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Proximal Splitting Methods in Signal Processing∗

Patrick L. Combettes† and Jean-Christophe Pesquet‡

Abstract

The proximity operator of a convex function is a natural extension of the notion of a
projection operator onto a convex set. This tool, which plays a central role in the analysis and
the numerical solution of convex optimization problems, has recently been introduced in the
arena of inverse problems and, especially, in signal processing, where it has become increasingly
important. In this paper, we review the basic properties of proximity operators which are
relevant to signal processing and present optimization methods based on these operators. These
proximal splitting methods are shown to capture and extend several well-known algorithms in
a unifying framework. Applications of proximal methods in signal recovery and synthesis are
discussed.
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1 Introduction

Early signal processing methods were essentially linear, as they were based on classical func-
tional analysis and linear algebra. With the development of nonlinear analysis in mathematics
in the late 1950s and early 1960s (see the bibliographies of [6, 142]) and the availability of
faster computers, nonlinear techniques have slowly become prevalent. In particular, convex
optimization has been shown to provide efficient algorithms for computing reliable solutions in
a broadening spectrum of applications.

Many signal processing problems can in fine be formulated as convex optimization problems
of the form

minimize
x∈RN

f1(x) + · · · + fm(x), (1)

where f1, . . . , fm are convex functions from R
N to ]−∞,+∞]. A major difficulty that arises

in solving this problem stems from the fact that, typically, some of the functions are not
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differentiable, which rules out conventional smooth optimization techniques. In this paper,
we describe a class of efficient convex optimization algorithms to solve (1). These methods
proceed by splitting in that the functions f1, . . . , fm are used individually so as to yield an
easily implementable algorithm. They are called proximal because each nonsmooth function in
(1) is involved via its proximity operator. Although proximal methods, which can be traced
back to the work of Martinet [98], have been introduced in signal processing only recently
[46, 55], their use is spreading rapidly.

Our main objective is to familiarize the reader with proximity operators, their main proper-
ties, and a variety of proximal algorithms for solving signal and image processing problems. The
power and flexibility of proximal methods will be emphasized. In particular, it will be shown
that a number of apparently unrelated, well-known algorithms (e.g., iterative thresholding, pro-
jected Landweber, projected gradient, alternating projections, alternating-direction method of
multipliers, alternating split Bregman) are special instances of proximal algorithms. In this
respect, the proximal formalism provides a unifying framework for analyzing and developing a
broad class of convex optimization algorithms. Although many of the subsequent results are
extendible to infinite-dimensional spaces, we restrict ourselves to a finite-dimensional setting
to avoid technical digressions.

The paper is organized as follows. Proximity operators are introduced in Section 2, where
we also discuss their main properties and provide examples. In Sections 3 and 4, we describe the
main proximal splitting algorithms, namely the forward-backward algorithm and the Douglas-
Rachford algorithm. In Section 5, we present a proximal extension of Dykstra’s projection
method which is tailored to problems featuring strongly convex objectives. Composite problems
involving linear transformations of the variables are addressed in Section 6. The algorithms
discussed so far are designed for m = 2 functions. In Section 7, we discuss parallel variants
of these algorithms for problems involving m ≥ 2 functions. Concluding remarks are given in
Section 8.

Notation. We denote by R
N the usualN -dimensional Euclidean space, by ‖·‖ its norm, and

by I the identity matrix. Standard definitions and notation from convex analysis will be used
[13, 87, 114]. The domain of a function f : RN → ]−∞,+∞] is dom f = {x ∈ R

N |f(x) < +∞}.
Γ0(RN ) is the class of lower semicontinuous convex functions from R

N to ]−∞,+∞] such that
dom f 6= ∅. Let f ∈ Γ0(RN ). The conjugate of f is the function f∗ ∈ Γ0(RN ) defined by

f∗ : RN → ]−∞,+∞] : u 7→ sup
x∈RN

x⊤u− f(x), (2)

and the subdifferential of f is the set-valued operator

∂f : RN → 2R
N

: x 7→
{
u ∈ R

N | (∀y ∈ R
N ) (y − x)⊤u+ f(x) ≤ f(y)

}
. (3)

Let C be a nonempty subset of RN . The indicator function of C is

ιC : x 7→
{

0, if x ∈ C;

+∞, if x /∈ C,
(4)

the support function of C is

σC = ι∗C : RN → ]−∞,+∞] : u 7→ sup
x∈C

u⊤x, (5)

the distance from x ∈ R
N to C is dC(x) = infy∈C‖x − y‖, and the relative interior of C

(i.e., interior of C relative to its affine hull) is the nonempty set denoted by riC. If C is
closed and convex, the projection of x ∈ R

N onto C is the unique point PCx ∈ C such that
dC(x) = ‖x− PCx‖.

2 From projection to proximity operators

One of the first widely used convex optimization splitting algorithms in signal processing
is POCS (Projection Onto Convex Sets) [31, 42, 141]. This algorithm is employed to re-
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cover/synthesize a signal satisfying simultaneously several convex constraints. Such a problem
can be formalized within the framework of (1) by letting each function fi be the indicator
function of a nonempty closed convex set Ci modeling a constraint. This reduces (1) to the
classical convex feasibility problem [31, 42, 44, 86, 93, 121, 122, 128, 141]

find x ∈
m⋂

i=1

Ci. (6)

The POCS algorithm [25, 141] activates each set Ci individually by means of its projection
operator PCi

. It is governed by the updating rule

xn+1 = PC1
· · ·PCm

xn. (7)

When
⋂m
i=1 Ci 6= ∅ the sequence (xn)n∈N thus produced converges to a solution to (6) [25].

Projection algorithms have been enriched with many extensions of this basic iteration to solve
(6) [10, 43, 45, 90]. Variants have also been proposed to solve more general problems, e.g., that
of finding the projection of a signal onto an intersection of convex sets [22, 47, 137]. Beyond
such problems, however, projection methods are not appropriate and more general operators are
required to tackle (1). Among the various generalizations of the notion of a convex projection
operator that exist [10, 11, 44, 90], proximity operators are best suited for our purposes.

The projection PCx of x ∈ R
N onto the nonempty closed convex set C ⊂ R

N is the solution
to the problem

minimize
y∈RN

ιC(y) +
1

2
‖x− y‖2. (8)

Under the above hypotheses, the function ιC belongs to Γ0(RN ). In 1962, Moreau [101] pro-
posed the following extension of the notion of a projection operator, whereby the function ιC
in (8) is replaced by an arbitrary function f ∈ Γ0(RN ).

Definition 2.1 (Proximity operator) Let f ∈ Γ0(RN ). For every x ∈ R
N , the minimiza-

tion problem

minimize
y∈RN

f(y) +
1

2
‖x− y‖2 (9)

admits a unique solution, which is denoted by proxfx. The operator proxf : RN → R
N thus

defined is the proximity operator of f .

Let f ∈ Γ0(RN ). The proximity operator of f is characterized by the inclusion

(∀(x, p) ∈ R
N × R

N ) p = proxf x ⇔ x− p ∈ ∂f(p), (10)

which reduces to

(∀(x, p) ∈ R
N × R

N ) p = proxf x ⇔ x− p = ∇f(p) (11)

if f is differentiable. Proximity operators have very attractive properties that make them
particularly well suited for iterative minimization algorithms. For instance, proxf is firmly
nonexpansive, i.e.,

(∀x ∈ R
N )(∀y ∈ R

N ) ‖proxfx− proxfy‖2 + ‖(x− proxfx) − (y − proxfy)‖2

≤ ‖x− y‖2, (12)

and its fixed point set is precisely the set of minimizers of f . Such properties allow us to envi-
sion the possibility of developing algorithms based on the proximity operators (proxfi)1≤i≤m to
solve (1), mimicking to some extent the way convex feasibility algorithms employ the projection
operators (PCi

)1≤i≤m to solve (6). As shown in Table 1, proximity operators enjoy many addi-
tional properties. One will find in Table 2 closed-form expressions of the proximity operators of
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various functions in Γ0(R) (in the case of functions such as | · |p, proximity operators implicitly
appear in several places, e.g., [3, 4, 35]).

From a signal processing perspective, proximity operators have a very natural interpretation
in terms of denoising. Let us consider the standard denoising problem of recovering a signal
x ∈ R

N from an observation
y = x+ w, (13)

where w ∈ R
N models noise. This problem can be formulated as (9), where ‖·−y‖2/2 plays the

role of a data fidelity term and where f models a priori knowledge about x. Such a formulation
derives in particular from a Bayesian approach to denoising [21, 124, 126] in the presence of
Gaussian noise and of a prior with a log-concave density exp(−f).

3 Forward-backward splitting

In this section, we consider the case of m = 2 functions in (1), one of which is smooth.

Problem 3.1 Let f1 ∈ Γ0(RN ), let f2 : RN → R be convex and differentiable with a β-
Lipschitz continuous gradient ∇f2, i.e.,

(∀(x, y) ∈ R
N × R

N ) ‖∇f2(x) −∇f2(y)‖ ≤ β‖x− y‖, (14)

where β ∈ ]0,+∞[. Suppose that f1(x) + f2(x) → +∞ as ‖x‖ → +∞. The problem is to

minimize
x∈RN

f1(x) + f2(x). (15)

It can be shown [55] that Problem 3.1 admits at least one solution and that, for any γ ∈
]0,+∞[, its solutions are characterized by the fixed point equation

x = proxγf1
(
x− γ∇f2(x)

)
. (16)

This equation suggests the possibility of iterating

xn+1 = proxγnf1︸ ︷︷ ︸
backward step

(
xn − γn∇f2(xn)︸ ︷︷ ︸

forward step

)
(17)

for values of the step-size parameter γn in a suitable bounded interval. This type of scheme is
known as a forward-backward splitting algorithm for, using the terminology used in discretiza-
tion schemes in numerical analysis [132], it can be broken up into a forward (explicit) gradient
step using the function f2, and a backward (implicit) step using the function f1. The forward-
backward algorithm finds its roots in the projected gradient method [94] and in decomposition
methods for solving variational inequalities [99, 119]. More recent forms of the algorithm and
refinements can be found in [23, 40, 48, 85, 130]. Let us note that, on the one hand, when
f1 = 0, (17) reduces to the gradient method

xn+1 = xn − γn∇f2(xn) (18)

for minimizing a function with a Lipschitz continuous gradient [19, 61]. On the other hand,
when f2 = 0, (17) reduces to the proximal point algorithm

xn+1 = proxγnf1xn (19)

for minimizing a nondifferentiable function [26, 48, 91, 98, 115]. The forward-backward algo-
rithm can therefore be considered as a combination of these two basic schemes. The following
version incorporates relaxation parameters (λn)n∈N.
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Algorithm 3.2 (Forward-backward algorithm)
Fix ε ∈ ]0,min{1, 1/β}[, x0 ∈ R

N

For n = 0, 1, . . .

γn ∈ [ε, 2/β − ε]

yn = xn − γn∇f2(xn)

λn ∈ [ε, 1]

xn+1 = xn + λn(proxγnf1yn − xn).

(20)

Proposition 3.3 [55] Every sequence (xn)n∈N generated by Algorithm 3.2 converges to a so-

lution to Problem 3.1.

The above forward-backward algorithm features varying step-sizes (γn)n∈N but its relaxation
parameters (λn)n∈N cannot exceed 1. The following variant uses constant step-sizes and larger
relaxation parameters.

Algorithm 3.4 (Constant-step forward-backward algorithm)
Fix ε ∈ ]0, 3/4[ and x0 ∈ R

N

For n = 0, 1, . . .
yn = xn − β−1∇f2(xn)

λn ∈ [ε, 3/2 − ε]

xn+1 = xn + λn(proxβ−1f1yn − xn).

(21)

Proposition 3.5 [13] Every sequence (xn)n∈N generated by Algorithm 3.4 converges to a so-

lution to Problem 3.1.

Although they may have limited impact on actual numerical performance, it may be of
interest to know whether linear convergence rates are available for the forward-backward al-
gorithm. In general, the answer is negative: even in the simple setting of Example 3.11
below, linear convergence of the iterates (xn)n∈N generated by Algorithm 3.2 fails [9, 139].
Nonetheless it can be achieved at the expense of additional assumptions on the problem
[10, 24, 40, 61, 92, 99, 100, 115, 119, 144].

Another type of convergence rate is that pertaining to the objective values (f1(xn) +
f2(xn))n∈N. This rate has been investigated in several places [16, 24, 83] and variants of
Algorithm 3.2 have been developed to improve it [16, 15, 84, 104, 105, 131, 136] in the spirit of
classical work by Nesterov [106]. It is important to note that the convergence of the sequence
of iterates (xn)n∈N, which is often crucial in practice, is no longer guaranteed in general in such
variants. The proximal gradient method proposed in [16, 15] assumes the following form.

Algorithm 3.6 (Beck-Teboulle proximal gradient algorithm)
Fix x0 ∈ R

N , set z0 = x0 and t0 = 1
For n = 0, 1, . . .

yn = zn − β−1∇f2(zn)

xn+1 = proxβ−1f1yn

tn+1 =
1 +

√
4t2n + 1

2

λn = 1 +
tn − 1

tn+1

zn+1 = xn + λn(xn+1 − xn).

(22)

While little is known about the actual convergence of sequences produced by Algorithm 3.6,
the O(1/n2) rate of convergence of the objective function they achieve is optimal [103], although
the practical impact of such property is not always manifest in concrete problems (see Figure 2
for a comparison with the Forward-Backward algorithm).
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Figure 1: Proximity operator of the function

φ : R → ]−∞,+∞] : ξ 7→





− ln(ξ − ω) + ln(−ω) if ξ ∈ ]ω, 0]

− ln(ω − ξ) + ln(ω) if ξ ∈ ]0, ω[

+∞ otherwise.

The proximity operator thresholds over the interval [1/ω, 1/ω], and saturates at −∞ and +∞ with
asymptotes at ω and ω, respectively (see Table 2.xiii and [53]).

Proposition 3.7 [16] Assume that, for every y ∈ dom f1, ∂f1(y) 6= ∅, and let x be a solution

to Problem 3.1. Then every sequence (xn)n∈N generated by Algorithm 3.6 satisfies

(∀n ∈ Nr {0}) f1(xn) + f2(xn) ≤ f1(x) + f2(x) +
2β‖x0 − x‖2

(n+ 1)2
. (23)

Other variations of the forward-backward algorithm have also been reported to yield im-
proved convergence profiles [20, 70, 97, 134, 135].

Problem 3.1 and Proposition 3.3 cover a wide variety of signal processing problems and
solution methods [55]. For the sake of illustration, let us provide a few examples. For notational
convenience, we set λn ≡ 1 in Algorithm 3.2, which reduces the updating rule to (17).

Example 3.8 (projected gradient) In Problem 3.1, suppose that f1 = ιC , where C is a
closed convex subset of RN such that {x ∈ C | f2(x) ≤ η} is nonempty and bounded for some
η ∈ R. Then we obtain the constrained minimization problem

minimize
x∈C

f2(x). (24)
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Since proxγf1 = PC (see Table 1.xii), the forward-backward iteration reduces to the projected

gradient method

xn+1 = PC
(
xn − γn∇f2(xn)

)
, ε ≤ γn ≤ 2/β − ε. (25)

This algorithm has been used in numerous signal processing problems, in particular in total
variation denoising [34], in image deblurring [18], in pulse shape design [50], and in compressed
sensing [73].

Example 3.9 (projected Landweber) In Example 3.8, setting f2 : x 7→ ‖Lx−y‖2/2, where
L ∈ R

M×N
r {0} and y ∈ R

M , yields the constrained least-squares problem

minimize
x∈C

1

2
‖Lx− y‖2. (26)

Since ∇f2 : x 7→ L⊤(Lx−y) has Lipschitz constant β = ‖L‖2, (25) yields the projected Landwe-

ber method [68]

xn+1 = PC
(
xn + γnL

⊤(y − Lxn)
)
, ε ≤ γn ≤ 2/‖L‖2 − ε. (27)

This method has been used in particular in computer vision [89] and in signal restoration [129].

Example 3.10 (backward-backward algorithm) Let f and g be functions in Γ0(RN ).
Consider the problem

minimize
x∈RN

f(x) + g̃(x), (28)

where g̃ is the Moreau envelope of g (see Table 1.vii), and suppose that f(x) + g̃(x) → +∞ as
‖x‖ → +∞. This is a special case of Problem 3.1 with f1 = f and f2 = g̃. Since ∇f2 : x 7→
x− proxgx has Lipschitz constant β = 1 [55, 102], Proposition 3.3 with γn ≡ 1 asserts that the
sequence (xn)n∈N generated by the backward-backward algorithm

xn+1 = proxf (proxgxn) (29)

converges to a solution to (28). Detailed analyses of this scheme can be found in [1, 14, 48, 108].

Example 3.11 (alternating projections) In Example 3.10, let f and g be respectively the
indicator functions of nonempty closed convex sets C and D, one of which is bounded. Then
(28) amounts to finding a signal x in C at closest distance from D, i.e.,

minimize
x∈C

1

2
d2D(x). (30)

Moreover, since proxf = PC and proxg = PD, (29) yields the alternating projection method

xn+1 = PC(PDxn), (31)

which was first analyzed in this context in [41]. Signal processing applications can be found in
the areas of spectral estimation [80], pulse shape design [107], wavelet construction [109], and
signal synthesis [140].

Example 3.12 (iterative thresholding) Let (bk)1≤k≤N be an orthonormal basis of RN , let
(ωk)1≤k≤N be strictly positive real numbers, let L ∈ R

M×N
r {0}, and let y ∈ R

M . Consider
the ℓ1–ℓ2 problem

minimize
x∈RN

N∑

k=1

ωk|x⊤bk| +
1

2
‖Lx− y‖2. (32)
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z1 = x1

y0
y1 y2
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z2
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Figure 2: Forward-backward versus Beck-Teboulle : As in Example 3.11, let C and D be two closed
convex sets and consider the problem (30) of finding a point x∞ in C at minimum distance from
D. Let us set f1 = ιC and f2 = d2D/2. Top: The forward-backward algorithm with γn ≡ 1.9 and
λn ≡ 1. As seen in Example 3.11, it reduces to the alternating projection method (31). Bottom:
The Beck-Teboulle algorithm.

8



This type of formulation arises in signal recovery problems in which y is the observed signal
and the original signal is known to have a sparse representation in the basis (bk)1≤k≤N , e.g.,
[17, 20, 56, 58, 72, 73, 125, 127]. We observe that (32) is a special case of (15) with

{
f1 : x 7→ ∑

1≤k≤N ωk|x⊤bk|
f2 : x 7→ ‖Lx− y‖2/2.

(33)

Since proxγf1 : x 7→
∑

1≤k≤N soft[−γωk,γωk](x
⊤bk) bk (see Table 1.viii and Table 2.ii), it fol-

lows from Proposition 3.3 that the sequence (xn)n∈N generated by the iterative thresholding

algorithm

xn+1 =

N∑

k=1

ξk,nbk, where

{
ξk,n = soft[−γnωk,γnωk]

(
xn + γnL

⊤(y − Lxn)
)⊤
bk

ε ≤ γn ≤ 2/‖L‖2 − ε,
(34)

converges to a solution to (32).

Additional applications of the forward-backward algorithm in signal and image processing
can be found in [30, 28, 29, 32, 36, 37, 53, 55, 57, 74].

4 Douglas-Rachford splitting

The forward-backward algorithm of Section 3 requires that one of the functions be differentiable,
with a Lipschitz continuous gradient. In this section, we relax this assumption.

Problem 4.1 Let f1 and f2 be functions in Γ0(RN ) such that

(ri dom f1) ∩ (ri dom f2) 6= ∅ (35)

and f1(x) + f2(x) → +∞ as ‖x‖ → +∞. The problem is to

minimize
x∈RN

f1(x) + f2(x). (36)

What is nowadays referred to as the Douglas-Rachford algorithm goes back to a method
originally proposed in [60] for solving matrix equations of the form u = Ax+Bx, where A and
B are positive-definite matrices (see also [132]). The method was transformed in [95] to handle
nonlinear problems and further improved in [96] to address monotone inclusion problems. For
further developments, see [48, 49, 66].

Problem 4.1 admits at least one solution and, for any γ ∈ ]0,+∞[, its solutions are charac-
terized by the two-level condition [52]

{
x = proxγf2y

proxγf2y = proxγf1(2proxγf2y − y),
(37)

which motivates the following scheme.

Algorithm 4.2 (Douglas-Rachford algorithm)
Fix ε ∈ ]0, 1[, γ > 0, y0 ∈ R

N

For n = 0, 1, . . .
xn = proxγf2yn
λn ∈ [ε, 2 − ε]

yn+1 = yn + λn
(
proxγf1

(
2xn − yn

)
− xn

)
.

(38)
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Proposition 4.3 [52] Every sequence (xn)n∈N generated by Algorithm 4.2 converges to a so-

lution to Problem 4.1.

Just like the forward-backward algorithm, the Douglas-Rachford algorithm operates by
splitting since it employs the functions f1 and f2 separately. It can be viewed as more general
in scope than the forward-backward algorithm in that it does not require that any of the
functions have a Lipschitz continuous gradient. However, this observation must be weighed
against the fact that it may be more demanding numerically as it requires the implementation
of two proximal steps at each iteration, whereas only one is needed in the forward-backward
algorithm. In some problems, both may be easily implementable (see Fig. 3 for an example)
and it is not clear a priori which algorithm may be more efficient.

Applications of the Douglas-Rachford algorithm to signal and image processing can be found
in [38, 52, 62, 63, 117, 118, 123].

The limiting case of the Douglas-Rachford algorithm in which λn ≡ 2 is the Peaceman-

Rachford algorithm [48, 66, 96]. Its convergence requires additional assumptions (for instance,
that f2 be strictly convex and real-valued) [49].

5 Dykstra-like splitting

In this section we consider problems involving a quadratic term penalizing the deviation from
a reference signal r.

Problem 5.1 Let f and g be functions in Γ0(RN ) such that dom f ∩ dom g 6= ∅, and let
r ∈ R

N . The problem is to

minimize
x∈RN

f(x) + g(x) +
1

2
‖x− r‖2. (39)

It follows at once from (9) that Problem 5.1 admits a unique solution, namely x = proxf+g r.
Unfortunately, the proximity operator of the sum of two functions is usually intractable. To
compute it iteratively, we can observe that (39) can be viewed as an instance of (36) in Prob-
lem 4.1 with f1 = f and f2 = g+‖·−r‖2/2. However, in this Douglas-Rachford framework, the
additional qualification condition (35) needs to be imposed. In the present setting we require
only the minimal feasibility condition dom f ∩ dom g 6= ∅.

Algorithm 5.2 (Dykstra-like proximal algorithm)
Set x0 = r, p0 = 0, q0 = 0
For n = 0, 1, . . .

yn = proxg(xn + pn)

pn+1 = xn + pn − yn
xn+1 = proxf (yn + qn)

qn+1 = yn + qn − xn+1.

(40)

Proposition 5.3 [12] Every sequence (xn)n∈N generated by Algorithm 5.2 converges to the

solution to Problem 5.1.

Example 5.4 (best approximation) Let f and g be the indicator functions of closed convex
sets C and D, respectively, in Problem 5.1. Then the problem is to find the best approximation
to r from C ∩ D, i.e., the projection of r onto C ∩ D. In this case, since proxf = PC and
proxg = PD, the above algorithm reduces to Dykstra’s projection method [22, 64].

Example 5.5 (denoising) Consider the problem of recovering a signal x from a noisy obser-
vation r = x+w, where w models noise. If f and g are functions in Γ0(RN ) promoting certain
properties of x, adopting a least-squares data fitting objective leads to the variational denoising
problem (39).
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Figure 3: Forward-backward versus Douglas-Rachford: As in Example 3.11, let C and D be two
closed convex sets and consider the problem (30) of finding a point x∞ in C at minimum distance
from D. Let us set f1 = ιC and f2 = d2D/2. Top: The forward-backward algorithm with γn ≡ 1 and
λn ≡ 1. As seen in Example 3.11, it assumes the form of the alternating projection method (31).
Bottom: The Douglas-Rachford algorithm with γ = 1 and λn ≡ 1. Table 1.xii yields proxf1 = PC

and Table 1.vi yields proxf2 : x 7→ (x + PDx)/2. Therefore the updating rule in Algorithm 4.2
reduces to xn = (yn + PDyn)/2 and yn+1 = PC(2xn − yn) + yn − xn = PC(PDyn) + yn − xn.
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6 Composite problems

We focus on variational problems with m = 2 functions involving explicitly a linear transfor-
mation.

Problem 6.1 Let f ∈ Γ0(RN ), let g ∈ Γ0(RM ), and let L ∈ R
M×N

r {0} be such that
dom g ∩ L(dom f) 6= ∅ and f(x) + g(Lx) → +∞ as ‖x‖ → +∞. The problem is to

minimize
x∈RN

f(x) + g(Lx). (41)

Our assumptions guarantee that Problem 6.1 possesses at least one solution. To find such
a solution, several scenarios can be contemplated.

6.1 Forward-backward splitting

Suppose that in Problem 6.1 g is differentiable with a τ -Lipschitz continuous gradient (see
(14)). Now set f1 = f and f2 = g ◦ L. Then f2 is differentiable and its gradient

∇f2 = L⊤ ◦ ∇g ◦ L (42)

is β-Lipschitz continuous, with β = τ‖L‖2. Hence, we can apply the forward-backward splitting
method, as implemented in Algorithm 3.2. As seen in (20), it operates with the updating rule



γn ∈ [ε, 2/(τ‖L‖2) − ε]

yn = xn − γnL
⊤∇g(Lxn)

λn ∈ [ε, 1]

xn+1 = xn + λn(proxγnfyn − xn).

(43)

Convergence is guaranteed by Proposition 3.3.

6.2 Douglas-Rachford splitting

Suppose that in Problem 6.1 the matrix L satisfies

LL⊤ = νI, where ν ∈ ]0,+∞[ (44)

and (ri dom g)∩riL(dom f) 6= ∅. Let us set f1 = f and f2 = g ◦L. As seen in Table 1.x, proxf2
has a closed-form expression in terms of proxg and we can therefore apply the Douglas-Rachford
splitting method (Algorithm 4.2). In this scenario, the updating rule reads


xn = yn + ν−1L⊤

(
proxγνg(Lyn) − Lyn

)

λn ∈ [ε, 2 − ε]

yn+1 = yn + λn
(
proxγf

(
2xn − yn

)
− xn

)
.

(45)

Convergence is guaranteed by Proposition 4.3.

6.3 Dual forward-backward splitting

Suppose that in Problem 6.1 f = h + ‖ · −r‖2/2, where h ∈ Γ0(RN ) and r ∈ R
N . Then (41)

becomes

minimize
x∈RN

h(x) + g(Lx) +
1

2
‖x− r‖2, (46)

which models various signal recovery problems, e.g., [33, 34, 51, 59, 112, 138]. If (44) holds,
proxg◦L is decomposable, and (46) can be solved with the Dykstra-like method of Section 5,
where f1 = h + ‖ · −r‖2/2 (see Table 1.iv) and f2 = g ◦ L (see Table 1.x). Otherwise, we
can exploit the nice properties of the Fenchel-Moreau-Rockafellar dual of (46), solve this dual
problem by forward-backward splitting, and recover the unique solution to (46) [51].
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Algorithm 6.2 (Dual forward-backward algorithm)
Fix ε ∈

]
0,min{1, 1/‖L‖2}

[
, u0 ∈ R

M

For n = 0, 1, . . .

xn = proxh(r − L⊤un)

γn ∈
[
ε, 2/‖L‖2 − ε

]

λn ∈ [ε, 1]

un+1 = un + λn
(
proxγng∗(un + γnLxn) − un

)
.

(47)

Proposition 6.3 [51] Assume that (ri dom g)∩riL(domh) 6= ∅. Then every sequence (xn)n∈N

generated by the dual forward-backward algorithm 6.2 converges to the solution to (46).

6.4 Alternating-direction method of multipliers

Augmented Lagrangian techniques are classical approaches for solving Problem 6.1 [77, 78] (see
also [75, 79]). First, observe that (41) is equivalent to

minimize
x∈R

N , y∈R
M

Lx=y

f(x) + g(y). (48)

The augmented Lagrangian of index γ ∈ ]0,+∞[ associated with (48) is the saddle function

Lγ : RN × R
M × R

M → ]−∞,+∞]

(x, y, z) 7→ f(x) + g(y) +
1

γ
z⊤(Lx− y) +

1

2γ
‖Lx− y‖2. (49)

The alternating-direction method of multipliers consists in minimizing Lγ over x, then over y,
and then applying a proximal maximization step with respect to the Lagrange multiplier z.
Now suppose that

L⊤L is invertible and (ri dom g) ∩ riL(dom f) 6= ∅. (50)

By analogy with (9), if we denote by proxLf the operator which maps a point y ∈ R
M to the

unique minimizer of x 7→ f(x) + ‖Lx− y‖2/2, we obtain the following implementation.

Algorithm 6.4 (Alternating-direction method of multipliers (ADMM))
Fix γ > 0, y0 ∈ R

M , z0 ∈ R
M

For n = 0, 1, . . .

xn = proxLγf (yn − zn)

sn = Lxn
yn+1 = proxγg(sn + zn)

zn+1 = zn + sn − yn+1.

(51)

The convergence of the sequence (xn)n∈N thus produced under assumption (50) has been
investigated in several places, e.g., [75, 77, 79]. It was first observed in [76] that the ADMM
algorithm can be derived from an application of the Douglas-Rachford algorithm to the dual of
(41). This analysis was pursued in [66], where the convergence of (xn)n∈N to a solution to (41)
is shown. Variants of the method relaxing the requirements on L in (50) have been proposed
[5, 39].

In image processing, ADMM was applied in [81] to an ℓ1 regularization problem under the
name “alternating split Bregman algorithm.” Further applications and connections are found
in [2, 69, 117, 143].
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7 Problems with m ≥ 2 functions

We return to the general minimization problem (1).

Problem 7.1 Let f1,. . . ,fm be functions in Γ0(RN ) such that

(ri dom f1) ∩ · · · ∩ (ri dom fm) 6= ∅ (52)

and f1(x) + · · · + fm(x) → +∞ as ‖x‖ → +∞. The problem is to

minimize
x∈RN

f1(x) + · · · + fm(x). (53)

Since the methods described so far are designed for m = 2 functions, we can attempt to
reformulate (53) as a 2-function problem in the m-fold product space

H = R
N × · · · × R

N (54)

(such techniques were introduced in [110, 111] and have been used in the context of convex
feasibility problems in [10, 43, 45]). To this end, observe that (53) can be rewritten in H as

minimize
(x1,...,xm)∈H
x1=···=xm

f1(x1) + · · · + fm(xm). (55)

If we denote by x = (x1, . . . , xm) a generic element in H, (55) is equivalent to

minimize
x∈H

ιD(x) + f(x), (56)

where {
D =

{
(x, . . . , x) ∈ H | x ∈ R

N
}

f : x 7→ f1(x1) + · · · + fm(xm).
(57)

We are thus back to a problem involving two functions in the larger space H. In some cases,
this observation makes it possible to obtain convergent methods from the algorithms discussed
in the preceding sections. For instance, the following parallel algorithm was derived from the
Douglas-Rachford algorithm in [54] (see also [49] for further analysis and connections with
Spingarn’s splitting method [120]).

Algorithm 7.2 (Parallel proximal algorithm (PPXA))
Fix ε ∈ ]0, 1[, γ > 0, (ωi)1≤i≤m ∈ ]0, 1]

m
such that

∑m
i=1 ωi = 1, y1,0 ∈ R

N , . . . , ym,0 ∈ R
N

Set x0 =
∑m

i=1 ωiyi,0
For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = proxγfi/ωi

yi,n

pn =

m∑

i=1

ωipi,n

ε ≤ λn ≤ 2 − ε

For i = 1, . . . ,m⌊
yi,n+1 = yi,n + λn

(
2pn − xn − pi,n

)

xn+1 = xn + λn(pn − xn).

Proposition 7.3 [54] Every sequence (xn)n∈N generated by Algorithm 7.2 converges to a so-

lution to Problem 7.1.
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Example 7.4 (image recovery) In many imaging problems, we record an observation y ∈
R
M of an image z ∈ R

K degraded by a matrix L ∈ R
M×K and corrupted by noise. In the

spirit of a number of recent investigations (see [37] and the references therein), a tight frame
representation of the images under consideration can be used. This representation is defined
through a synthesis matrix F⊤ ∈ R

K×N (with K ≤ N) such that F⊤F = νI, for some
ν ∈ ]0,+∞[. Thus, the original image can be written as z = F⊤x, where x ∈ R

N is a vector of
frame coefficients to be estimated. For this purpose, we consider the problem

minimize
x∈C

1

2
‖LF⊤x− y‖2 + Φ(x) + tv(F⊤x), (58)

where C is a closed convex set modeling a constraint on z, the quadratic term is the standard
least-squares data fidelity term, Φ is a real-valued convex function on R

N (e.g., a weighted ℓ1

norm) introducing a regularization on the frame coefficients, and tv is a discrete total variation
function aiming at preserving piecewise smooth areas and sharp edges [116]. Using appropriate
gradient filters in the computation of tv, it is possible to decompose it as a sum of convex
functions (tvi)1≤i≤q , the proximity operators of which can be expressed in closed form [54, 113].
Thus, (58) appears as a special case of (53) with m = q + 3, f1 = ιC , f2 = ‖LF⊤ · −y‖2/2,
f3 = Φ, and f3+i = tvi(F

⊤·) for i ∈ {1, . . . , q}. Since a tight frame is employed, the proximity
operators of f2 and (f3+i)1≤i≤q can be deduced from Table 1.x. Thus, the PPXA algorithm is
well suited for solving this problem numerically.

A product space strategy can also be adopted to address the following extension of Prob-
lem 5.1.

Problem 7.5 Let f1, . . . , fm be functions in Γ0(RN ) such that dom f1 ∩ · · · ∩ dom fm 6= ∅,
let (ωi)1≤i≤m ∈ ]0, 1]m be such that

∑m
i=1 ωi = 1, and let r ∈ R

N . The problem is to

minimize
x∈RN

m∑

i=1

ωifi(x) +
1

2
‖x− r‖2. (59)

Algorithm 7.6 (Parallel Dykstra-like proximal algorithm)
Set x0 = r, z1,0 = x0, . . . , zm,0 = x0
For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = proxfizi,n

xn+1 =
∑m

i=1 ωipi,n
For i = 1, . . . ,m⌊
zi,n+1 = xn+1 + zi,n − pi,n.

(60)

Proposition 7.7 [49] Every sequence (xn)n∈N generated by Algorithm 7.6 converges to the

solution to Problem 7.5.

Next, we consider a composite problem.

Problem 7.8 For every i ∈ {1, . . . ,m}, let gi ∈ Γ0(RMi) and let Li ∈ R
Mi×N . Assume that

(∃ q ∈ R
N ) L1q ∈ ri dom g1, . . . , Lmq ∈ ri dom gm, (61)

that g1(L1x) + · · ·+ gm(Lmx) → +∞ as ‖x‖ → +∞, and that Q =
∑

1≤i≤m L
⊤
i Li is invertible.

The problem is to
minimize
x∈RN

g1(L1x) + · · · + gm(Lmx). (62)
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Proceeding as in (55) and (56), (62) can be recast as

minimize
x∈H, y∈G

y=Lx

ιD(x) + g(y), (63)

where 



H = R
N × · · · × R

N , G = R
M1 × · · · × R

Mm

L : H → G : x 7→ (L1x1, . . . , Lmxm)

g : G → ]−∞,+∞] : y 7→ g1(y1) + · · · + gm(ym).

(64)

In turn, a solution to (62) can be obtained as the limit of the sequence (xn)n∈N constructed
by the following algorithm, which can be derived from the alternating-direction method of
multipliers of Section 6.4 (alternative parallel offsprings of ADMM exist, see for instance [65]).

Algorithm 7.9 (Simultaneous-direction method of multipliers (SDMM))
Fix γ > 0, y1,0 ∈ R

M1 , . . . , ym,0 ∈ R
Mm , z1,0 ∈ R

M1 , . . . , zm,0 ∈ R
Mm

For n = 0, 1, . . .

xn = Q−1
∑m

i=1 L
⊤
i (yi,n − zi,n)

For i = 1, . . . ,m
si,n = Lixn
yi,n+1 = proxγgi(si,n + zi,n)

zi,n+1 = zi,n + si,n − yi,n+1

(65)

This algorithm was derived from a slightly different viewpoint in [118] with a connection with
the work of [71]. In these papers, SDMM is applied to deblurring in the presence of Poisson
noise. The computation of xn in (65) requires the solution of a positive-definite symmetric
system of linear equations. Efficient methods for solving such systems can be found in [82]. In
certain situations, fast Fourier diagonalization is also an option [2, 71].

In the above algorithms, the proximal vectors, as well as the auxiliary vectors, can be
computed simultaneously at each iteration. This parallel structure is useful when the algorithms
are implemented on multicore architectures. A parallel proximal algorithm is also available to
solve multicomponent signal processing problems [27]. This framework captures in particular
problem formulations found in [7, 8, 80, 88, 133]. Let us add that an alternative splitting
framework applicable to (53) was recently proposed in [67].

8 Conclusion

We have presented a panel of convex optimization algorithms sharing two main features. First,
they employ proximity operators, a powerful generalization of the notion of a projection oper-
ator. Second, they operate by splitting the objective to be minimized into simpler functions
that are dealt with individually. These methods are applicable to a wide class of signal and
image processing problems ranging from restoration and reconstruction to synthesis and de-
sign. One of the main advantages of these algorithms is that they can be used to minimize
nondifferentiable objectives, such as those commonly encountered in sparse approximation and
compressed sensing, or in hard-constrained problems. Finally, let us note that the variational
problems described in (39), (46), and (59), consist of computing a proximity operator. There-
fore the associated algorithms can be used as a subroutine to compute approximately proxim-
ity operators within a proximal splitting algorithm, provided the latter is error tolerant (see
[48, 49, 51, 66, 115] for convergence properties under approximate proximal computations). An
application of this principle can be found in [38].
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Université de Paris (1969)

[96] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators.
SIAM J. Numer. Anal. 16, 964–979 (1979)

[97] Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection
methods for ℓ1-constrained signal recovery by steplength selection rules. Appl. Comput.
Harm. Anal. 27, 247–254 (2009)

[98] Martinet, B.: Régularisation d’inéquations variationnelles par approximations succes-
sives. Rev. Française Informat. Rech. Opér. 4, 154–158 (1970)

[99] Mercier, B.: Topics in Finite Element Solution of Elliptic Problems. No. 63 in Lectures
on Mathematics. Tata Institute of Fundamental Research, Bombay (1979)

[100] Mercier, B.: Inéquations Variationnelles de la Mécanique. No. 80.01 in Publications
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Table 1: Properties of proximity operators [27, 37, 53, 54, 55, 102]: ϕ ∈ Γ0(R
N ); C ⊂ R

N is
nonempty, closed, and convex; x ∈ R

N .

Property f(x) proxf x

i translation ϕ(x− z), z ∈ R
N z + proxϕ(x− z)

ii scaling ϕ(x/ρ), ρ ∈ Rr {0} ρproxϕ/ρ2(x/ρ)

iii reflection ϕ(−x) −proxϕ(−x)

iv quadratic ϕ(x) + α‖x‖2/2 + u⊤x+ γ proxϕ/(α+1)

(
(x− u)/(α + 1)

)

perturbation u ∈ R
N , α ≥ 0, γ ∈ R

v conjugation ϕ∗(x) x− proxϕx

vi squared distance
1

2
d2C(x)

1

2
(x+ PCx)

vii Moreau envelope ϕ̃(x) = inf
y∈RN

ϕ(y) +
1

2
‖x− y‖2 1

2

(
x+ prox2ϕx

)

viii Moreau complement
1

2
‖ · ‖2 − ϕ̃(x) x− proxϕ/2(x/2)

ix decomposition
∑N

k=1 φk(x⊤bk)
∑N

k=1 proxφk
(x⊤bk)bk

in an orthonormal

basis (bk)1≤k≤N
φk ∈ Γ0(R)

x semi-orthogonal ϕ(Lx) x + ν−1L⊤
(
proxνϕ(Lx) − Lx

)

linear transform L ∈ R
M×N , LL⊤ = νI, ν > 0

xi quadratic function γ‖Lx− y‖2/2 (I + γL⊤L)−1(x+ γL⊤y)

L ∈ R
M×N , γ > 0, y ∈ R

M

xii indicator function ιC(x) =

{
0 if x ∈ C
+∞ otherwise

PCx

xiii distance function γdC(x), γ > 0





x+ γ(PCx− x)/dC (x)

if dC(x) > γ

PCx otherwise

xv function of

distance

φ(dC(x))

φ ∈ Γ0(R) even, differentiable

at 0 with φ′(0) = 0





x+

(
1 −

proxφdC(x)

dC(x)

)
(PCx− x)

if x /∈ C

x otherwise

xv support function σC(x) x− PCx

xvii thresholding
σC(x) + φ(‖x‖)

φ ∈ Γ0(R) even

and not constant





proxφdC(x)

dC(x)
(x− PCx)

if dC(x) > max Argminφ

x− PCx otherwise

24



Table 2: Proximity operator of φ ∈ Γ0(R); α ∈ R, κ > 0, κ > 0, κ > 0, ω > 0, ω < ω, q > 1, τ ≥ 0
[37, 53, 55].

φ(x) proxφx

i ι[ω,ω](x) P[ω,ω] x

ii σ[ω,ω](x) =





ωx if x < 0

0 if x = 0

ωx otherwise

soft[ω,ω](x) =





x− ω if x < ω

0 if x ∈ [ω, ω]

x− ω if x > ω

iii

ψ(x) + σ[ω,ω](x)

ψ ∈ Γ0(R) differentiable at 0

ψ′(0) = 0

proxψ
(
soft[ω,ω](x)

)

iv max{|x| − ω, 0}






x if |x| < ω

sign(x)ω if ω ≤ |x| ≤ 2ω

sign(x)(|x| − ω) if |x| > 2ω

v κ|x|q sign(x)p,

where p ≥ 0 and p+ qκpq−1 = |x|

vi

{
κx2 if |x| ≤ ω/

√
2κ

ω
√

2κ|x| − ω2/2 otherwise

{
x/(2κ+ 1) if |x| ≤ ω(2κ+ 1)/

√
2κ

x− ω
√

2κ sign(x) otherwise

vii ω|x| + τ |x|2 + κ|x|q sign(x)proxκ|·|q/(2τ+1)

max{|x| − ω, 0}
2τ + 1

viii ω|x| − ln(1 + ω|x|)
(2ω)−1 sign(x)

(
ω|x| − ω2 − 1

+

√∣∣ω|x| − ω2 − 1
∣∣2 + 4ω|x|

)

ix

{
ωx if x ≥ 0

+∞ otherwise

{
x− ω if x ≥ ω

0 otherwise

x

{
−ωx1/q if x ≥ 0

+∞ otherwise

p1/q,

where p > 0 and p2q−1 − xpq−1 = q−1ω

xi

{
ωx−q if x > 0

+∞ otherwise

p > 0

such that pq+2 − xpq+1 = ωq

xii






x ln(x) if x > 0

0 if x = 0

+∞ otherwise

W (ex−1),

where W is the Lambert W-function

xiii





− ln(x− ω) + ln(−ω) if x ∈ ]ω, 0]

− ln(ω − x) + ln(ω) if x ∈ ]0, ω[

+∞ otherwise





1

2

(
x+ ω +

√
|x− ω|2 + 4

)
if x < 1/ω

1

2

(
x+ ω −

√
|x− ω|2 + 4

)
if x > 1/ω

0 otherwise

ω < 0 < ω (see Figure 1)

xiv

{
−κ ln(x) + τx2/2 + αx if x > 0

+∞ otherwise

1

2(1 + τ)

(
x− α+

√
|x− α|2 + 4κ(1 + τ)

)

xv

{
−κ ln(x) + αx+ ωx−1 if x > 0

+∞ otherwise

p > 0

such that p3 + (α− x)p2 − κp = ω

xvi

{
−κ ln(x) + ωxq if x > 0

+∞ otherwise

p > 0

such that qωpq + p2 − xp = κ

xvii






−κ ln(x− ω) − κ ln(ω − x)

if x ∈ ]ω, ω[

+∞ otherwise

p ∈ ]ω, ω[

such that p3 − (ω + ω + x)p2+(
ωω − κ− κ+ (ω + ω)x

)
p = ωωx− ωκ− ωκ
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