
ar
X

iv
:1

10
1.

32
91

v1
 [

cs
.S

I]
 1

7
Ja

n
20

11 Chapter 1

NODE CLASSIFICATION IN SOCIAL NETWORKS

Smriti Bhagat
Rutgers University

smbhagat@cs.rutgers.edu

Graham Cormode
AT&T Labs–Research

graham@research.att.com

S. Muthukrishnan
Rutgers University

muthu@cs.rutgers.edu

Abstract When dealing with large graphs, such as those that arise in the context
of online social networks, a subset of nodes may be labeled. These labels
can indicate demographic values, interest, beliefs or other characteristics
of the nodes (users). A core problem is to use this information to extend
the labeling so that all nodes are assigned a label (or labels).

In this chapter, we survey classification techniques that have been
proposed for this problem. We consider two broad categories: methods
based on iterative application of traditional classifiers using graph in-
formation as features, and methods which propagate the existing labels
via random walks. We adopt a common perspective on these methods
to highlight the similarities between different approaches within and
across the two categories. We also describe some extensions and related
directions to the central problem of node classification.

Keywords: Node classification, Graph labeling, Semi-supervised learning, Iterative
methods

http://arxiv.org/abs/1101.3291v1

2

1. Introduction

The emergence of online social networks (OSNs) in the past decade
has led to a vast increase in the volume of information about individu-
als, their activities, connections amongst individuals or groups, and their
opinions and thoughts. A large part of this data can be modeled as la-
bels associated with individuals, which are in turn represented as nodes
within a graph or graph-like structure. These labels come in many forms:
demographic labels, such as age, gender and location; labels which rep-
resent political or religious beliefs; labels that encode interests, hobbies,
and affiliations; and many other possible characteristics capturing as-
pects of an individual’s preferences or behavior. The labels typically
appear on the user’s profile within the network, or attached to other
objects in the network (photos, videos etc.).

There are many new applications that can make use of these kinds of
labels:

Suggesting new connections or contacts to individuals, based on
finding others with similar interests, demographics, or experiences.

Recommendation systems to suggest objects (music, movies, activ-
ities) based on the interests of other individuals with overlapping
characteristics.

Question answering systems which direct questions to those with
most relevant experience to a given question.

Advertising systems which show advertisements to those individ-
uals most likely to be interested and receptive to advertising on a
particular topic.

Sociological study of communities, such as the extent to which
communities form around particular interests or affiliations.

Epidemiological study of how ideas and “memes” spread through
communities over time.

Of course, these are just a few examples of the many different ways
social network data is of interest to businesses, researchers, and operators
of social networks. They have in common the aspect that knowing labels
for individuals is a key element of each application.

In an ideal world (as far as these applications are concerned), every
user within a social network is associated with all and only the labels
that are relevant to them. But in the real world, this is far from the case.
While many users choose labels to apply to themselves, these labels can

Node Classification in Social Networks 3

be misleading, inappropriate, outdated, or partial. This is for a variety
of reasons: users may fail to update or add new labels as time progresses,
letting their profile information grow “stale”; out of concerns for privacy,
users may omit or distort information about themselves; users may sim-
ply forget or neglect to include information about their most important
activities and interests; and some users simply delight in listing wantonly
misleading information to amuse themselves and those who know them.
Such distortions are prevalent, although not overwhelmingly so [18]. The
consequence of this noise is to reduce the effectiveness of methods for
the applications listed above. In particular, the most pressing problem
is the absence of labels in certain categories (such as demographics or
interests), which can make it impossible to provide useful suggestions or
recommendations to that user.

The Node Classification Problem. This leads to the central
problem of interest in this chapter: given a social network (or more gen-
erally, any network structure) with labels on some nodes, how to provide
a high quality labeling for every node? We refer to this as the “node
classification problem”, with the understanding that the basic problem
can be abstracted as providing a labeling for nodes in a graph structure.
Variations on this problem might work over generalized graph structures,
such as hypergraphs, graphs with weighted, labeled, or timestamped
edges, multiple edges between nodes, and so on.

A first approach to this problem is to engage experts to provide labels
on nodes, based on additional data about the corresponding individuals
and their connections. Or individuals can be incentivized to provide
accurate labels, via financial or other inducements. Indeed, historically
this is exactly what sociologists have done when studying social groups of
the order of tens to a hundred nodes, for example [35]. But this approach
does not scale when confronted with networks containing hundreds of
thousands to millions of individuals. While it may be feasible to rely
on a moderate number of expert labeled nodes, or even a large fraction
of “noisy” self-labeled nodes, this is very far from the goal of all nodes
perfectly labeled.

Instead, we consider methods which use the information already en-
coded in the partially labeled graph to help us predict labels. This is
based on the paradigm of machine learning and classification. In other
words, we aim to train a classifier based on the examples of nodes that
are labeled so we can apply it to the unlabeled nodes to predict labels
for them (and also to nodes that have some labels to augment or re-
place their current labels). However, there are several aspects of this

4

setting which make it somewhat different to the traditional model of
classification, as will become apparent.

As is usual in machine learning, we first have to identify some “fea-
tures” of nodes that can be used to guide the classification. The obvious
features are properties of the node itself: information that may be known
for all (or most) nodes, such as age, location, and some other existing
nodes. But the presence of an explicit link structure makes the node
classification problem different from traditional machine learning classi-
fication tasks, where objects being classified are considered independent.
In contrast to the traditional setting, we can define additional features,
based on adjacency or proximity in the graph. A first set of features
are based on simple graph properties: the degree (number of neighbors)
of the node; the neighborhood size reachable within two or three steps;
the number of shortest paths that traverse through the node, and so on.
But perhaps more interesting are features derived from properties of the
nearby nodes: the labels of the neighbors form a canonical feature in this
setting.

One may ask why the labels of neighboring nodes should be useful
in predicting the label of a node. Certainly, if the edges between nodes
were completely arbitrarily generated, there would not be much infor-
mation to glean. But in social networks, links between nodes are far
from arbitrary, and typically indicate some form of a relationship be-
tween the individuals that the nodes represent. In particular, a link can
indicate some degree of similarity between the linked individuals: cer-
tainly not exact duplication, but sufficient to be a useful input into a
learning algorithm.

Formally, the social sciences identify two important phenomena that
can apply in online social networks:

homophily, also known informally as “birds of a feather”, is when
a link between individuals (such as friendship or other social con-
nection) is correlated with those individuals being similar in na-
ture. For example, friends often tend to be similar in characteris-
tics like age, social background, and education level.

co-citation regularity is a related concept, which holds when
similar individuals tend to refer or connect to the same things.
For example, when two individuals have similar tastes in music,
literature or fashion, co-citation regularity suggests that they may
be similar in other ways or have other common interests.

If one can argue that either of these phenomena apply in a network of
interest, then it suggests that information about nodes with short graph

Node Classification in Social Networks 5

distance, or with similar attributes, may be useful in helping to classify
a node of interest.

A secondary aspect of the graph setting is that the classification pro-
cess can be iterative. That is, we may be faced with a node such that we
initially have very little information about the node or its neighborhood.
However, after an initial application of classification, we may know have
a richer set of (putative) information about the neighborhood, giving
more of a basis to label the node in question. In other words, the classi-
fication process can spread information to new places in the graph, and
feed into the features that we use for classification. The classification
continues to be iterated until it converges, or a fixed number of iterations
have taken place. This iterative approach stands in contrast to the tradi-
tional model of classification, where the feature set is given at the start,
and does not alter. The use of the graph edges to spread the labeling
can be thought of as a special case of semi-supervised learning (where
both labeled and unlabeled examples are used to build the classifier).

Chapter Outline. In this chapter we survey techniques that have
been proposed to address the problem of node classification. We consider
two broad classes of approaches.

In the first, we try to build on the vast knowledge of methods to
solve the traditional classification problem. In other words, we define
a method to generate vectors of features for each node (such as labels
from neighboring nodes), and then apply a “local classifier” such as
Näıve Bayes, decision trees and so on to to generate the labeling. As
indicated above, this approach can be iterative: after a first round of
classification, by training on the newly labeled examples.

Many other techniques have been suggested that more directly use the
structure of the graph to aid in the labeling task. We take a unifying
approach, and observe that it is possible to view many of these methods
as performing random walks over the network to determine a labeling
function. We thus refer to these as random walk based methods, and
compare them in a common framework. This helps to identify similar-
ities and highlight differences between these techniques. In particular,
we see that all methods can be described via similar iterative matrix for-
mulations, and that they are also closely related to iterative approaches
with simple classifiers.

Based on this taxonomy of methods, we proceed as follows: in Section
2 we formalize the notions of graphs and labelings, and more precisely
define the node classification problem over these structures. Given these
definitions, we present methods for this problem in the graph domain.
Then Section 3 describes the (iterative) local classifier method, while

6

Section 4 explains how many methods can be viewed as random walks.
We present additional details on applying the methods to large social
networks in Section 5. Sections 6 and 7 discuss other approaches and
related problems respectively, and we give concluding remarks in Section
8.

2. Problem Formulation

In this section, we discuss how online social networks (or more gener-
ally other networks) can be represented as (weighted) graphs. We then
present the formal definition of the node classification problem.

2.1 Representing data as a graph

We consider data from social networks such as Facebook and LinkedIn,
as well as other online networks for content access and sharing, such as
Netflix, YouTube and Flickr. As is standard in this area, we choose
to represent these networks as graphs of nodes connected by edges. In
our setting, we consider graphs of the form G(V,E,W) from this data,
where V is the set of n nodes, E is the set of edges and W is the edge
weight matrix. We also let Y be a set of m labels that can be applied to
nodes of the graph.

Given a network such as those above, there are typically many choices
of how to perform this modeling, depending on which features are cap-
tured by the model and which are overlooked. The question of modeling
network data is a topic worthy of study on its own. Likewise, the ques-
tion of how this data is collected and prepared (via random sampling,
crawling, or activity monitoring) is beyond the scope of this survey;
rather, for this presentation we assume that the data is readily available
in the desired graph model. For clarity, we provide some illustrative
examples of how (social) network data may be captured by a variety of
choices of graph models:

Example 1.1 Consider Facebook as an example of a modern, complex
social network. Users of Facebook have the option of entering a variety
of personal and demographic information into their Facebook profile. In
addition, two Facebook users may interact by (mutually) listing each
other as friends, sending a message, posting on a wall, engaging in an IM
chat, and so on. We can create a graph representation of the Facebook
social network in the form G(V,E,W), where

Nodes V : The set of nodes V represents users of Facebook.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj could rep-
resent a variety of possibilities: a relationship (friendship, sibling,

Node Classification in Social Networks 7

partner), an interaction (wall post, private message, group mes-
sage), or an activity (tagging in a photo, playing games). To make
this example concrete, consider only edges which represent declared
“friendships”.

Node Labels Y: The set of labels at a node may include the user’s
demographics (age, location, gender, occupation), interests (hob-
bies, movies, books, music) etc. Various restrictions may apply to
some labels: a user is allowed to declare only one age and gender,
whereas they can be a fan of an almost unlimited number of bands.

Edge Weights W : The weight wij on an edge between nodes vi, vj
can be used to indicate the strength of the connection. In our ex-
ample, it may be a function of interactions among users, e.g., the
number of messages exchanged, number of common friends etc.;
or it may simply be set to 1 throughout when the link is present.

Example 1.2 As an example of a different kind of a network, consider
the video sharing website, YouTube. Let graph G(V,E,W) represent the
YouTube user network, where

Nodes V : A node vi ∈ V represents a user.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj could be an
explicit link denoting subscription or friend relation; alternately, it
could be a derived link where vi, vj are connected if the correspond-
ing users have co-viewed more than a certain number of videos.

Node Labels Y: The set of labels at a node may include the user’s
demographics (age, location, gender, occupation), interests (hob-
bies, movies, books, music), a list of recommended videos extracted
from the site, and so on.

Edge Weights W : The weight on an edge could indicate the strength
of the similarity by recording the number of co-viewed videos.

Example 1.3 Using the same YouTube data, one can derive a quite
different graph G(V,E,W), where

Nodes V : A node v ∈ V represents a video.

Edges E: An edge (i, j) ∈ E between two nodes vi, vj may repre-
sent that the corresponding videos are present in certain number
of playlists or have been co-viewed by a certain number of people.

8

Node Labels Y: The set of labels at a node may be the tags or
categories assigned to the video, the number of times viewed, time
of upload, owner, ratings etc.

Edge Weights W : The weight on an edge may denote the number
of users who co-viewed the videos.

The graphs abstracted in each example vary not only in the semantics
of nodes, edges and labels but also in graph properties such as direction-
ality, symmetry and weight. For instance, the friend interactions in
Facebook and YouTube are reciprocal, hence a graph G where edges
represent friendship relationship is undirected, i.e. it has a symmetric
adjacency matrix. On the other hand, a graph where an edge represents
a subscription in YouTube or a wall post in Facebook, is directed. Fur-
ther, depending on the availability of interaction information, the graph
may be unweighted, and all edges treated uniformly.

Inducing a graph. In some applications, the input may be a set of
objects with no explicit link structure, for instance, a set of images from
Flickr. We may choose to induce a graph structure for the objects, based
on the principles of homophily or co-citation regularity: we should link
entities which have similar characteristics (homophily) or which refer to
the same objects (co-citation regularity).

Applying these principles, several choices of how to induce graphs
have been advocated in the literature, including:

Materializing the fully connected graph on V where each edge (i, j)
is weighted by a suitable distance metric based on the similarity
between vi and vj. A special case is the exp-weighted graph where
the weight on an edge (i, j) is given by:

wij = exp(−‖vi − vj‖2
2σ2

) (1.1)

Here, nodes in V are interpreted as points in a geometric space
(such as Euclidean space) and σ2 represents a normalizing con-
stant, which is the the variance of all points.

Given a node vi, let NN(vi) denote the set of k nearest neighbors,
i.e. the k other nodes which are closest based on some measure
of distance: this could be cosine or euclidean distance based on
the features of the nodes. The k Nearest Neighbor (kNN) graph
then has an edge between a pair of nodes vi, vj if vj ∈ NN(vi). A
kNN graph is by definition a directed graph with each node having
outdegree k. An undirected, symmetric kNN graph can be defined

Node Classification in Social Networks 9

where nodes vi, vj are connected if vi ∈ NN(vj) ∧ vj ∈ NN(vi),
possibly resulting in nodes having degree less than k.

The ε-weighted graph is where only the subset of edges with weight
greater than a threshold ε from the fully connected graph are in-
cluded.

The methods we describe do not make many assumptions about the
nature of the graph or the edge weight distribution, beyond the fact
that the weights on edges are assumed to be non-negative and wij = 0
if (i, j) 6∈ E.

Types of Labels. Users of social networks often reveal only partial
information about themselves. For instance, only a subset of users reveal
their age or location on Facebook. Therefore, the graph abstracted from
user-generated data has labels on only a subset of nodes. The labels on
nodes can be of different types:

binary: only two possible values are allowed (gender is often re-
stricted to male or female); equivalently, a label may only appear
in the positive form (“smoker”) and its absence is assumed to in-
dicate the negative form (“non-smoker”).

numeric: the label takes a numeric value (age, number of views),
Only values in some range may be allowed (age restricted to 0-
120), or the range may be “bucketized” (age is 0-17; 18-35; 36-50,
50+).

categorical: the label may be restricted to a set of specified cate-
gories (such as for interests, occupation).

free-text: users may enter arbitrary text to identify the labels that
apply to the node (as in listing favorite bands, or tags that apply
to a photograph).

Some datasets have many labels in many categories (such as age, gen-
der, location, and interests in a Facebook dataset), while in some cases
there may be only a single label recorded (e.g. the only profile informa-
tion available about a user in Netflix is location). Some label types allow
a single value (users may declare only a single age), while others allow
many values (users may list many differing tags for a photograph). For
node classification, our goal is typically to provide values of a single label
type, even though we may have information about other label types to
use as features: our goal may be to predict age of Facebook users, given
(partial) information about other users’ age, sex and location.

10

In some cases, there may be weights associated with labels. For in-
stance, the video sharing service Hulu displays the number of times each
tag was assigned to a video. When normalized, the label-weight vector
at each node can be thought of as providing confidence scores, or in some
cases as probabilities for different labels. This can arise even when the
original data does not exhibit weights: when labels are imputed, these
may be given lower confidence scores than labels that were present in
the original data. Depending on the dataset, some labels may be known
for all nodes (e.g., the number of videos posted by a user on YouTube),
and can be used as additional features for inferring the missing values
of other labels.

2.2 The Node Classification Problem

We can now formally define the node classification problem.

Problem Statement. We are given a graph G(V,E,W) with a
subset of nodes Vl ⊂ V labeled, where V is the set of n nodes in the
graph (possibly augmented with other features), and Vu = V \ Vl is the
set of unlabeled nodes. Here W is the weight matrix, and E is the set
of edges. Let Y be the set of m possible labels, and Yl = {y1, y2, . . . , yl}
be the initial labels on nodes in the set Vl. The task is to infer labels Ỹ
on all nodes V of the graph.

Preliminaries and Definitions. Let Vl be the set of l initially
labeled nodes and Vu the set of n − l unlabeled nodes such that V =
Vl ∪ Vu. We assume the nodes are ordered such that the first l nodes
are initially labeled and the remaining nodes are unlabeled so that V =
{v1, . . . , vl, vl+1, . . . , vn}. An edge (i, j) ∈ E between nodes vi and vj
has weight wij. A transition matrix T is computed by row normalizing
the weight matrix W as:

T = D−1W

where D is a diagonal matrix D = diag(di) and di =
∑

j wij. The unnor-
malized graph Laplacian of the graph is defined as: L = D−W , and the
normalized graph Laplacian as: L = D−1/2LD−1/2. If W is symmetric,
then both these Laplacians are positive semi-definite matrices.

Let Yl = {y1, y2, . . . , yl} be the initial labels from the label set Y, on
nodes in the set Vl. The label yi on node vi may be a binary label, a single
label or a multi-label. For binary classification, we may distinguish the
presence of a label as yi ∈ {−1, 1} if vi ∈ Vl and 0 otherwise to indicate
the absence of a label. For a single label classification, yi can take values

Node Classification in Social Networks 11

from Y, the range of possible values of that label. Finally, for a multi-
class classification, yi denotes a probability distribution over Y, where Y
is the set of possible labels. For any label c ∈ Y, yi[c] is the probability
of labeling node vi with label c. Here, Yl is a matrix of size l ×m. We
denote the initial label matrix of size n ×m as Y , such that it has the
first l rows as Yl for labeled nodes and zeros in the next n − l rows
representing unlabeled nodes.

The output of the node classification problem is labels Ỹ on all nodes
in V . A slightly different problem is to determine the labels on only the
unlabeled nodes (i.e., Ỹu for nodes in Vu), and assume that the labels on
the nodes in Vl are fixed. Another variant is to learn a labeling function
f which is used to determine the label on the nodes of the graph.

3. Methods using Local Classifiers

In the following sections we describe the different approaches to solve
the node classification problem and its variations. We start by describing
a class of iterative methods that use local neighborhood information to
generate features that are used to learn local classifiers.

These iterative methods are based on building feature vectors for
nodes from the information known about them and their neighborhood
(immediately adjacent or nearby nodes). These feature vectors are then
used along with the known class values Yl, to build an instance of a local
classifier such as Näıve Bayes, Decision Trees etc. for inferring the labels
on nodes in Vu.

3.1 Iterative Classification Method

This notion of iteratively building a classifier is quite natural and has
appeared several times in the literature. Here, we follow the outline of
Neville and Jensen [26].

Input. As with traditional classification problems, a set of attributes
may be known for each node vi ∈ V . These attributes form a part of the
feature vector for that node and are known as node features. Consider
the YouTube graph from Example 1.3: attributes such as the number of
times a video is viewed, the time of upload, rating etc. are node features
that are known for each video.

What makes classification of graph data different is the presence of
links between objects (nodes) being classified. The information about
the neighborhood of each object is captured by link features, such as the
(multi)set of tags on videos. Typically, link features are presented to
the classifier as aggregate statistics derived from the labels on nodes in

12

Algorithm 1: ICA(V,E,W, Yl)

Compute Φ1 from V , E, W , Yl

Train classifier using Φl

for t← 1 to τ do

Apply classifier to Φt
u to compute Y t

u

Update Φt
u

Ỹ ← Y τ

return Ỹ

the neighborhood. A popular choice for computing a link feature is the
frequency with which a particular label is present in the neighborhood.
For instance, for a video vi in the YouTube graph, the number of times
the label music appears in the nodes adjacent to vi is a link feature.
If the graph is directed, the link features may be computed separately
for incoming and outgoing links. The features may also include graph
properties, such as node degrees and connectivity information.

Iterative Framework. Let Φ denote the matrix of feature vectors
for all nodes in V , where the i-th row of Φ represents the feature vector
φi for node vi. The feature vector φi may be composed of both the node
and link features; these are not treated differently within the vector. Let
Φl and Φu denote the feature vectors for labeled and unlabeled nodes
respectively. Algorithm 1 presents the Iterative Classification Algorithm
(ICA) framework for classifying nodes in a graph. An initial classifier is
trained using Φl and the given node labels Yl. In the first iteration, the
trained classifier is applied to Φu to compute the new labeling Y 1

u . For
any node vi, some previously unlabeled nodes in the neighborhood of vi
now have labels from Y 1

u . Since link features are computed using the
labels in the neighborhood, after applying the classifier once, the values
of these features can change. It therefore makes sense to iterate the ICA
process. In the tth iteration, the procedure builds a new feature vector
Φt based on Φl and Y t−1

u , and then applies the classifier to produce new
labels Y t

u . Optionally, we may choose to retrain the classifier at each
step, over the current set of labels and features.

If node features are not known, the inference is based only on link fea-
tures. In such a case, if a node has no labeled node in its neighborhood,
it is remains unlabeled in the first iteration. As the algorithm proceeds,
more nodes are labeled. Thus, the total number of iterations τ should
be sufficiently large to at least allow all nodes to receive labels. One
possibility is to run the iteration until “stability” is achieved, that is,

Node Classification in Social Networks 13

(a) Step 1 (b) Step 2

Figure 1.1. Two steps of a local iterative approach to node classification

until no label changes in an iteration—but for arbitrary local classifiers
there is no guarantee that stability will be reached. Instead, we may
choose to iterate for fixed number of iterations that is considered large
enough, or until some large fraction of node labels do not change in an
iteration.

Figure 1.1 shows two steps of local iteration on a simple graph. Here,
shaded nodes are initially labeled. In this example, the first stage labels
node X with the label ‘18’. Based on this new link feature, in the second
iteration this label is propagated to node Y. Additional iterations will
propagate the labeling further.

A consequence of basing the labeling solely on the labels of other
nodes (a common characteristic of many of the methods we describe in
this chapter) is that if the graph contains isolated components that do
not have a single labeled node, then all nodes in that component will
remain unlabeled, no matter how many iterations are applied.

Instances of the Iterative Framework. Neville et al. originally
used a Näıve Bayes classifier to infer labels in their instantiation of the
ICA framework [26]. A strategy they found useful was to sort the pre-
dicted class labels in descending order of their associated probability
and retain only the top-k labels, thus removing the less confident possi-
bilities. Since then, ICA has been applied to graph data from different
domains, with a variety of classifiers. For example, Lu and Getoor [20]
applied logistic regression to classify linked documents.

An important special case is the method of Macskassy and Provost [21],
who used a simpler classification method based on taking a weighted av-
erage of the class probabilities in the neighborhood (effectively “voting”
on the label to assign). This classifier is based on a direct application of

14

homophily (the premise that nodes link to other nodes with similar la-
bels), and uses the immediate neighborhood of a node for classification.
Bhagat et al. [5] proposed a method that considers the labeled nodes
in the entire graph. This can be viewed as an instance of ICA using a
nearest neighbor classifier to find a labeled node that is most similar to
an unlabeled node being classified. It is based on co-citation regularity,
the premise that nodes with similar neighborhoods have similar labels.
These two simple methods (voting and nearest neighbor) are shown to
be surprisingly effective on social network data, achieving quite high
accuracy (70-90% on certain demographic labels) from relatively little
local information [5].

One of the seminal works on classification of linked documents was
by Chakrabarti et al. [8]. Their method used features from neighboring
documents to aid the classification, which can be viewed as an instance
of ICA on a graph formed by documents. Their experiments showed a
significant improvement when using link features over just using the text
at each node.

4. Random Walk based Methods

The next set of methods we discuss are based on propagating the labels
by performing random walks on the graph. These are often thought of
as semi-supervised learning or transductive learning methods and can
be shown to be equivalent to learning a global labeling function over
the graph with provable convergence guarantees. Unlike the iterative
methods described so far that rely on computing link features to encode
the information in the neighborhood, these methods more explicitly use
the link structure for labeling nodes. However, we will see that there are
strong connections between random walk and iterative methods.

The idea underlying the random walk methods is as follows: the prob-
ability of labeling a node vi ∈ V with label c ∈ Y is the total probability
that a random walk starting at vi will end at a node labeled c. The
various methods proposed in the literature differ in their definition of
the random walk used for labeling. For this to provide a complete la-
beling, the graph G is often assumed to be label connected [2]. That is,
it is possible to reach a labeled node from any unlabeled node in finite
number of steps.

The random walk is defined by a transition matrix P , so that the walk
proceeds from node vi to node vj with probability pij, the (i, j)-th entry
of P . For this to be well defined, we require 0 ≤ pij ≤ 1 and

∑

j pij = 1.
The matrix P also encodes the absorbing states of the random walk.
These are nodes where the state remains the same with probability 1,

Node Classification in Social Networks 15

so there is zero probability of leaving the node, i.e., if a random walk

reaches such a node, it ends there. Let p
(t)
ij be the probability of reaching

node vj after t steps of a random walk that started at node vi, and let
P t denote the corresponding matrix at time t. For t→∞, the entry pij
of matrix P∞ represents the probability of the walk that starts at node
vi is at node vj as the length of the walk tends to infinity. That is, if the
start distribution is ei, the vector with 1 at the i-th position and zeros
elsewhere, a random walk on G with transition matrix P will converge
to a stationary distribution which is the i-th row of the matrix P∞. We
will often be able to show a closed-form expression for P∞ as a function
of P .

Labeling. The walk is typically defined over nodes of the graph,
and this is used to define a labeling. The probability of label c ∈ Y being
assigned to node vi is computed as the total probability of reaching nodes
labeled c on convergence, starting at vi. More precisely,

ỹi[c] =
∑

j|vj∈Vl

p∞ij yj[c] (1.2)

where the input label yj at vj ∈ Vl is assumed to be a probability
distribution over labels. If the graph is label connected, as t → ∞
the probability of reaching a labeled node is 1, so it follows that the
output labeling ỹi at node vi ∈ V is also a probability distribution with

∑

c∈Y

∑

j|vj∈Vl

p∞ij yj[c] = 1.

If the output is required to be a single label on each node, then the
most probable label can be assigned to each node, i.e.

ỹi = argmax
c∈Y

∑

j;yj=c

p∞ij .

Recall that Y is the matrix that records the label distribution for
each labeled node, and 0 for unlabeled nodes. Consequently, the matrix
equation for node classification using random walks can be written as:

Ỹ = P∞Y (1.3)

When Y represents a matrix of probability distributions over the label
set, then the result can be scaled to ensure that the output is a probabil-
ity distribution as: Ỹ = N−1P∞Y , where N−1 is a diagonal normaliza-
tion matrix, defined as Nii =

∑m
j=1(P

∞Y)ij . We next consider various

16

methods based on random walks in detail. Given a description of a ran-
dom walk, we aim to find a description of the stationary distribution
P∞, from which the labeling follows using the above equations.

4.1 Label Propagation

The node classification method of Zhu et al. [38] was proposed in the
context of semi-supervised learning, where a symmetric weight matrix
W is constructed using Equation (1.1). More generally, we consider it
to take as input a graph G(V,E,W), from which we derive the matrix
T = D−1W . Nodes Vl have initial labels Yl from the label set Y.

Random Walk Formulation. The random walk at node vi picks
an (outgoing) edge with probability proportional to the edge weight, if
vi is unlabeled; however, if vi is labeled, the walk always loops to vi.
Therefore the nodes in Vl are absorbing states, i.e. they are treated as if
they have no outgoing edges, and thus their labels do not change. Since
we have ordered the nodes so that the labeled nodes are indexed before
the unlabeled nodes, we can write the transition matrix P as a block
matrix,

P =

(

Pll Plu

Pul Puu

)

=

(

I 0
Pul Puu

)

(1.4)

where the matrix Pll corresponds to the block of probabilities corre-
sponding to transitions from a labeled node to another labeled node,
and so on. Recall that a random walk that reaches a labeled node ends
there, thus Pll reduces to I and Plu is a matrix of all zeros. In other
words, the transition matrix P can be defined as Pi = (D−1W)i if i ∈ Vu,
else Pi = ei if i ∈ Vl.

Now, computing the matrix limt→∞ P t, we obtain

P∞ =

(

I 0
(I − Puu)

−1Pul P∞
uu

)

. (1.5)

For a graph in which every connected component has a labeled node,
each entry of matrix Puu is less than 1. So P∞

uu = 0, and P∞
ul is a

distribution over labeled nodes. By combining Equations (1.3) and (1.5),
the labels on unlabeled nodes can be computed as

Ỹu = (I − Puu)
−1PulYl (1.6)

This provides a precise characterization of how the labels on nodes
are computed, and can be applied directly when Puu is small enough

Node Classification in Social Networks 17

Algorithm 2: LP-Zhu(Y, P)

Y 0 ← Y

repeat

Y t ← PY t−1

Y t
l ← Yl

until convergence to Y ∞

Ỹ ← Y ∞

return Ỹ

to invert directly. The solution is valid only when (I − Puu)
−1 is non-

singular, which is true for all label connected graphs.
Observe that if the labeled nodes were not defined to be absorbing

states, a random walk over G would converge to a stationary distribu-
tion that is independent of the starting point (and hence would not be
meaningful for the purpose of labeling). Szummer and Jaakkola [31]
considered the variation where the labeled nodes are not forced to be
absorbing states. In their definition, they perform random walks for t

steps. Such methods depend critically on the parameter t: it is easy to
see that the extreme case t = 1 gives exactly the local voting scheme of
Macskassy and Provost executed for a single iteration, while we argued
that allowing t to grow too large, the process mixes, and is independent
of the starting location. In experiments, Szummer and Jaakola found
small constant values of t to be effective, around t = 8 on a dataset with
a few thousand examples.

Iterative Formulation. We now show that this random walk
is equivalent to a simple iterative algorithm in the limit. Consider an
iterative algorithm where each node is assigned a label distribution (or a
null distribution) in each step. In step t, each unlabeled node takes the
set of distributions of its neighbors from step t−1, and takes their mean
as its label distribution for step t. The labels of the labeled nodes Vl are
not changed. This is essentially the iterative algorithm of Macskassy and
Provost [21] described above. The initial label distributions are given by
Y . We can observe that each iterative step has the effect of multiplying
the previous distribution by P , the block matrix defined above. This is
illustrated in Algorithm 2.

The tth iteration of the algorithm sets

Y t
u = PulYl + PuuY

t−1
u ,

18

which can be rewritten as

Y t
u =

t
∑

i=1

P i−1
uu PulYl + P t

uuYu.

On convergence, we get

Ỹu = lim
t→∞

Y t = (I − Puu)
−1PulYl.

In other words, this iterative algorithm converges to the same labeling
as the random walk just described.

Thus, node classification performed by the iterative Algorithm 2 is
the same as solving the matrix equation (1.6). Other equivalences can
be shown: for an input graph G which has a symmetric weight matrix
W and binary labels Y = {0, 1} on nodes, Zhu et al. show that labeling
using equation (1.6) is equivalent to computing Ỹ using the value of a
minimum energy harmonic function f : V → R [38].

Rendezvous approach to Label Propagation. Azran [2] showed
a different analysis of the label propagation random walk that more
strongly uses the assumption that the graph is label connected. Since G
is label connected, the probability of moving from one unlabeled node to
another after an infinite number of steps is 0, i.e., P∞

uu is a zero matrix.
Therefore, the limiting matrix P∞ has the form:

P∞ =

(

I 0
(P∞)ul 0

)

(1.7)

Let P = SΛS−1 and P∞ = SΛ∞S−1, where S is the matrix of left
eigenvectors of P and Λ is the diagonal matrix of eigenvalues. Azran
showed that the structure of P and P∞ is such that the l leading eigen-
values of both are 1. All other eigenvalues of P have magnitude less than
1, and so are negligible for P∞. Thus, to compute P∞, it is sufficient to
compute the l leading eigenvectors of P . Further, the transition matrix
defined in Equation (1.7) can be computed as:

(P∞)ij =
sij

sjj
(1.8)

where i, j are indices for unlabeled and labeled nodes respectively. That
is, the equation holds for l + 1 ≤ i ≤ n and 1 ≤ j ≤ l. As before, the
labels on unlabeled nodes can then be computed using Equation (1.2).

In many applications, the number of unlabeled nodes is typically much
larger than the number of labeled nodes. Thus, while inverting the ma-
trix (I−Puu) from the label propagation method would be too expensive,
computing the l principal eigenvectors of P may be cheaper.

Node Classification in Social Networks 19

Algorithm 3: LP-Zhou(Y, α, T)

t← 1

Y 0 ← Y

repeat

Y t ← αTY t−1 + (1− α)Y 0

until convergence to Y ∞

foreach i ∈ V do

c = argmaxj∈Y y∞i [j]
ỹi[c] = 1

return Ỹ

4.2 Graph Regularization

The graph regularization method introduced by Zhou et al. [36] differs
from label propagation in a key way: the labels on nodes in Vl are allowed
to change during label propagation. The initial labels are represented by
a binary n×m matrix Y such that yi[c] = 1 if node vi has label c ∈ Y,
and each node has at most one label.

We first describe the method in terms of a random walk starting from
a node vi. Now the random walk at every node proceeds to a neighbor
with probability α (whether or not the node is unlabeled) but, with
probability 1 − α the walk jumps back to vi, the starting node. Here,
1−α can be thought of a “reset probability”. In matrix form, the t-step
transition probability Qt can be written as

Qt = αTQt−1 + (1− α)I.

This random walk has been well studied in other contexts—in particular,
it corresponds to the “personalized page rank”, introduced by Jeh and
Widom [14] It can be shown to converge, to the stationary distribution

Q∞ = (1− α)(I − αT)−1.

Further, the corresponding label distribution can be computed as

Ỹ = Q∞Y = (1− α)(I − αT)−1Y.

Iterative Formulation. As in the previous case, this can also be
seen as implementing a simple iterative method: at each step, the label
distribution of node i is computed as an α fraction of the sum of label
distributions of its neighbors from the previous step, plus a 1−α fraction

20

of its initial label distribution. This is illustrated in Algorithm 3. One
can verify that this formulation leads to the same solution, i.e. the final
label distribution is given by

Ỹ = Y ∞ = (1− α)(I − αT)−1Y (1.9)

which can be scaled up appropriately (via a diagonal normalization ma-
trix) so there is a probability distribution over labels.

Regularization Framework. Zhou et al. considered several vari-
ations of this method, based on replacing P with related matrices. In
particular, they suggest the symmetrically normalizing W via the di-
agonal matrix of row sums D as, P = D−1/2WD−1/2. P can also be
written in terms of the normalized Laplacian as P = I − L. This is no
longer a stochastic matrix, since the rows do not yield probability dis-
tributions. Nevertheless, we can still apply this as a generalized random
walk/iterative method by computing Y t = αPQt−1Y + (1−α)Y , which
converges to Q∞ = (1− α)(I − αP)−1Y .

The choice of P can be seen as arising naturally from some require-
ments on the labeling. Two such requirements are: (1) the difference
between initial and output labels on labeled nodes should be small; and
(2) the difference in the labels of neighbors (especially those with large
edge weight) should be small, i.e., neighbors should have similar labels.

The task of finding a labeling which satisfies these two conditions
can be formulated as an optimization problem to find a function f̃ that
minimizes the above two conditions. This process is known as “regular-
ization”. Formally, define

f̃ = argmin
f

µ

2
‖f − Y ‖2 + fTLf,

for a parameter µ > 0. The first term measures the difference between
the labeling given by the labeling function and the original labeling Y , to
capture (1). The second term uses the Laplacian L (which is related to
the gradient of the function) to measure the smoothness of the labeling
function, to capture (2). The parameter µ then controls the tradeoff
between these two terms. Thus, solving for f̃ is intended to satisfy both
the requirements. Rewriting this minimization in terms of the Euclidean
norm results in

min
f

1

2

n
∑

i,j=1

wij

∥

∥

∥

fi√
di
− fj

√

dj

∥

∥

∥

2
+

µ

2
‖f − Y ‖2 (1.10)

Differentiating and equating to zero, we get

Node Classification in Social Networks 21

f̃ −D−1/2WD−1/2f̃ + µ(f̃ − Y) = 0

(1 + µ)f̃ − P f̃ = µY

Solving for f̃ and setting α = 1
1+µ , we have

f̃ = (1− α)(I − αP)−1Y (1.11)

Notice that if we defined the transition matrix Q in terms P instead
of T , or iterated over P instead of T , the solution on convergence would
match Equation (1.9). In other words, we can argue that this solution is
a natural consequence of the formalization of the two requirements (1)
and (2). It is possible to motivate other node classification algorithms
based on similar optimization criteria. The survey of Bengio et al. [4]
has more details on this perspective.

4.3 Adsorption

The “adsorption” method, proposed by Baluja et al. [3] is also based
on iteratively averaging the labels from neighbors, in common with the
previous algorithms studied. However, this method incorporates some
additional features and parameters, so it can be seen as a generalization
of other methods.

Adsorption takes as input a directed graph G with weight matrix
W . The initial labels are represented as Y = {y1, y2, . . . , yn} such that
yi is the probability distribution over labels Y if node vi ∈ Vl, and is
zero if node vi ∈ Vu. As with graph regularization, adsorption does not
keep the labels on nodes in Vl fixed, but instead lets them be set by the
labeling process. In order to maintain and propagate the initial labeling,
adsorption creates a shadow vertex ṽi for each labeled node vi ∈ Vl such
that ṽi has a single incoming edge to vi, and no outgoing edges. In
other words, the shadow vertex is an absorbing state when we view the
algorithm as a random walk. Then, the label distribution yi is moved
from vi to the corresponding shadow vertex ṽi, so initially vi is treated
as unlabeled. The set of shadow vertices is Ṽ = {ṽi|vi ∈ Vl}.

The weight on the edge from a vertex to its shadow is a parameter
that can be adjusted. That is, it can be set so that the random walk
has a probability 1− αi of transitioning from vertex vi to its shadow ṽi
and terminating. This injection probability was set to be a constant such
as 1

4 for all labeled nodes (and 1 for all unlabeled nodes) in the initial
experimental study [3].

Random Walk Formulation. Based on this augmented set of
nodes and labels, the Adsorption method defines additional matrices.

22

First, A captures the injection probabilities from each node vi: A is the
n × n diagonal matrix A = diag(α1, α2, . . . , αl, 1, . . . , 1) where 1 − αi is
the (injection) probability that a random walk currently at vi transitions
to the shadow vertex ṽi and terminates. Hence αi is the probability that
the walk continues to a different neighbor vertex.

A transition matrix T encodes the probability that the walk tran-
sitions from vi to each of its non-shadow neighbors, so T = D−1W as
before. Consequently the transitions among the non-shadow vertices are
given by (AT), while the transitions to shadow vertices are given by the
first l columns of (I −A), which we denote as (I −A)(l). Putting these
pieces together, we obtain an overall transition matrix R over the set of
l + n nodes Ṽ ∪ V as:

R =

(

I 0
(I −A)(l) AT

)

(1.12)

The first l columns of R represent the transition probabilities to Ṽ ,
and the next n columns give the transition probabilities to (within) V .
The (l + i)-th row of R gives the probability of starting at node vi for
1 ≤ i ≤ n, and moving to the other nodes of the graph in one step. We
can compute Rt to give the t-step transition probabilities. Assuming
that the graph is label connected, and since 0 ≤ αi ≤ 1 and T is a row
stochastic matrix, as t→∞ we get

R∞ =

(

I 0
(I −AT)−1(I −A)(l) 0

)

(1.13)

Let Ys be the matrix of labels on shadow vertices, i.e, the labels that
were originally associated with nodes in Vl, then the matrix of initial

labels is defined as: Ȳ 0 =

(

Ys

0

)

. Then the labeling at step t is Ȳ t =

Rt−1Ȳ 0, and as t→∞,

Ȳ ∞ = R∞Ȳ 0 =

(

Ys

(I −AT)−1(I −A)(l)Ys

)

(1.14)

It can be verified that Ȳ ∞ from Equation (1.14) is an eigenvector of
R with eigenvalue 1. The output as defined by Equation (1.14) is also a
linear combination of the initial labels. Since R and its powers are row
stochastic matrices, and the initial labels are probability distributions,
the output at each node is guaranteed to be probability distribution over
labels. The resulting labeling can be rewritten in terms of the original
graph (without shadow vertices) as:

Ỹ = (I −AT)−1(I −A)(l)Yl (1.15)

Node Classification in Social Networks 23

Iterative Formulation. We now describe a local averaging method
that is equivalent to the random walk method described above. Consider
the graph G and weight matrix W as above, but with the directionality
of all edges reversed. At each iteration, the algorithm computes the
label distribution at node vi as a weighted sum of the labels in the
neighborhood, and the node’s initial labeling, the weight being given
by αi. Formally, at the t-th iteration, for a node vi ∈ V , the label
distribution is computed as

yti = αi

∑

j

pjiy
t−1
j + (1− αi)y

0
i (1.16)

Rewriting Equation (1.16) as a matrix equation, with Y 0 =

(

Yl

0

)

,

and A = diag(α1, α2, . . . , αl, 1, . . . , 1) as before,

Y t = ATY t−1 + (I −A)Y 0

= (AT)t−1Y 0 +
t−1
∑

i=0

(AT)i(I −A)Y 0

We know that 0 ≤ αi ≤ 1, and T is a stochastic matrix, thus as
t→∞, we reach

Ỹ = Y ∞ = (I −AT)−1(I −A)Y 0 (1.17)

Connection to other methods. Observe that Equations (1.17)
and (1.15) can be made to agree, since Y 0 has first l rows non-zero
and remaining u rows as zeros. In particular, (1.9) can be obtained
from (1.17) by setting Aii = α for all i. In other words, the graph
regularization method can be viewed as a special case of adsorption. This
can be seen by comparing the description of the iterative formulations of
both, and observing that both rely on averaging neighborhoods with the
original label of a node. However, the definition of adsorption prefers to
set αi to be 1 for unlabeled nodes, to ensure that the final labeling is
directly a probability distribution over labels without rescaling.

A second equivalence is achieved by setting αi = 0 for all (initially) la-
beled nodes. This has the effect of making them absorbing (any random
walk which reaches them halts there with probability 1) and so we ob-
tain the original label propagation algorithm again. This analysis shows
that the adsorption method unifies the previous random walk methods.

24

5. Applying Node Classification to Large Social
Networks

Our motivation for node classification comes from social networks.
These networks can have millions of nodes and billions of edges, and
the label set may consist of thousands of labels, e.g., the set of all tags
on videos in YouTube. As we have indicated in our discussion, it be
very computationally expensive to directly apply some of the methods
described to datasets of this size. In particular, several methods are
described in terms of finding the solution to a set of matrix equations.
For example, in the random walk based method by Zhou et al., using
Equation (1.9) requires inverting a matrix of size n × n, where n is
the number of nodes in the graph. In general, inverting this matrix
takes time O(n3), although for sparse matrices methods from numerical
analysis aim to compute the inverse (approximately) more quickly [12].
Similarly, the method by Azran et al. requires computing the l leading
eigenvectors of an n× n matrix, which can be done in time O(n2) for a
sparse matrix. When n is large, costs that are significantly superlinear
in n are not feasible, and we look for more scalable solutions.

5.1 Basic Approaches

When matrix inversion is not practical, there are several alternate
approaches to finding the stationary distribution of the random walks
we consider:

Iteration. When the number of labels m ≪ n, it can be more
efficient to work with the iterative form of the random walk, applied
to Y . That is, rather than compute the (n × n) stationary distribution
via P∞, instead compute the (n × m) stationary distribution of label
probabilities Y ∞. This in turn is computed by iterating to compute
Y 1, Y 2, In the limit, this converges to Y ∞.

In practice, we may not run this procedure to convergence, but rather
for a sufficiently large fixed number of iterations, or until the difference
‖Y t

u − Y t−1
u ‖ is sufficiently small. Such power iteration methods are

known to converge exponentially quickly (i.e. the difference ‖Y t
u − Y ∞

u ‖
decreases by a constant factor each iteration) [17]. Hence only a constant
number of steps is needed to reach a close enough approximation—of the
order of tens to a hundred iterations.

Random Walk Simulation. An alternative approach is to directly
simulate r random walks that begin at vi for some number of steps,
and use the distribution of the end point of these random walks as a

Node Classification in Social Networks 25

surrogate for the stationary distribution. In some situations, such as
where the graph is too large to represent as a matrix and compute matrix
multiplications with, it may be more efficient to instead simulate random
walks, which just require to access the adjacency lists of visited nodes,
to pick the next node. This has been applied when the data is too large
to store in memory [28].

5.2 Second-order Methods

When the classification method can be formalized as a matrix itera-
tion, as in the random walk methods, then there have been many ap-
proaches suggested to reducing the number of iterations needed before
the process converges. The main idea behind these second-order methods
is that the update performed at each iteration is adjusted by the update
performed at the previous iteration. These methods have been shown
to converge more rapidly than simple iterations (referred to as first-
order methods) for applications such as load balancing [24] and multi-
commodity flow [25]. For node classification, a first order iteration of the
form Y t+1 = PY t can be reformulated as Y t+1 = βPY t + (1 − β)Y t−1

to yield a second-order method. Here, β is a parameter weighting the
current update. Second order methods have been shown to converge
faster for 1 ≤ β ≤ 2.

5.3 Implementation within Map-Reduce

The Map-Reduce framework [9] is a popular programming model that
facilitates distributing computation over a cluster of machines for data-
intensive tasks. Applications in this framework are implemented via two
operations (1) Map: input represented as key/value pairs is processed
to generate intermediate key/value pairs, and (2) Reduce: all interme-
diate pairs associated with the same key are collected and aggregated.
The system takes care of allocating map and reduce tasks to different
machines, which can operate in parallel.

This framework is particularly powerful for cases when the data being
processed is so large that it does not fit on one machine, but must be
stored in a distributed file system, as may be the case for social network
data. We observe that all of the methods discussed so far fit well into
the map-reduce model: both local iterative methods and random walk
methods can be implemented so that each node collects information
about its neighbors (map), and applies some process to compute its new
label distribution (reduce).

We illustrate the power of Map-Reduce to distribute computations
over large social networks with an example implementation of iterative

26

Algorithm 4: Map(Key vi, Value yt−1
i)

Data: P
foreach vj ∈ V |(i, j) ∈ E do

Emit(vj, (y
t−1
i , pij))

Algorithm 5: Reduce(Key vj , ValueIterator labelWt)

vec1×m ← 0
foreach (label, wt) ∈ labelWt do

vec[label] += wt

ytj ← argmax(vec)

Emit(vj, y
t
j)

graph labeling methods. Consider a simple instance of the ICA method,
where the classifier is based on weighted voting on labels in the neigh-
borhood, as described in [5]. More specifically, at each iteration of the
method, the label assigned to a node is the weighted vote of labels on
its neighbors. This can be thought of as an iterative message passing
scheme, where each node passes its current label (weighted by the edge
weight) as a message to each neighbor. Then, each node collects the
messages received from its neighbors and combines then to compute its
label, in this case using a voting function.

This process fits neatly into the Map-Reduce setting. Algorithms 4
and 5 describe the Map and Reduce operations performed at each itera-
tion of node classification. As described in Section 2, P is the normalized
weight matrix and Y is a vector of initial labels, so that yi is a single
label initially assigned to node vi, and yti is the label at the t-th iteration.
vec is a temporary vector to aggregate the weight received for each label.
The Map function implements the message passing, where each node vi
sends a message (yt−1

i , pij) at iteration t. The Reduce function receives
the messages as labelWt and aggregates them to infer the label ytj at a
node vj at iteration t.

Likewise, many other iterative algorithms for node classification can
be implemented in Map-Reduce. One round of Map-Reduce computes
each iteration (equivalently, computes the product of a matrix and a vec-
tor). Thus only a moderate number of rounds are required to converge
on the solution.

Node Classification in Social Networks 27

6. Related approaches

In this section, we survey some of the other approaches to the node
classification problem.

6.1 Inference using Graphical Models

The area of Statistical Relational Learning (SRL) has emerged over
the last decade. SRL is generally concerned with creating models of data
which fully describes the correlations between the different objects that
are described by the data. It therefore encompasses node classification
as a central problem. Another example of a problem in SRL is edge
prediction: creating a model which can be used to predict which new
edges are likely to be formed in a graph.

Among many approaches proposed within the SRL framework, two
that have been directly applied to the node classification problem are
Probabilistic Relational Models (PRMs) [10, 33] and Relational Markov
Networks (RMNs) [32]. Essentially, the two approaches learn a proba-
bilistic graph model to represent the relational (graph) data. The model
used is a Bayesian network (directed) for PRMs and a Markov network
(undirected) for RMNs. The learnt models are then used to perform
inference or labeling over the graphs.

Formally, the nodes V in the given graph G are represented by random
variables X which can take values from the set Y. Let Xl denote the
observed random variables associated with labeled nodes and Xu be the
unobserved variables for the unlabeled nodes. The task is to determine
the joint probability distribution P (Xu|Xl), i.e., the probability distri-
bution over the labels for each unobserved variable (unlabeled node),
given the observed variables (labeled nodes), and use it for inference.

In PRMs, each random variable xi representing node vi is associ-
ated with a conditional probability distribution P(xi|parents(xi)), where
parents(xi) is the set of label assignments on nodes that have an outgo-
ing edge to node vi. In the case of RMNs, a pairwise Markov Random
Field (MRF) is defined over the graph that is parametrized by a set of
arbitrary non-negative functions known as clique potentials.

These relational models are represented by a joint probability distri-
bution of label assignments over nodes of the graph. This stands in
contrast to methods such as random walks for graph labeling, which do
not make these models for the label of a node explicit, but rather which
use an implicit model to compute the labeling. To use a relational model
for node classification, we must compute the marginal probability dis-
tribution for each node. However, this is not a simple task, since there

28

are correlations (mutual dependencies) between the distributions on the
nodes, and so there is no compact closed form for these marginals.

A popular choice for approximate inference in relational models is
loopy belief propagation (LBP). LBP is an iterative message passing
algorithm, where a message sent from node vi to vj is the belief of vi on
what the value of vj should be. Pragmatically, this seems similar in spirit
to the iterative methods which pass messages in the form of distributions
of label values. LBP does not guarantee convergence except for special
cases such as when the graphical model is a tree. Nevertheless, it has
been found to work well in practice [34].

6.2 Metric labeling

There has been much other work on the problem of labeling objects
when there are some relationships known between them. A central exam-
ple is the work by Kleinberg and Tardos [15] that describes the problem
of Metric Labeling. Here, there is a collection of objects with pairwise
relationships between them (so relationships can be modeled as a graph).
Each object also has an initial label (for example, this could be a user’s
declared age in a setting where many users do not reveal their true de-
mographics). There are therefore two forces at work in the labeling:
to pick labels which are consistent with the assigned labels of neigh-
boring objects (due to implicit assumption of homophily), and to pick
labels which are consistent with the initial labels. Kleinberg and Tardos
formalize this problem by defining two functions, the first defined over
(initial label, assigned label) pairs, and the second defined over (assigned
label, neighbor’s assigned label) pairs.

This then naturally defines an optimization problem over graphs:
given the initial labeling of nodes, the edges, and the two cost func-
tions, choose a labeling with minimum cost summed over all nodes and
edges. Using the language of combinatorial optimization, this becomes a
well-defined optimization problem, since every assignment has an associ-
ated cost: therefore, there must exist some assignment(s) with minimum
cost. Kleinberg and Tardos are able to give guaranteed approximations
to this problem: they show an algorithm to find an assignment whose
cost is more expensive than the optimal one by a factor that is at most
logarithmic in the number of labels. The approach relies on solving a
carefully defined linear program, and arguing that rounding the frac-
tional solution gives a good approximation to the original problem.

Applying this approach to the node classification problem is possible,
but requires some effort. First, one needs to choose appropriate metrics
over labels, and to extend these to capture the case of missing labels

Node Classification in Social Networks 29

(which should not be penalized excessively by the metric over neighbors).
Second, for graphs of social networks, it is necessary to solve a linear
program defined over all the edges and nodes in the graph, which may
stretch the limits of modern solvers.

6.3 Spectral partitioning

A different approach studied by McSherry [23] is to use spectral meth-
ods (study of eigenvalues and eigenvectors) to recover a labeling. For
the analysis, the graph is assumed to have been produced by a random
process. Each of the n nodes in V has a (secret) initial label from the m
possibilities. It is assumed that edges are created by a random process:
let Q be an m×m matrix where qij denotes the probability of including
an edge between a node with label i and node with label j for i, j < m.
In this model, the given graph G is drawn from the distribution implied
by the hidden labels and Q. Computing the maximum-likelihood label-
ing is NP-hard in this setting, so McSherry presents an algorithm based
on random partitioning and projections to infer the true labeling on the
nodes of the graph with high probability.

Sidiropoulos (in the survey of Aggarwal et al. [1] points out that in
most cases, it is not realistic to consider connections between all pairs
of objects in the generative model. Hence the distribution of graphs
considered by McSherry does not correspond to typical social network
graphs. To better model such graphs, they consider a slightly modified
model where for a given graph H, each edge e of H is removed with
probability 1 − qij , where i, j are labels on the endpoints of e and Q is
the m×m matrix of probabilities as before. Sidiropoulos argues that for
arbitrary graphs H, it is not possible to recover almost all labels with
high probability, but that simple algorithms may still recover a constant
fraction of labels.

6.4 Graph Clustering

A set of approaches proposed for node classification are based on
partitioning the nodes into clusters and assigning the same label to the
nodes in the cluster. Blum and Chawla [7] assume that the weights
on edges of the graph denote similarity between the associated nodes.
Thus, a high edge weight means the nodes are very similar. A binary
classification problem is solved by finding a “mincut”: a partition of the
nodes to minimize the number of edges crossing the cut. The intuition
is that placing highly connected nodes in the same class will separate
the nodes labeled “positive” from the “negative” ones. Such problems
can be solved in polynomial time using classical max-flow algorithms.

30

This approach is motivated by observing that on certain cases, finding
the minimum cut produces the smallest classification error.

Similar ideas are used by Shi and Malik [30], who propose a graph
partitioning method for image segmentation. An image is represented as
a graph, where a node represented a pixel in the image and the weight on
an edge between two nodes represented the similarity between the pixel
features (brightness, color etc.). After normalizing the edge weights, it is
shown that the solution is equivalent to computing the second smallest
eigenvector of a suitable matrix defined using the graph laplacian.

A recently proposed method by Zhou et al. [37] considers partitioning
a graph based on both structural and attribute similarity of nodes of the
graph. To combine the contribution of both types of feature, Zhou et
al. define an attribute augmented graph, where new nodes are introduced
for each attribute value. An edge is created between an existing node vi
and an attribute node if vi has the corresponding attribute. To compute
similarity between nodes, a distance measure based on a random walk is
computed over the augmented graph, as in Section 4. However, rather
than assign labels directly from the distribution of nodes reached, the
method clusters nodes based on the random walk distance of pairs of
nodes, via a method such as k-Medoids. Thus each cluster is assumed
to consist of nodes that have similar labels: empirically, this was used
to cluster (label) blogs based on political leaning, and researchers based
on their research topic.

7. Variations on Node Classification

In this section, we identify a few generalizations of the graph labeling
problem and methods which have been proposed for them.

7.1 Dissimilarity in Labels

Goldberg et al. [11] make the observation that nodes may link to
each other even if they do not have similar labels. Consider the graph
in Example 1.2, where an edge represents two videos that are often
co-viewed. These videos may represent the two sides of a polarized
debate, so the co-viewing relation could indicate that the videos are
dissimilar, not similar. This can be formalized by allowing two types of
edge, indicating either affinity or disagreement. Goldberg et al.assume
that the type of each edge is known. For the case of binary labels, the
goal is to find a function f which maps nodes to either the +1 class or
the -1 class. This is formalized as trying to minimize the following cost

Node Classification in Social Networks 31

function:
∑

i,j

wij(f(vi)− sijf(vj))
2

where sij is 1 if edge (i, j) is a similarity edge and -1 otherwise and
wij is the edge weight as before. This minimization requires solving a
quadratic program to find f to label the graph. It can be extended to
the multi-class setting by introducing a labeling function fk for each
class. Such programs can be solved for a moderate number of examples
(hundreds to thousands) but may not scale to huge graphs.

7.2 Edge Labeling

Thus far in our discussion of node classification, we have assumed
the weight matrix W is known, or can be computed directly from node
attribute similarity. But in fact the problem of computing edge weights
can be abstracted as a problem in itself, to infer labels on edges of a
graph. The simplest case is the binary classification problem to label
the edges as positive or negative. For instance, in a network of blogs,
a user may connect to users with whom they either (broadly) agree or
disagree. Leskovec et al. [19] study the problem of classifying edges as
positive and negative through the lens of two theories from social science
literature: Balance and Status. The balance theory is based on notions
such as “the friend of my friend is my friend”, “the enemy of my friend is
my enemy” etc. to balance the signs on edges within a triad. The status
theory asserts that a positive (negative) edge from vi to vj indicates that
the vi believes that vj has a higher (lower) status that vi. Given two
edges connecting three users, both models can predict the sign of the
third edge, but disagree on some cases. Analyzing real data shows that
balance tends to model the case of undirected edges, while status better
captures the directed case.

Goyal et al. [13] studied a problem of edge labeling with applications
such as viral marketing, where it is useful to know the influence that a
user has on his neighbors. The problem is formulated as that of infer-
ring a weight 0 ≤ wij ≤ 1 on each edge (i, j), termed as an influence
probability. Specifically, influence is measured in terms of actions per-
formed by neighbors of a user after the user has performed those actions.
The authors present static and time-dependent models for learning edge
weights.

Krushevskaja and Muthukrishnan [16] formulate a more general edge
labeling problem, for arbitrary sets of possible edge labels. Formally,
given a graph G(V,E) with nodes V and edges E, a subset of the edges
El ⊂ E are labeled. A label yi on edge ei ∈ El is a probability distri-

32

bution over the label set Y. The goal is to label all edges in the graph.
As an example, consider a social network graph, with users represented
by nodes and interactions between users represented by edges in the
graph. The set of labels consists of types of interactions such as email,
public post, tag in a photo, and video message. A subset of edges are
labeled with a probability distribution over the label set. The probabil-
ity associated with a label, say email, at any edge is the likelihood of
the corresponding pair of users interacting by email. Krushevskaja and
Muthukrishnan study two algorithms for the edge labeling problem, one
in which edge labeling is reduced to node labeling on a line graph, and
the other is a direct random walk based approach to edge labeling.

7.3 Label Summarization

In applications involving user generated data, such as tagging videos
in YouTube (Example 1.3), a classification algorithm might choose a
non-zero probability for a large number of labels on a given node. Sim-
ply picking the most likely few labels is not optimal: the chosen tags
may be redundant, picking synonyms and omitting ones which better
capture the content. A secondary concern is that computing the final
label distribution is more costly if the algorithm has to store a complete
label distribution for each node at each intermediate step. Given this
motivation, Bhagat et al. [6] formulate a space-constrained variant of
the graph labeling problem, where each node has space to store at most
k labels and associated weights. That is, given a partially labeled graph,
the goal is to output a label summary of size k at each node.

The simplest approach to solving the space-constrained labeling prob-
lem is to perform one of the node classification methods discussed earlier,
and to prune each computed distribution to have only k labels. A more
sophisticated approach is to summarize label distributions using the se-
mantic relationship among labels, modeled as a hierarchy over the label
set. Now the goal is to choose k appropriate labels from the hierarchy to
best represent the computed distribution at each step. Such algorithms
can run in small space, requiring space proportional to the number of
labels in the neighborhood at any node.

8. Concluding Remarks

The problem of node classification has been defined and addressed
in many works over the last 15 years, prompted by the growth of large
networks such as the web, social networks, and other social media. In
this chapter, we have surveyed the main lines of work, based on iterative
methods and random walks, as well as several variations. When viewed

Node Classification in Social Networks 33

from the right perspective, there is a surprising commonality between
many methods: the methods discussed in Section 4, and several of the
methods in Section 3 can all be seen as generating the labeling from the
occupancy probabilities of a random walk over the graph. The universal-
ity of this concept, which may not have been obvious from the original
papers, can be motivated from both linear algebraic and optimization
considerations.

8.1 Future Directions and Challenges

Having surveyed so many approaches to this problem, we step back
to ask the question, “Given a partially labeled graph, do we know how
to classify the other nodes?”. The short answer to this question is “no”.
Partly this is because the problem is underspecified: unless we make
strong assumptions about the process that generates a true but hidden
labeling, we are unable to prove any theorems which quantify the quality
of any inferred labeling. So, as with other problems in the machine
learning world, we should seek to evaluate solutions, by withholding
some known labels and comparing the imputed labels on these nodes.
Here, we enounter two limitations in the current literature. Firstly, some
proposed methods do not scale up to the large graphs that result from the
motivating social network setting, and have only been tested on graphs of
a few thousand nodes or not at all. Secondly, for those techniques which
do scale, there has been little attempt to compare multiple methods on
the same baseline. A step in the right direction is the work of Macskassy
and Provost [22], which compares multiple methods on relatively small
data sets (hundreds to thousands of nodes).

Given these shortcomings, we identify the following challenges for the
area:

The random walk and iterative approaches have the advantage
of being easy to implement and distribute via Map-Reduce. A
next step is to provide baseline implementations of several of these
methods, and to evaluate them across a common test set of large
graphs derived from social networks to compare the behavior.

Other methods suggested based on classical graph algorithms, com-
binatorial optimization, and spectral properties have not yet been
tested on the large graphs which arise in from social networks. A
natural next step is to understand how well approaches such as
metric labeling, spectral partitioning and inference perform at this
task, in terms of both accuracy and scalability. In particular, can
they be implemented within the Map-Reduce framework?

34

The complex models which arise from relational learning are typ-
ically solved by approximate message passing algorithms such as
loopy belief propagation. Are there special cases of these mod-
els for which the LBP solution coincides with a known iterative
algorithm? This would show a novel connection between these
approaches.

It is open to see if new algorithms can be developed which com-
bine aspects from multiple different labeling methods to achieve
a labeling which is better than that from any individual method
(i.e. hybrid algorithms).

Many methods are motivated based on hypotheses about what
links are present: homophily, co-citation regularity, balance, status
etc. To what extent can these hypotheses be tested within large
scale data?

8.2 Further Reading

Several other sources have discussed different aspects of the graph la-
beling problem and its generalizations. As mentioned in Section 4.2, the
survey by Bengio et al. [4] relates the semi-supervised learning methods
in the context of optimizing a quadratic cost function.

The survey of Sen et al. [29] compares various node classification meth-
ods including ICA and relational learning method RMN that uses LBP.
They empirically compare the methods on document classification tasks
and show that the simple ICA method is the most efficient. The au-
thors note that although in some experiments LBP had better labeling
accuracy than ICA, but learning the parameters for the method is not
trivial. Macskassy and Provost [22] survey different approaches, and
give empirical comparisons on some web-based data sets. The tutorial
of Neville and Provost [27] presents the machine learning perspective,
and has slides and a reading list available.

Acknowledgments

The work of the first and third authors is supported by NSF grant
0916782.

References

[1] G. Aggarwal, N. Ailon, F. Constantin, E. Even-Dar, J. Feldman,
G. Frahling, M. R. Henzinger, S. Muthukrishnan, N. Nisan, M. Pal,
M. Sandler, and A. Sidiropoulos. Theory research at google. ACM
SIGACT News archive, 39, 2008.

[2] A. Azran. The rendezvous algorithm: Multiclass semi-supervised
learning with markov random walks. In ICML, 2007.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly. Video suggestion and discovery for
youtube: Taking random walks through the view graph. In WWW,
2008.

[4] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and
quadratic criterion. In O. Chapelle, B. Schölkopf, and A. Zien,
editors, Semi-Supervised Learning, pages 193–216. MIT Press, 2006.

[5] S. Bhagat, G. Cormode, and I. Rozenbaum. Applying link-based
classification to label blogs. In Joint 9th WEBKDD and 1st SNA-
KDD Workshop, 2007.

[6] S. Bhagat, S. Muthukrishnan, and D. Sivakumar. Hierarchical prob-
abilistic node labeling, 2010. Manuscript.

[7] A. Blum and S. Chawla. Learning from labeled and unlabeled data
using graph mincuts. In ICML, 2001.

[8] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext cate-
gorization using hyperlinks. In ACM SIGMOD, 1998.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. In OSDI, 2004.

[10] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning prob-
abilistic relational models. In IJCAI, 1999.

36

[11] A. B. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-based
semisupervised classification. In Eleventh International Conference
on Artificial Intelligence and Statistics (AISTATS), 2007.

[12] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.).
Johns Hopkins University Press, 1996.

[13] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence
probabilities in social networks. In WSDM, 2010.

[14] G. Jeh and J. Widom. Scaling personalized web search. In WWW,
2003.

[15] J. Kleinberg and E. Tardos. Approximation algorithms for classi-
fication problems with pairwise relationships: Metric labeling and
markov random fields. In FOCS, 1999.

[16] D. Krushevskaja and S. Muthukrishnan. Inferring multi-labels on
relationships, 2010. Manuscript.

[17] A. N. Langville and C. D. Meyer. The use of linear algebra by web
search engines. IMAGE Newsletter, 33:2–6, December 2004.

[18] A. Lenhart and M. Madden. Teens, privacy and online so-
cial networks. http://www.pewinternet.org/Reports/2007/

Teens-Privacy-and-Online-Social-Networks.aspx, 2007.

[19] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive
and negative links in online social networks. In WWW, 2010.

[20] Q. Lu and L. Getoor. Link-based classification. In ICML, 2003.

[21] S. A. Macskassy and F. Provost. A simple relational classifier. In
MRDM Workshop, SIGKDD, 2003.

[22] Sofus A. Macskassy and Foster Provost. Classification in networked
data: A toolkit and a univariate case study. Journal of Machine
Learning, 8:935–983, May 2007.

[23] F. McSherry. Spectral partitioning of random graphs. In FOCS,
2001.

[24] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-
order diffusive methods for rapid, coarse, distributed load balancing.
Theory Comput. Syst., 31(4), 1998.

[25] S. Muthukrishnan and T. Suel. Second-order methods for dis-
tributed approximate single- and multicommodity flow. In RAN-
DOM, 1998.

REFERENCES 37

[26] J. Neville and D. Jensen. Iterative classification in relational data.
In Workshop on Learning Statistical Models from Relational Data,
AAAI, 2000.

[27] J. Neville and F. Provost. Predictive modeling with social
networks. http://www.cs.purdue.edu/homes/neville/courses/
icwsm09-tutorial.html, 2009.

[28] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank
on graph streams. In PODS, 2008.

[29] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and
T. Eliassi-Rad. Collective classification in network data. AI Maga-
zine, 29(3):93–106, 2008.

[30] J. Shi and J. Malik. Normalized cuts and image segmentation. In
IEEE Transactions on Pattern Analysis and Machine Intelligence,
1997.

[31] M. Szummer and T. Jaakkola. Partially labeled classification with
markov random walks. In NIPS, 2001.

[32] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic
models for relational data. In UAI, 2002.

[33] B. Taskar, E. Segal, and D. Koller. Probabilistic classification and
clustering in relational data. In IJCAI, 2001.

[34] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-
energy approximations and generalized belief propagation algo-
rithms. In IEEE Transactions on Information Theory, 2005.

[35] W. W. Zachary. An information flow model for conflict and fission
in small groups. Journal of Anthropological Research, 33:452–473,
1977.

[36] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In NIPS, 2004.

[37] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on struc-
tural/attribute similarities. In VLDB, 2009.

[38] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning
using Gaussian fields and harmonic functions. In ICML, 2003.

