Skip to main content

Perception-Driven Global Illumination and Rendering Computation

  • Chapter
  • 172 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 664))

Abstract

We investigate applications of the Visible Difference Predictor (VDP) to steer global illumination computation. We use the VDP to monitor the progression of computation as a function of time for major global illumination algorithms. Based on the results obtained, we propose a novel global illumination algorithm which is a hybrid of stochastic (density estimation) and deterministic (adaptive mesh refinement) techniques used in an optimized sequence to reduce the differences between the intermediate and final images as predicted by the VDP. Also, the VDP is applied to decide upon stopping conditions for global illumination simulation, when further continuation of computation does not contribute to perceivable changes in the quality of the resulting

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Bolin and G.W. Meyer. A Perceptually Based Adaptive Sampling Algorithm. In Proc.of Siggraph’98, 299–310, 1998

    Google Scholar 

  2. P.K. Burt. Fast filter transforms for image processing. Computer Vision, Graphics and Image Processing, 21:368–382, 1981.

    Article  Google Scholar 

  3. M.F, Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock. An efficient radiosity approach for realistic image synthesis. IEEE Computer Graphics and Applications, 6(3):26–35, March 1986.

    Article  Google Scholar 

  4. M.F. Cohen, S.E. Chen, J.R. Wallace, and D.P. Greenberg. A progressive refinement approach to fast radiosity image generation. In Proc. of Siggraph’88, pages 75–84, 1988.

    Google Scholar 

  5. S. Comes, O. Bruyndonckx, and B. Macq. Image quality criterion based on the cancellation of the masked noise. In Proc. of IEEE Int’l Conference on Acoustics, Speech and Signal Processing, pages 2635–2638,1995.

    Google Scholar 

  6. S. Daly. The Visible Differences Predictor: An algorithm for the assessment of image fidelity. In A.B. Watson, editor, Digital Image and Human Vision, pages 179–206. Cambridge, Ma: MIT Press, 1993.

    Google Scholar 

  7. R.L. De Valois and De Valois K.K. Spatial vision. Oxforf University Press, Oxford, 1990.

    Google Scholar 

  8. G. Drettakis and F.X. Sillion. Accurate visibility and meshing calculations for hierarchical radiosity. In X. Pueyo and P. Schroder, editors, Rendering Techniques’ 96, pages 269–278. Springer, June 1996.

    Google Scholar 

  9. J.A. Ferwerda, S. Pattanaik, P. Shirley, and D.P. Greenberg. A model of visual masking for computer graphics. In Proc. of Siggraph’97, pages 143–152, 1997.

    Google Scholar 

  10. A. Gaddipatti, R. Machiraju, and R. Yagel. Steering image generation with wavelet based perceptual metric. Computer Graphics Forum (Eurographics’ 97), 16(3):241–251, September 1997.

    Article  Google Scholar 

  11. S. Gibson and R.J. Hubbold. Perceptuallydriven radiosity. Computer Graphics Forum, 16(2):129–141,1997.

    Article  Google Scholar 

  12. D.P. Greenberg, K.E. Torrance, P. Shirley, J. Arvo, K.A. Ferwerda, S.N. Pattanaik, E.P.F. Lafortune, B. Walter, S.C. Foo, and B. Trumbore. A framework for realistic image synthesis. In Proc. of Siggraph’97, pages 477–494, 1997.

    Google Scholar 

  13. D. Hedley and A. Worrall and D. Paddon. Selective Culling of Discontinuity Lines. In Dorsey, J. and Slusallek P., editors, Rendering Techniques’ 97, pages 69–80. Springer, 1997.

    Google Scholar 

  14. H. W. Jensen. Global Illumination Using Photon Maps. In X. Pueyo and P. Schroder, editors, Rendering Techniques’ 96, pages 21–30. Springer, 1996.

    Google Scholar 

  15. J.T. Kajiya. The rendering equation. In Proc. of Siggraph’86, pages 143–150, 1986.

    Google Scholar 

  16. B. Li, G.W. Meyer, and R.V. Klassen. A comparison of two images quality models. In Human Vision and Electronic Imageing III, pages 98–109. SPIE Vol. 3299,1998.

    Google Scholar 

  17. D. Lischinski, B. Smits, and D.P. Greenberg. Bounds and error estimates for radiosity. In Proc. of Siggraph’ 94, pages 67–74,1994.

    Google Scholar 

  18. D. Lischinski, F. Tampieri, and D.P. Greenberg. Discontinuity meshing for accurate radiosity. IEEE Computer Graphics and Applications, 12(6):25–39, November 1992.

    Article  Google Scholar 

  19. D. Lischiski, F. Tampieri, and D.P. Greenberg. Combinin hierachical radiosity and discontinuity meshing. In Proc. of Siggraph’93, pages 199–208, 1993.

    Google Scholar 

  20. C. Lloyd and R.J. Beaton. Design of spatialchromatic human vision model for evaluating full.color display systems. In Human Vision and Electronic Imaging: Models, Methodes, and Appl., pages 23–37. SPIE Vol. 1249, 1990.

    Google Scholar 

  21. J. Lubin. A visual discrimination model for imaging system design and development. In Peli. E., editor, Vision models for target detection and recognition, pages 245–283. World Scientific, 1995.

    Google Scholar 

  22. S. Marcelja. Mathematical desscription of the responses of simple cortical cells. Journal of the Optical Society of America, 70:1297–1300, 1980.

    Article  MathSciNet  Google Scholar 

  23. W.L. Martens and K. Myszkowski. Psychophysical validation of the Visible Differences Predictor for global illumination applications. In IEEE Visualization’ 98 (Late Breaking Hot Topics), pages 49–52, 1998.

    Google Scholar 

  24. I. Martin, X. Pueyo, and D. Tost. An imagespace refinement criterion for linear hierarchical radiosity. In Graphics Interface’ 97, pages 26–36, 1997.

    Google Scholar 

  25. R.A. Martin, A.J. Ahumada, and J.O. Larimer. Color matrix display sim,ulation based upon luminace and chrominace contrast sensitivity of early vision. In Human Vision, Visual Processing, and Digital Display III, pages 336–342. SPIE Vol. 1666, 1992.

    Google Scholar 

  26. ?. Myszkowski. The Visible Differences Predictor: Applications to global illumination problems. In G. Drettakis and N. Max, editors, Rendering Techniques’ 98, pages 223–236. Springer, 1998.

    Google Scholar 

  27. K. Myszkowski and T.L. Kunii. An efficient cluster-based hierarchical progressive radiosity algorithm. In ICSC’ 95, volume 1024 of Lecture Notes in Computer Science, pages 292–303. Springer-Verlag, 1995.

    Google Scholar 

  28. K. Myszkowski anf T.L. Kunii. A case study towards validation of global illumination algorithms: progressive hierarchical radiosity with clustering. The Visual Computer, 16(5):271–288,2000.

    Article  Google Scholar 

  29. K. Myszkowski, A. Wojdala, and K. Wicynski. Non-uniform adaptive meshing for global illumination. Machine Graphics and Vision, 3(4):601–610, 1994.

    Google Scholar 

  30. J. Prikryl and W. Purgathofer. State of the art in perceptually driven radiosity. In State of the Art Reports. Eurographics, 1998.

    Google Scholar 

  31. M. Ramasubramanian, S.N. Pattanaik, and D.P. Greenberg. A perceptually based physical error metric for realistic image synthesis. In Proc. of Siggraph’ 99, pages 73–82, 1999.

    Google Scholar 

  32. H. Rushmeier, G. Ward, C. Piatko, P. Sanders, and B. Rust. Comparing real and synthetic images: some ideas about metrics. In P. Hanrahan W. Purgathofer, editors, Rendering Techninques, 95, pages 82–91. Springer, 1995.

    Article  Google Scholar 

  33. F.X. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kaufmann, San Francisco, 1994.

    Google Scholar 

  34. C.C. Taylor, Y. Pizlo, J.P. Allebach, and C.A. Bouman. Image quality assessment with a Gabor pyramid model of the Human Visual System. In Human Vision and Electronic Imaging, pages 58–69. SPIE Vol. 3016, 1997.

    Google Scholar 

  35. P.C. Teo and D:J: Heeger. Perceptual iamge distortion. Pages 127–141. SPIE Vol. 2179, 1994.

    Google Scholar 

  36. J. Tumblin and H.E. Rushmeier. Tone reproduction for realistic images. IEEE Computer Graphics and Applications, 13(6):42–48, November 1993.

    Article  Google Scholar 

  37. E. Veach. Robust Monte Carlo methods for lighting simulation. Ph.D. thesis, Stanford University, 1997.

    Google Scholar 

  38. C. Vedel and C. Puech. A testbed for adaptive subdividion in progressive radiosity. In P. Brunet and F.W. Jansen, editors, Photorealistic Rendering in Computer Graphics, 1991.

    Google Scholar 

  39. V. Volevich, K. Myszkowski, A. Khodulev, and Kopylov E.A. Using the Visible Differences Predictor to improve performance of Progressive global illumination computations. ACM Transactions on Graphics, 19(2): 122–161, 2000.

    Article  Google Scholar 

  40. B.J. Walter, P.M. Hubbard, P. Shirley, and D.P. Greenberg. Global illumination using local linear density estimation. ACM Transactions on Graphics, 16(3):217–259, 1997.

    Article  Google Scholar 

  41. A.B. Watson. The Cortex transform: rapid computation of simulated neural images. Comp. Vision Graphics ans Image Processing, 39:311–327, 1987.

    Article  Google Scholar 

  42. S.J.P. Westen, R.L. Lagensijk, and J. Biemond. Perceptual image quality based on a multiple channel HVS model. In Proc. of IEEE Int’l Conference on Acoustics, Speech and Signal Processing, pages 2351–2354, 1995.

    Google Scholar 

  43. H.R. Wilson. Psychophysical models of spatial vision and hyperacuity. In D. Regan, editor, Spatial vision, Vol. 10, Vision and Visual Disfunction, pages 179–206. Cambridge, MA: MIT Press, 1991.

    Google Scholar 

  44. H.R. Wilson and D.J. Gelb. Modified lineelemnt theory for spatial-frequency and width discrimination. Journal of the Optical Society od America, 1(1): 124–131, 1984.

    Article  Google Scholar 

  45. C. Zetzsche and Hauske G. Multiple channel model for the prediction od subjective image quality. In Human Vision, Visual Processing, and Digital Display, pages 209–216. SPIE Vol. 1077, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Sołdek Jerzy Pejaś

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myszkowski, K. (2002). Perception-Driven Global Illumination and Rendering Computation. In: Sołdek, J., Pejaś, J. (eds) Advanced Computer Systems. The Springer International Series in Engineering and Computer Science, vol 664. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8530-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8530-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4635-7

  • Online ISBN: 978-1-4419-8530-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics