[a;] U Vr[a;] that
contains F'U{a, }.

This generates a contradiction.

Therefore the solution F computed by function Fragment in Figure 4.8 is a vector-minimal
fragmentation. O

Theorem 4.7 (Complexity). Given a set C={c1,...,cm} of constraints and a set A={aq,...an}
of attributes the complezity of function Fragment(A,C) in Figure[{.8 is O(n®m) in time.

Proof. To choose attribute attr from A_ToPlace, in the worst case function Fragment in Figure 4.8
scans array N_con[], and adjusts array N_con]| for each attribute involved in at least one constraint
with attr. This operation costs O(nm) for each chosen attribute. After the choosing phase, each
attribute is inserted into a fragment. Note that the number of fragments is O(n) in the worst case.
To choose the right fragment that will contain attr, in the worst case the function tries to insert it
into all fragments F'€F, and compares FU{attr} with the constraints in Con[attr]. Since the sum
of the number of attributes in all the fragments is O(n), then O(n) attributes will be compared
with the O(m) constraints containing attr, giving, in the worst case, a O(nm) complexity for each
attr. Thus, the complexity of choosing the right fragment is O(n?m). We can then conclude that
the overall time complexity is O(n?m). O

4.7 Taking attribute affinity into account

The computation of a minimal fragmentation exploits the basic principle according to which the
presence of a high number of plaintext attributes permits an efficient execution of queries. Although

4.7. Taking attribute affinity into account 97

N 10 15 5
O 5 10
S 20
Z

Figure 4.10 An example of affinity matrix

this principle may be considered acceptable in many situations, other criteria can also be applied for
computing a fragmentation. Indeed, depending of the use of the data, it may be useful to preserve
the associations among some attributes. As an example, consider the fragmentation in Figure 4.2]
and suppose that the data need to be used for statistical purposes. In particular, suppose that
physicians should be able to explore the link between a specific Sickness and the Occupation
of patients. The computed fragmentation however does not make visible the association between
Sickness and Occupation, thus making the required analysis not possible (as it would violate the
constraints). In this case, a fragmentation where these two attributes are stored in clear form in
the same fragment is preferable to the computed fragmentation. The need for keeping together
some specific attributes in the same fragment may not only depend on the use of the data but
also on the queries that need to be frequently executed on the data. Indeed, given a query @
and a fragmentation F the execution cost of () varies according to the specific fragment used
for computing the query. This implies that, with respect to a specific query workload, different
fragmentations may be more convenient than others in terms of query performance.

To take into consideration both the use of the data and the query workload in the fragmentation
process, we exploit the concept of attribute affinity traditionally applied to express the advantage
of having pairs of attributes in the same fragment in distributed DBMSs [76] and that is therefore
adopted by schema design algorithms using the knowledge of a representative workload for com-
puting a suitable partition. In our context, attribute affinity is also a measure of how strong the
need of keeping the attributes in the same fragment is. By considering the total order relationship
<4 among attributes in A, and assuming a; to denote the i-th attribute in the ordered sequence,
the affinity between attributes is represented through an affinity matriz. The matrix, denoted M,
has a row and a column for each attribute appearing in non singleton constraints, and each cell
Ma;,a;] represents the benefit obtained by having attributes a; and a; in the same fragment.
Clearly, the affinity matrix contains only positive values and is symmetric with respect to its main
diagonal. Also, for all attributes a;, MJa;, a;] is not defined. The affinity matrix can then be
represented as a triangular matrix, where only cells M|a;, a;], with ¢ < j (i.e., a;<aa;), are rep-
resented. Figurel4.10 illustrates an example of affinity matrix for relation Patient in Figure 4.1,
where < 4 is the lexicographic order.

The consideration of attribute affinity naturally applies to fragments and fragmentations. Frag-
mentations that maintain together attributes with high affinity are to be preferred. To reason about
this, we define the concept of fragmentation affinity. Intuitively, the affinity of a fragment is the
sum of the affinities of the different pairs of attributes in the fragment; the affinity of a frag-
mentation is the sum of the affinities of the fragments in it. This is formalized by the following
definition.

Definition 4.13 (Fragmentation affinity). Let R be a relation schema, M be an affinity matriz for

98 4. Combining fragmentation and encryption to protect data privacy

R, C be a set of well defined constraints over R, and F={F1,...,F,} be a correct fragmentation
of R. The affinity of F, denoted affinity (F), is computed as:

affinity (F) = > p_y aff(Fi), where aff(Fy) = Zai,ajeFk,Kj Mla;, aj] is the affinity of fragment
Fk, k=1...n.

As an example, consider the affinity matrix in Figure and fragmentation F={{Name,ZIP},
{Occupation,Sickness}}. Then, affinity(F) = aff ({Name,ZIP}) + aff ({Occupation,Sickness) =
MIN,Z] + M][O,S] = 5+5 = 10. With the consideration of affinity, the problem becomes therefore
to determine a correct fragmentation that has maximum affinity. This is formally defined as follows.

Problem 4.2 (Maximum affinity). Given a relation schema R, a set C of well defined constraints
over R, and an affinity matriz M, find a fragmentation F of R such that all the following conditions
hold:

1. F correctly enforces C (Definition[4.5);
2. F mazimizes visibility (Definition[4.6);
3. BF' satisfying the conditions above such that affinity (F') > affinity (F).

Like Problem[4.1] the maximum affinity problem is NP-hard, as formally stated by the following
theorem.

Theorem 4.8. The mazimum affinity problem is NP-hard.

Proof. The proof is a reduction from the NP-hard minimum hitting set problem [50], which can
be formulated as follows: given a collection C of subsets of a set S, find the smallest subset S’ of
S such that S contains at least one element from each subset in C.

The reduction of the hitting set problem to the maximum affinity problem can be defined as
follows. Let S” be the solution of the minimum hitting set problem, and let R = S U {a.} be a
relation, where a. is an attribute different from any other element in S.

We consider only the sets in C' with cardinality greater than 1, since any singleton set s in C
corresponds to an element that must be inserted into the solution S’, and we can directly put it
in. Moreover, if s;,s5; € C' and s; C s;, s; is redundant and can be removed from C, since if S’
contains an element of s;, then it also contains an element of s;. Thus, let C; = {s € C: |s| > 1
and Vs’ € C, s’ ¢ s} be the set of association constraints, and let Ay = {a€R: {a}¢ C} be the
set of attributes to be fragmented. We note that the construction of the set of constraints C; is
polynomial in C, and that, by construction, C; is a set of well defined association constraints.
Also, a. is not contained in any constraint in C;. Consider now an affinity matrix that contains
the value 0 in every cell but the cells corresponding to a., which are set to 1 (i.e., M[a;, a;]= 1 iff
a; = a. or a; = ac; M[a;, a;]= 0, otherwise).

Sin