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Abstract Feature Modeling is a technique that uses diagrams to characterize the
variability of software product lines. The arrival of metamodeling frameworks in
the Model-Driven Engineering field (MDE) has provided the necessary background
to exploit these diagrams (called feature models) in information systems develop-
ment processes. However, these frameworks have some limitations when they must
deal with software artifacts at several abstraction layers. This paper presents a pro-
totype that allows the developers to define cardinality-based feature models with
complex model constraints. The prototype uses model transformations to build Do-
main Variability Models (DVM) that can be instantiated. This proposal permits us
to take advantage of existing tools to validate model instances and finally to auto-
matically generate code. Moreover, DVMs can play a key role in complex MDE
processes automating the use of feature models in software product lines.

1 Introduction

The changing nature of technology and user requirements leads us to need multi-
ple versions of the same or similar software application in short time periods. The
Software Product Line (SPL) [5] concept arises with the aim of controlling and min-
imizing the high costs of developing a family of software products in the previous
context. This approach is based on the creation of a design that can be shared among
all the members of a family of programs within an application domain. The key as-
pect of Software Product Lines (SPL) that characterizes this approach with respect
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to other software reuse techniques is how to describe and manage variability, mainly
by means of feature modeling as proposed in [12].

The use of feature models can be exploited by means of metamodeling standards.
In this context, the Model-Driven Architecture [14] proposed by the Object Man-
agement Group is a widely used standard which arises as a suitable framework for
this purpose. In this environment, MDE and the Generative Programming approach
[6] provides a suitable basis to support the development of SPLs. Moreover, Gen-
erative Programming and SPLs facilitate the development of software products for
different platforms and technologies.

In this paper we present a prototype that uses nowadays metamodeling tools to
define cardinality-based feature models and their configurations. The selected plat-
form is the Eclipse Modeling Framework (EMF) [9]. Moreover, feature models can
be enriched with complex model constraints that can be automatically checked by
means of the internal OCL interpreter. All these features of EMF allows developers
to start a Software Product Line.

The remainder of this paper is structured as follows: in section 2 we briefly in-
troduce feature modeling and in 3 we describe how nowadays standards and tools
can be used to exploit them. In section 4 our proposal is presented. Related works
are discussed in section 5 and in section 6 we present our conclusions.

2 Feature models and cardinality-based feature models at a
glance

Feature models are diagrams which express the commonalities and varibilities
among the products of a SPL. These models organize the so-called features (user-
visible aspect or characteristic of the domain) in a hierarchical structure. The basic
relationships between a feature and its children are: mandatory relationships (which
represent de shared design), optional relationships, OR groups and XOR groups.

Cardinality-based feature modeling [7] integrates several of the different exten-
sions that have been proposed to the original FODA notation [12]. A cardinality
based feature model is also a hierarchy of features, but the main difference with
the original FODA proposal is that each feature has associated a feature cardinality
which specifies how many clones of the feature are allowed in a specific configu-
ration. Cloning features is useful in order to define multiple copies of a part of the
system that can be differently configured. Moreover, features can be organized in
feature groups, which also have a group cardinality. This cardinality restricts the
minimun and the maximun number of group members that can be selected. Finally,
an attribute type can be specified for a given feature. Thus, a primitive value for this
feature can be defined during configuration which is useful to define parameterized
features.

In feature models is also quite common to describe constraints between features
such as the implies and the excludes relationships, which are the most common used
ones. In classic feature models the semantics of these constraints can be expressed
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Fig. 1 Example of a feature
model (1a) and the two pos-
sible configurations that it
represents (1b and 1c).

[a1][e1]

(b) ©

by means of propositional formulas [2], thus, it is possible to reason about the satis-
fiability of the feature model and its configurations.

A configuration of a feature model can be defined as a valid set of instances of
a feature model. 1.e., the relationship between a feature model and a configuration
is comparable to the relationship between a class and an object. In Fig. 1a an ex-
ample feature model is represented. This feature model represents a system S, with
two features A and B. The first one, feature A, is mandatory (it must be included
in every possible product of the product line), and the second one, feature B, is op-
tional (it can be included in a particular product or not). Thus, we have two possible
configurations for this feature model, which are represented in figures 1b and Ic.

3 Feature Modeling and Model-Driven Engineering

Model-Driven Engineering (MDE) is a Software Engineering field that over the
years has represented software artifacts as models in order to increase productivity,
quality and to reduce costs in the software development process. Nowadays, there
is increasing interest in this field, as demonstrated by the OMG guidelines that sup-
port this trend with the Model-Driven Architecture (MDA [14]) approach.The Meta
Object Facility standard (MOF, [16]), which provides support for meta-modeling,

MOF

Fig. 2 Definition and configu-
ration of feature models in the
context of MOF. The EMOF
language is represented in a
simplified way in the level
M3. In the level M2 the meta-
model for cardinality-based
feature models is represented
by using the MOF language
(also in a simplified way). In
the level M1 feature models
are described. Some configu-
rations of the example feature
model are shown at level MO.

Feature
Metamodel

Feature
Model
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defines a strict classification of software artifacts in a four-layer architecture (from
M3 to MO layer). As it provides support for modeling and metamodeling, we can use
MOF to define cardinality-based feature models by defining its metamodel. Thus,
we can define a model which captures the whole variability of the domain, which,
in turn, allows us to define any possible configuration of the model. But, what is
more, it can also be used to define model-based transformations that enable the use
of feature models and their configurations in other complex processes. Fig. 2 shows
where feature models and configurations fit in the four-layer MOF architecture.

3.1 MDA in practice: industrial tool support

The Eclipse Modeling Framework (EMF) [9] can be considered as an implementa-
tion of the MOF architecture. Ecore, its metamodeling language, can be placed at
layer M3 in the four-layer architecture of the MOF standard. By means of Ecore,
developers can define their own models which will be placed at the metamodel layer
(M2). An example of such metamodels is the one to build cardinality-based feature
models. Finally, these Ecore models can be used to automatically generate graphical
editors which are capable of building instance models, which will be placed at M1
layer. In the case of feature modeling, these instance models are the feature models.
The left column on Fig. 3 shows this architecture.

As can also be seen in Fig. 3, the MO layer is empty. This is a limitation of most
of the modeling frameworks which are available today. As said, EMF provides a
modeling language to define new models and their instances, but this framework
only covers two layers of the MOF architecture: the metamodel and the model lay-
ers. However, in the case of feature modeling we need to work with three layers
of the MOF architecture: metamodel (cardinality-based feature metamodel), model
(cardinality-based feature models), and instances (configurations).

Fig. 3 shows how to overcome this drawback: it is possible to define a model-to-
model transformation in order to convert a feature model (i.e. the model represented
by Feature model which can not be instantiated) to an Ecore model (i.e. the Domain
Variability Model, DVM, which represents the Feature model as a new class dia-

Fig. 3 EMF and the four-
layer architecture of MOF.
The Ecore language is placed
at the M3 layer, the Ecore

Ecore
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model for cardinality-based Metamodel 1 Model

features models) are placed
at the M2 layer, and model
instances (feature models) are
placed at the M1 layer. It is
noteworthy that EMF can not
represent more than 3 layers.
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gram). Thus, it is possible to represent a feature model at the metamodeling layer,
making the definition of its instances possible. This way, developers can take ad-
vantage of EMF again, and automatically generate editors to define feature model
configurations, and validate them against their corresponding feature models thanks
to their new representation, the DVM. Moreover, as the DVM is an Ecore model (a
simplified UML class diagram) we automatically obtain support to check complex
constraints (by using OCL) over the feature model configurations.

4 Our approach

Based on the concepts presented in the previous section and using EMF, we have
developed a tool that allows us to automate several steps in order to prepare a feature
model that can be exploited to develop a SPL in the context of MDA. In this sense,
our tool provides:

e Graphical support to define (a variant of) cardinality-based feature models with
model constraints expressed by using a constraint language.

e Support to automatically generate DVMs from feature models that capture all
the variability of the application domain (including complex model constraints),
allowing the developers to use them in model transformations.

Support to transform model constraints to OCL expressions.

Configuration editors, which will assist the developers.

Capabilities to check the consistency of a configuration against its corresponding
feature model by using pre-built OCL engines.

All these tasks are automatically supported by using MDE techniques (modeling,
metamodeling, model transformations and code generation). The following subsec-
tions describe how this process has been implemented.

4.1 Cardinality-based feature metamodel

The basis of our work is the cardinality-based feature metamodel, which permits to
define feature models. Fig. 4 shows our feature metamodel. Such metamodel has
been defined taking into account that every element will have a different graphical
representation. This way, it is possible to automatically generate the graphical editor
to draw feature models based on such metamodel.

4.1.1 Feature models structure

In Fig. 4, a feature model is represented by means of the FeatureModel class, and
a feature model can be seen as a set of Features, the set of Relationships among
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Fig. 4 Cardinality-based features metamodel

them and the set of model constraints (modelConstraints role) that are applied to
it. A feature model must also have a root feature, which is denoted by means of
the rootFeature role. As can be seen in Fig 4, our proposal represents explicitly
the relationships between features. Thus, it represents in an uniform way the hi-
erarchical relationships (StructuralRelationship class) and the restrictions between
features (RestrictionRelationship class). The classification of these relationships is
explained in detail in [10].

4.1.2 Feature model constraints

As was pointed out in section 2, it is quite common in feature modeling to have
the possibility to define model constraints in order to describe more precisely which
configurations should be considered as valid. Typically, these constraints are de-
scribed by means of implication or exclusion relationships. This kind of relation-
ships are the binary and horizontal relationships that our metamodel provides.

The binary and horizontal relationships are specified between two features and
they can express constraints (coimplications, implications and exclusion) or depen-
dencies (use). The first group applies to the whole set of instances of the involved
features, however, the second one allows us to define dependencies at instance level,
ie.

e Implication (A — B): If an instance of feature A exists, at least an instance of
feature B must exist too.

e Coimplication (A <— B): If an instance of feature A exists, at least an instance
of feature B must exist too and vice versa.

e Exclusion (A —< B): If an instance of feature A exists, can not exist any
instance of feature B and vice versa.
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Fig. 5 Example feature model
e Use (A — — — B): This relationship will be defined at configuration level, and it

will specify that an specific instance of feature A will be related to one (or more)
specific instances of feature B as defined by its upper bound (n).

Besides these kind of relationships that describe coarse-grained restrictions, our
metamodel provides capabilities to describe fine-grained restrictions. These restric-
tions are stored in a Constraints Set instance, and can be applied to any subclass
of the abstract class ConstrainableElement (context role), i.e., FeatureModel, Fea-
ture, Group or Uses. The restrictions are expressed as a textual expression (body
attribute of the Constraint class).

To describe these fine-grained restrictions we propose a constraint language,
called Feature Modeling Constraint Language (FMCL). FMCL is a formal language
without side-effects (does not modify the model instances) whose syntax is based on
the widely known Object Constraint Language (OCL) and its semantics are defined
by a set of patterns that describe the equivalences between FMCL expressions and
OCL expressions.

4.1.3 Cardinality-based feature modeling editor

Following the Model-Driven Software Development (MDSD) approach, graphi-
cal editors can be automatically generated from the metamodel presented: i.e., the
cardinality-based feature modeling editor. This editor allows us to easily define new
feature models. To obtain this graphical editor, the Graphical Modeling Framework
(GMF [8]) has been used.

Fig. 5 shows what this editor looks like. The palette is located on the right side of
the figure, and shows the tools that can be used to define the feature models. In the
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canvas an example feature model is shown. This feature model describes a simple
product line for cars. A car must have four wheels (of a given radius), one engine (of
an specific power in watts) and a transmission (which can be manual or automatic).
As an optional equipment the car can have a Traction Control System (TCS). The
feature model also describes four constraints: the arrow between the feature TCS
and Automatic states that if an automatic transmission is selected, the TCS must be
selected too; the annotation attached to the TCS feature states that the TCS can only
be selected if the power of the engine is higher than 70.000 watts; and finally, the
annotation attached to the Wheel feature specifies that the radius of the instances of
the wheel must be higher than 15 inches and that all the wheels must be of the same
size.

4.2 The Domain Variability Model

The Domain Varibility Model is a class diagram (an Ecore model) whose instances
are equivalent to the configurations of a feature model. It is intended to ease the
definition of feature models configurations in EMF as was explained in section 3.1.
This model can be automatically generated by means of a model-to-model trans-
formation. Following the MDA guidelines, this transformation is defined by using
the Relations language defined in the QVT standard [15]. In order to integrate and
execute this transformation process in our prototype, a custom tool based on the
mediniQVT [11] transformations engine has been built.

4.2.1 The structure of the DVM

As can be observed in Figs. 5 and 6, the transformation regarding to the structure
of the DVM is almost a one-to-one mapping. For each Feature of the source model
an EClass (with the same name) is created. All the classes are created inside the
same EPackage, whose name and identifier derives from the feature model name.
Moreover, for each feature Attribute, an EAttribute in its corresponding EClass is
created in the target model. Any needed EDataType is also created.

Regarding to the relationships, for each StructuralRelationship from a parent
Feature, a containment EReference will be created from the corresponding EClass
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and for each Group contained in a Feature a containment EReference will be created
from the corresponding EClass. This EReference will point to a new abstract class,
whose name will be composed by the Feature name and the suffix “Type”. Addition-
ally, an EClass will be generated for each Feature belonging to a Group. Moreover,
each one of these EClasses inherit from the abstract EClass that has been previously
created. Finally, for each Uses relationship between two Features, an EReference
will be created in the target model. This EReference will relate two EClasses whose
names will match the Features names.

4.2.2 Constraints over the DVM

The restriction relationships and model constraints (FMCL expressions) are mapped
to OCL expressions in the DVM. The mappings to transform the restriction relation-
ships to OCL expressions is described in [10] in detail.

The FMCL expressions are mapped to OCL expressions taking into account the
mappings explained in section 4.2.1. Fig. 5 shows an example of this. As can be
seen on the constraint that applies to the Wheel feature, a FMCL expression can be
expressed directly using the OCL syntax. This way, an FMCL expression is directly
transformed to an OCL invariant. The context of the invariant corresponds to the
name of the ConstrainableElement that is linked to the constraint (dashed line in
the figure) and the text of the expression remains the same:

context Wheel
inv: self.radius > 15
inv: Wheel.alllInstances()->forAll (wl, w2 |
wl <> w2 implies wl.radius = w2.radius)

However, although the FMCL expressions are almost the same than an OCL
invariant, some simple conventions have been adopted to make the definition of
model constraints closer to the feature modeling context. The semantics of these
additions are defined by means of transformation patterns (see Table 1).

An example of the application of some of these patterns can be seen in the con-
straint attached to the TCS feature (Fig. 5). The example constraint is transformed
to the following OCL expression:

context TCS inv:
TCS.allInstances () ->notEmpty () implies Engine.alllInstances()->forAll (power >
70000)

Table 1 Summary of transformation patterns (FMCL to OCL)

FMCL expression pattern Equivalent OCL definition
ConstrainableElement ConstrainableElement . allInstances ()
ConstrainableElement . property op ConstrainableElement .allInstances ()

expression —->forAll (property op expression)
ConstrainableElement . selected () ConstrainableElement . al1lInstances ()
—>notEmpty ()

FeatureName . childs () FeatureNameType .allInstances ()
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4.3 Creating and validating configurations

In order to create new configurations of feature models it is not necessary to use
any custom tool. As far as we have a DVM which captures the same variability than
the original feature model, developers can use the standard Ecore tools. However, in
EMEF there is not a default tool to check OCL invariants which are directly stored as
EAnnotations in Ecore models themselves. Thus, we have built an extension which
can take advantage of the OCL invariants that have been automatically created in
the previous transformation step.

Fig. 7 shows an example configuration. It shows a car configuration with manual
transmission, TCS, 4 wheels and engine. The radius of three of the wheels is 16
inches, and the radius of the fourth is 17 inches. The power of the engine is 60.000
watts. This configuration is invalid conforming to the restrictions applied to the
metamodel. When the configuration is invalid the checking process is unsuccessful.
In this situation, the prototype console shows a summary with the constraints that
are not met, and which are the problematic elements as the figure shows.

5 Related works

Feature modeling has been an important discussion topic in the SPL. community,
and a great amount of proposals for variability management have arisen. Most of
them are based in the original FODA notation and propose several extensions to it
[4]. Our work is closely related with previous research, however, there are several
distinctive aspects:

Our work describes a prototype to define and validate configurations of feature
models. Previous work has been also done in this area, such as the Feature Modeling
Plugin [1]. The main difference with our work is that configurations are defined in
terms of the feature metamodel and both models and configurations coexist at the
same layer. Thus, in order to be able to deal both with models and configurations it
is necessary to build complex editors (as they must guarantee that the specialization

Sl 3 = 0B console = vt B~-5-=0
a4 platform:/resource/Features/Example/Carxmi OCL Validator
4 4 Car [TCS | TCS_engine power] [Car.xmi//@TCS] -
< Engine 60000 [false]
4 < Transmissien [Wheel | Wheels Fqual Size] [Car.xmi//@Wheel.0]
4 Manual [false] |
& TCs [Wneel | Wheels_Equal Size] [Car.xmi//@Wheel.1] E
< Wheel 16 [false]
4 Wheel16 [Wneel | Whneels Equal Size] [Car.xmi//@Wheel.2]

[false]
[Wheel | Wheels Equal_ Size] [Car.xmi//@Wheel.3]
[false]

Global result: false S

4 Wheel16
4 Wheel17
platform:/resource/Features/Example/car.ecore

Fig. 7 Example of an unsuccessful configuration check.
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process is properly done), and whats more, those artifacts can not be easily used in
complex MDE processes.

Some previous works have already represented feature models as class diagrams
([7] and [13]). However, in [7] no set of transformation rules defines the mappings
between features and classes. In this work, OCL is also presented as a suitable ap-
proach to define model constraints, but there is no automatic generation of OCL
invariants as the transformation is not clearly defined. In turn, [13] presents a set of
QVT rules to define the mappings. However, in this case, neither model constraints
nor configuration definitions support is presented.

In [2] a proposal for feature constraints definition and checking is done, rep-
resenting features as propositions and restrictions among them as propositional for-
mulas. However, this approach is not suitable when feature can have typed attributes
which can not be expressed by this kind of formulas. We state that more expressive
languages are needed, such as FMCL/OCL.

6 Conclusions

In this paper we have presented a framework! to define and use feature models
in a MDE process. This framework addresses two issues: first, the incapability of
nowadays metamodeling tools to deal simultaneously with artifacts located in all
the MOF layers; and second, the complexity to define model constraints in feature
models where features can be cloned and can have attributes. These problems have
been solved by transforming feature models to Domain Variability Models that can
be instantiated and reused in future steps of the MDE process.

Our tool has been designed following the MDE principles and a metamodel for
cardinality-based feature modeling has been defined. By means of generative pro-
gramming techniques, a graphical editor for feature models has been built. Feature
models defined with this editor are automatically transformed in DVMs that are used
to define configurations of feature models. Although several tools to define feature
models and configurations in the last years have arised, our approach has several ad-
vantages against previous approaches: (i) the infrastructure that we propose to build
configurations is simpler and more maintainable, as it is built following the MDSD
guides; (ii) configurations are actually instances of a feature model (expressed by
means of the DVM), so we can take advantage of the standard EMF tools; (iii) as
feature models are described by DVMs that can be instantiated, both models and
configurations can be used in other MDE tasks; (iv) having a clear separation be-
tween feature models and configuration eases the validation tasks as they can be
performed by means of built-in languages; and (v) as the transformation between
feature models and DVMs is performed automatically by means of a declarative
language we can trace errors back from DVMs to feature models.

! This framework is supported by a prototype that can be downloaded from http://issi.dsic.-

upv.es/ agomez/feature-modeling.
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It is noteworthy to remark the importance of using feature models and configura-
tions at different layers. In [3] an example where this architecture is used to integrate
feature models in a MDE process is shown. This work describes how a model trans-
formation with multiple inputs (feature models and functional models) is used to
generate a software architecture automatically.
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