Patterns and Skeletons for Parallel and
Distributed Computing

Springer-Verlag London Ltd.

Fethi A. Rabhi and Sergei Gorlatch (Eds)

Patterns and Skeletons
for Parallel and
Distributed Computing

&) Springer

Fethi A. Rabhi, PhD
School of Information Systems, The University of New South Wales, Sydney 2052,
Australia

Sergei Gorlatch, PhD
Technical University of Berlin, Sekr, FR5-6, Franklinstr. 28/29, D-10587, Berlin,
Germany

British Library Cataloguing in Publication Data
Patterns and skeletons for parallel and distributed computing
1. Electronic data processing - Distributed processing
2. Parallel processing (Electronic computers)
L. Rabhi, Fethi II Gorlatch, Sergei
004.3°6
ISBN 978-1-85233-506-9

Library of Congress Cataloging-in-Publication Data
Patterns and skeletons for parallel and distributed computing / Fethi Rabhi and Sergei Gorlatch (eds.).
p- cm
Includes bibliographical references and index.
ISBN 978-1-85233-506-9 ISBN 978-1-4471-0097-3 (eBook)
DOI 10.1007/978-1-4471-0097-3
1. Parallel processing (Electronic computers) 2. Electronic data processing - Distributed
processing. 1. Rabhi, Fethi. II Gorlatch, Sergei.
QA76.58.P385 2002
004’.36-dc21 2002067023

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

ISBN 978-1-85233-506-9
http://www.springer.co.uk

© Springer-Verlag London 2003
Originally published by Springer-Verlag London Berlin Heidelberg in 2003

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Camera-ready by editors

34/3830-543210 Printed on acid-free paper SPIN 10837441

Foreword

Murray Cole

Computer systems research exhibits a long-standing ambivalence towards paral-
lelism. On the one hand, concurrent activity within and between computational
entities is recognised as an entirely normal and desirable phenomenon, both in
the natural world and in artificial technologies. On the other, the specification,
control and analysis of such activity is perceived as being inherently hard. The
application of abstraction is one of our discipline’s defining activities and, with
respect to parallelism, is often undertaken with a view to hiding that parallelism
behind a more tractable illusion of sequentiality. Perhaps this should be no sur-
prise, given that our everyday thoughts and strategies seem to enjoy a similarly
sequential gloss over undoubtedly parallel implementations.

The thesis underlying and uniting the systems covered here is 31mple It
proposes that we can tame the complexity of parallelism by recognising that for
many practical purposes its manifestation is far from unpredictable, but in fact
follows a number of recurring forms. We can then make progress by recognising,
abstracting (of course!) and cataloguing these forms and their exploitation. If
we can hide the underlying parallelism entirely, then so much the better. The
striking and encouraging message of this book is that the approach can been
applied in contexts as superficially diverse as “System on Chip” architectures
(just what should we do, and how, with a billion transistors?) and the emerging
global “Computational Grids”. That its discovery and investigation has thus
far proceeded more or less independently in these contexts strengthens the case
for its importance.

The book is timely, arriving at an opportune moment to act as a catalyst
to fruitful interaction between the skeletons and patterns research communi-
ties (and indeed to others, as yet unrecognised, who may be pursuing the same
underlying approach). Meanwhile, the increasing mainstream prevalence of par-
allel and distributed systems, whether explicitly acknowledged or given a veil of
familiarity and respectability as “servers” and the like, means that issues which
were once matters of concern to a fringe audience are increasingly central to
the activities of everyday programmers. The challenges inherent in organising
a collection of threads within a multi-CPU chip or a set of agents across the
Internet are related.

As will be clear from their own contributions, Fethi and Sergei are long stand-
ing and respected members of our research community. It would be impossible
in practice to provide encyclopaedic coverage of this fast moving area. Thus,
in selecting and coordinating the contributions to this volume they have aimed

vi Foreword

for, and produced, a thoroughly representative sample of ongoing research for
which they and the contributing authors should be congratulated and thanked.
Looking to the future, one of the most awkward questions one can ask of a
research programme is “Does this actually matter?” (as distinct from “Does it
matter if this matters?”). That the expression and control of parallelism within
computer systems will matter increasingly seems uncontentious. Perhaps we
can speculate on the ultimate answer by considering that the alternatives to the
programme described here seem to involve either the belief that what is currently
perceived to be hard will soon be revealed as easy, or that dramatic progress
in the automatic extraction and management of parallelism from sequential
specifications will bring us to a point at which the issue disappears.

About the Author

Murray Cole was awarded a BSc and a PhD in Computer Science from the
University of Edinburgh in 1984 and 1988. After holding a lecturership and a
SERC postdoctoral research fellowship at Glasgow University, he has been a
Lecturer then Senior Lecturer in the Division of Informatics at the University
of Edinburgh since 1990.

His book Algorithmic Skeletons: A Structured Approach to the Management
of Parallel Computation (Pitman 1989), adapted from his PhD thesis, is still
regularly cited as seminal in the field of algorithmic skeletons. He has over
20 other publications in reputable books, journals and conferences. He is the
founder and maintainer of an international mailing list and online archive on
“algorithmic skeletons”. He was also the co-organiser of two workshops at the
Dagstuhl research centre in Germany on Higher-Order Parallel Programming in
1997 and 1999. He has acted as an academic host for numerous visits and talks
by external researchers (including several through the EC TRACS scheme). His
current research interests concern the design and implementation of program-
ming language constructs which facilitate the structured expression and analysis
of parallel programs, notably through the use of algorithmic skeletons.

Preface

Fethi Rabhi and Sergei Gorlatch

This preface explains the motivations behind the book. First, it identifies the
essential characteristics of parallel and distributed applications. It goes on to
take a closer look at the development cycle of such applications and outlines
the need for integrated approaches that facilitate the reuse of ideas and tech-
niques. Then, it defines the terms “skeletons” and “patterns” and their role in
the development cycle. Finally, it discusses opportunities for cross-fertilisation
between the two disciplines and outlines this book’s contribution towards this
goal.

Parallel and Distributed Computing

In recent years, there has been considerable interest in parallel and distributed
applications, mainly due to the availability of low-cost hardware and fast com-
puter networks. This is illustrated by the dramatic increase in the use of the
Internet and Internet-based applications. In very general terms, a parallel or
distributed application can be defined as “a system of several independent soft-
ware components cooperating in a common purpose or to achieve a common
goal”, including:

¢ parallel and high-performance applications (e.g. solving PDE equations)

e fault-tolerant applications and real-time systems (e.g. safety-critical pro-
cess control)

e applications using functional specialisation (e.g. enterprise information
and optimisation systems)

e inherently distributed applications (e.g. Web applications)

Each of these classes has historically emerged from a distinct computing
discipline, such as operating systems, networks, high-performance computing,
databases and real-time systems. Experiences with and also techniques and
tools for software development are usually adapted to the particular require-
ments of the relevant discipline. However, there is much to learn from adapting
concepts from one discipline to another since there are many common problems,

viii Preface

such as specifying the interaction between concurrent activities or mapping a
process graph onto a given architectural platform. Moreover, there are many
applications which cannot be contained within a single discipline. For exam-
ple, metacomputations are applications intended for both parallel architectures
and distributed systems. Another example is distributed multimedia applica-
tions where real-time constraints often have to be dealt with in a distributed
processing context.

Developing Parallel and Distributed Applications

Since the discipline of software engineering is concerned with the application
of systematic approaches to the development, operation and maintenance of
complex software systems, it can provide a framework for integrating many
techniques related to the paralle] and distributed software lifecycle. For the sake
of simplicity, we confine ourselves to the well-known three phases of requirements
analysis, design and implementation in the waterfall model, although issues such
as maintenance and testing are still very important in this context. Figure 1
illustrates the additional needs and constraints that should be taken into account
at different stages of the basic development cycle when considering parallel and
distributed applications.

REQUIREMENTS ANALYSIS

—Computational model (e.g. performance, dependability,
timeliness, quality of service)
~Physical architectural model

1
DESIGN

—Component identification (e.g. process identification)
—Interaction management (e.g. communication management,

interfaces definition)
-Logical-physical mapping

1
IMPLEMENTATION

—~Concurrency control
—Shared-memory abstractions / caching
—Remote procedure calls

—Remote object invocation
—Event—based programming

Figure 1: Parallel and distributed application development cycle

Preface ix

Requirements Analysis

Requirement analysis is the first phase in the development process. Here, the
requirements for the system are established and specified in detail for further
development. The amount of information specified should be minimal yet com-
plete. A common requirement for any application is its functionality i.e. the
functions it is supposed to perform. Parallel and distributed applications mostly
differ in their non-functional requirements, some of which relate to the dynamic
behaviour of the system in terms of its concurrent entities and the interaction be-
tween these entities. For these applications, the most important non-functional
requirements can be grouped in the following categories:

e Performance: This is required for parallel and high-performance applica-
tions where maximum speedup and efficiency must be attained according
to a specific architectural model.

o Dependability {or robustness): This includes availability, reliability, safety
and security. These requirements are essential for fault-tolerant applica-
tions and those using functional specialisation.

o Timeliness: The system must satisfy the established temporal constraints.
This is an essential feature of real-time systems.

o Quality of service: This is needed for applications using functional special-
isation, particularly distributed multimedia. These requirements relate to
the quality requirements on the collective behaviour of one or more pro-
cesses. They are expressed in terms of both timeliness constraints and
guarantees on measures of communication rate and latency, probabilities
of communication disruptions, etc.

e Dynamic change management: The system must accommodate modifica-
tions or extensions dynamically. This is needed, for example, in mobile
systems as the configuration of software components evolves over time.

e Scalability: The system must be able to scale up in size for example to
cope with a larger database or file sizes, a bigger customer base, etc.

One of the outputs of requirements analysis is a set of system models called
the requirements specification, which represents an abstraction of the system
being studied and serves as a bridge between the analysis and design processes.
Examples of formal models include the Calculus of Communicating Systems
(CCS) and PetriNets, and examples of semi-formal models include data-flow
diagrams and statecharts. Functional and non-functional requirements relate to
what the program is supposed to achieve (computational model).

In addition, there may be a specification of the hardware platform on which
the program is to be executed (physical architectural model). This is an essen-
tial requirement for parallel and inherently distributed applications. A hardware

x Preface

platform can be homogeneous or heterogeneous. A homogeneous platform con-
sists of a set of identical processing nodes connected by a single network. There
are several abstract models for such platforms including the Parallel Random
Access Machine (PRAM) and the Bulk Synchronous Parallel (BSP) model. A
heterogeneous platform consists of several resources (e.g. processors, disks, sen-
sors) connected through one or several high-speed networks. Representations
for such platforms include UML Deployment Diagrams.

Software Design

Given certain system requirements and models, the design stage involves devel-
oping several more detailed models of the system at lower levels of abstraction.
Considering parallel and distributed applications, the main concepts that need
to be embodied in every design can be grouped in these three categories:

o Structure and component identification: This describes different compo-
nents of the system, such as processes, modules and data and their ab-
stractions.

o Interaction management: This considers the dynamic aspects and seman-
tics of communication, e.g. defining interfaces and communication pro-
tocols between components, which components communicate with which,
when and how communication takes place, contents of communication, etc.

o Logical-physical mapping: This defines the mapping of logical entities from
the computational model to physical entities from the architectural model.
Such mappings can be defined statically (decided at compile time) or dy-
namically (decided at run time).

Although strategies for designing sequential systems have been extensively
studied, little is known about the design of parallel and distributed applications.
Most existing design methods, e.g. UML, address some of the above issues from
a real-time systems perspective.

Implementation

The implementation stage consists of transforming the software design mod-
els into a set of programs or modules. Parallel and distributed applications
are characterised by a broad range of implementation approaches that oper-
ate at different levels of abstraction. Concurrency-control mechanisms such as
locks, semaphores and monitors are low-level structures that were extensively
studied in the 1970s and '80s. Shared-memory models such as Concurrent Read
Exclusive Write (CREW) PRAM are relatively high-level structures that are re-
quired for shared-memory multiprocessing. Distributed-memory programming
can be achieved through message-passing (e.g. MPI), remote procedure calls
(e.g. OSF/DCE) or remote object invocations (e.g. CORBA). Event-based
programming is also a useful abstraction, particularly for real-time and embed-
ded systems.

Preface xi

What is a Skeleton?

The term skeleton, coined by Murray Cole, originates from the observation that
many parallel applications share a common set of known interaction patterns
such as pipelines, processor farms and data-parallel computations. The study
of skeletons (as opposed to specific applications) has many advantages, such as
offering higher-level programming interfaces, opportunities for formal analysis
and transformation and the potential for “generic” implementations that are
both portable and efficient.

Most of the work on skeletons is associated with functional languages, as
skeletons can be modelled as higher-order functional structures. Among the
variety of skeleton-related projects are those concerned with defining elemen-
tary skeletons from which parallel programs can be constructed. For example,
the two well-known list processing operators map and reduce form a set of el-
ementary skeletons with inherent parallelism. Despite the fact that equivalent
operators are provided in most data-parallel languages (map corresponds to an
element-wise operation and reduce to a reduction), the main advantage of us-
ing elementary skeletons is the availability of a formal framework for program
composition. This allows a rich set of transformations (e.g. transforming one
program into a more efficient one) to be applied. In addition, cost measures can
be associated with these elementary skeletons and their compositions.

The main problem with elementary skeletons is that there is little guidance
on how to compose them in order to obtain optimal efficiency. In addition,
there have been very few practical implementations owing to the difficulty in
adapting arbitrary composition structures to a variety of hardware platforms
with very different characteristics. To address these problems, more elaborate
skeletons that model complex interaction patterns can be defined. For example,
the divide-and-conguer skeleton captures a well-known algorithmic design strat-
egy for which several efficient implementations can be developed. Several such
skeletons have been developed around specific data structures. These skeletons,
which are derived from category theory, are known as homomorphic skeletons.
They provide a similar level of abstraction to the data-parallel operators con-
sidered earlier, but in addition they offer a more formal framework for program
construction and transformation. Homomorphic skeletons have been proposed
for a variety of data structures such as lists, arrays, trees and graphs. They
act in a similar way to an abstract data type by providing a set of known-to-be
parallel operators while hiding the internal implementation details.

In the skeletons described so far, the communication structure is implied by
the (often recursive) way operators are defined. There are skeletons which work
around a fixed communication structure, e.g. the Static Iterative Transforma-
tion (SIT) skeleton, which captures a series of iterative transformations being
applied to a large data structure and for which several programming environ-
ments have been proposed and implemented.

xii Preface

What is a Design Pattern?

The concept of a design pattern is related to a skeleton, but has consequences
across several phases of the development cycle. When designing a new system
(particularly a complex one), it is unusual for designers to tackle it by develop-
ing a solution from scratch. Instead, they often recall a similar problem that
they have already solved and adapt its solution. The idea of design patterns,
originally proposed by Gamma et al., is to facilitate the reuse of well-proven
solutions based on experience in developing real systems. Given a library of
common “patterns” for designing software, developers choose the pattern that
is most suited to their needs. Patterns are often associated with object-oriented
systems because they support reusability through classes and objects.

Patterns vary greatly in aims and scope. They offer solutions ranging from
high-level strategies for organising software to low-level implementation mech-
anisms. The documentation of design patterns is informal and varies in the
literature. In most descriptions, the information associated with the pattern
(such as context, problem and solution) is presented in textual form or using
UML diagrams.

Historically, most design patterns were identified by developers of object-
oriented user interfaces whose main quality criteria were usability, extensibil-
ity and portability. However, there are a growing number of patterns which
also express known concurrent behaviour of interacting entities over a possibly
distributed platform. Examples include Pipes and Filters, Master-Slave and
Client-Dispatcher-Server.

The design of a complex application typically involves more than one pattern.
Besides design patterns, implementation patterns represent higher-level forms of
programming abstractions. These patterns (called idioms) refer to commonly
used language-dependent techniques which can be used to model the behaviour
of interacting objects. Their description is informal and includes reusable code
in the form of interfaces, classes and objects. Implementation patterns are
being applied in a variety of contexts, from concurrent programming in Java to
distributed programming in CORBA.

The similarities between these patterns and skeletons are striking. For exam-
ple, the published Pipes-and-Filters and the Master-Slave patterns correspond
to the well-known pipeline and farm skeletons. However, skeletons and patterns
are different in many fundamental ways. While skeletons tend to be described in
a formal way, patterns are usually loosely described in English and/or a combi-
nation of UML diagrams. Another difference is that a skeleton’s “raison d’étre”
is in the design of high-performance systems, whereas behavioural patterns are
more general. They tend to tackle other requirements specific to distributed
systems such as fault-tolerance, timeliness and quality of service.

Preface xiii

REQUIREMENTS ANALYSIS

—Concurrency models
—Semi-formal models for real-time systems
—Parallel architectural models

LA i

J

DESIGN
~Design methods for real—time systems
—Design patterns
—Data—parallel abstractions

\

]

IMPLEMENTATION

—Real-time operating systems

—Parallel and distributed programming
—Distributed operating systems and middleware
—"Implementation” patterns

—Parallel processing skeletons

Figure 2: Role and main contribution of existing approaches in the application devel-
opment cycle

Towards Integrated Approaches

Figure 2 summarises the role and main contribution of existing approaches and
techniques in the parallel and distributed application development cycle. De-
spite their apparent disparity, we believe that there are several common issues,
such as process management, communication and synchronization, distribution
and mapping processes to processors. Despite the use of different notations
and terminology, many similarities exist in areas such as semantics of commu-
nication, visual display of information and automatic code generation. As an
example of “overlapping” of work, most programming abstractions provided
in parallel processing tools are to a large extent already available in software
engineering methodologies for real-time systems.

The other reason for integrated approaches is that, with the wider avail-
ability and greater ease of use of large computer networks, there will be sev-
eral applications that cross boundaries. For example, a distributed real-time
system may consist of a large number of identical tasks for dealing with the
fault-tolerance requirements and for managing identical hardware devices. This
requires suitable replication structures to model and implement the concurrency,
communication and distribution aspects.

The main problems that still need addressing are:

o Little is known about design strategies for parallel and distributed appli-
cations. For example, existing design strategies are not very well suited

~

xiv Prefece

to non-functional requirements, and the logical-physical mapping is a ne-
glected part of the development process.

e Many techniques rely on assumptions that are specific to the discipline
they originate from, so there are many difficulties associated with adapt-
ing concepts from one discipline to another. For example, most struc-
tured/OO design methodologies do not provide replication structures, net-
work studies for parallel computers are not relevant to distributed process-
ing, etc.

Future work should concentrate on the adaptation of concepts across disci-
plines and the integration of these concepts within all phases of a well-defined
development cycle. Considering adaptation, most efforts at the requirements
stage have focused on the functional requirements and the dynamic behaviour
of systems. New theories and models must be developed to express requirements
such as quality of service, dynamic change management and dependability. Im-
proved design abstractions and new ones are needed, e.g. with a capacity to
model actors and intelligent agents capable of reactive, proactive and coopera-
tive behaviour. There is also a need for new unified architectural models that
can represent physical resources in terms of processors, memory, communica-
tion, etc. Finally, while middleware platforms (such as CORBA) have proved
useful for applications with loosely coupled tasks and low communication re-
quirements, their appropriateness for highly coordinated tasks that make large
demands on communication and synchronisation still requires investigation.

The case for integration should give a greater role to CASE tools that empha-
size the importance of formal notation, provide a rich set of design abstractions,
allow model checking and provide automatic code generation. Integration of ex-
isting or new techniques should be achieved through formally defined, generic,
reusable entities and their associated tools. Some of these entities have al-
ready been described in this paper as patterns and skeletons. This is not a new
tendency but has already been happening to a large extent at the implementa-
tion level. For example, standards like CORBA and PVM can be regarded as
“patterns” that support location transparency and decouple processes from the
underlying communication mechanism. It is expected that similar approaches
will be adopted at a much higher level in the development cycle.

Aims of the Book

While there is a profusion of books dedicated to particular languages or al-
gorithms for parallel and distributed processing, there is a clear need for a
contribution that centres on the higher-level approaches discussed above.

The aims of this book are two-fold. The first is to collect and publicise
most of the work carried out by the skeletons community. At a time when
parallel-processing research is perceived to be in decline, it is important for its
community to make available important contributions that have implications

Preface XV

beyond the narrow context of parallel architectures. The second aim is to show-
case other contributions (from the patterns community, for example) at the
cutting edge of distributed systems design. One advantage of this approach is
that it minimises the overlapping and duplication of work. Another is to en-
courage the cross-fertilisation of ideas between all communities involved in the
high-level design and implementation of parallel and distributed applications.

Since this is potentially a very wide field, the book’s scope is limited in
many respects. First, it is not concerned with software engineering method-
ologies (e.g. UML), specific programming languages (Java) or middleware (e.g.
MPI and CORBA) which are deemed to be too low-level. The book aims to give
priority to computation and communication structures that go beyond simple
message-passing or remote procedure calling (RPC). Secondly, formal concur-
rency models (e.g. PetriNets) are not covered because the book focuses mainly
on pragmatic approaches leading to practical design and programming method-
ologies with their associated compilers and tools.

Book Overview

This book covers a variety of approaches as broadly as possible. It is organized as
a collection of self-contained chapters, written by leading researchers on parallel
and distributed systems design. Unlike typical research papers, each chapter is
written in a comprehensive, concise and tutorial-like style. As far as possible,
obscure technical details are contained in bibliographical and WWW references,
which can be easily accessed for further reading.

The book is divided into two parts. Part I presents skeletons-related mate-
rial, such as the expression and composition of skeletons, formal transformation,
cost modelling and languages, compilers and run-time systems for skeleton-
based programming. It covers purely functional, hybrid functional/imperative
or higher-level imperative platforms.

Chapter 1 by Fischer, Gorlatch and Bischof outlines basic concepts and the-
oretical results, providing a foundation for the construction and use of skeletons
based on data. While the other chapters describe skeletons in specific language
contexts (Haskell, C, etc.), this chapter remains language-independent, present-
ing the basics of skeletons in a general formal setting. The authors explain how
skeletons are used in the process of program development, then introduce data-
parallel skeletons as higher-order functions on the most popular data type, lists,
and present equations over these functions, thus providing an algebra of lists. It
is shown how the equations of the algebra of lists can be used as transformation
rules in the process of designing an efficient parallel program from an initial
specification of a problem. The authors identify a class of skeletons called cata-
morphisms, which possess a common efficient parallel implementation scheme.
The chapter describes an automatic method for finding a well-parallelisable cata-
morphic representation of a problem using its sequential formulation. Finally,
the authors describe the skeleton framework in a more general setting based
on category theory. The use of the skeleton framework is demonstrated on a

xvi Preface

practically relevant case study — two-dimensional numerical integration.

Chapter 2 by Gorlatch argues against the low-level communication primitives
common in contemporary parallel languages and proposes expressing commu-
nication in a structured way using collective operations and skeletons. This is
accomplished using the SAT (Stages And Transformations) methodology. The
methodology’s power is demonstrated by several case studies, for which either
new parallel solutions are provided or, more often, in which a systematic way is
demonstrated by arriving at optimal solutions that were previously obtained in
an ad hoc manner. The presentation addresses five challenges for collective oper-
ations and skeletons as an alternative to send-receive: simplicity, expressiveness,
programmability, absolute performance, and performance predictability.

Chapter 3 by Herrmann and Lengauer offers a technique for application
programmers to investigate different parallel implementations of an algorithm
quickly by constructing prototypes in a functional language, making use of pre-
defined parallel skeleton implementations. The programmer views a skeleton
as a higher-order function and is not involved in low-level implementations at
all. The choices are in the selection of skeletons, their instantiation with pa-
rameters controlling the parallelisation and their customisation with problem-
specific functions, possibly, nested skeletons. The approach is even appropriate
for inexperienced parallel programmers, because the application program can
never produce failures because of parallelisation. The authors demonstrate the
simplicity of parallel functional programming using the travelling salesperson
problem as an example.

Chapter 4 by Loogen, Ortega, Pefia, Priebe and Rubio presents the parallel
functional programming language Eden, which extends Haskell by expressions
for defining and instantiating processes. Parallel programming is done in Eden
at two levels. The abstract level is appropriate for building parallel applications
with little effort on top of the predefined skeletons. At the lower level, the
programmer instantiates processes explicitly, being able to create new skeletons
and also to build applications with irregular parallelism for which no appropriate
skeleton is available. The authors present several skeletons covering a wide range
of parallel structures, together with their implementations and cost models.
Some examples of application programming are shown, including predicted and
actual results on a Beowulf cluster.

In Chapter 5, Michaelson and Scaife discuss the work of the Heriot-Watt
University group in realising skeleton based parallel implementations from func-
tional prototypes. Experiments in hand crafting parallel occam?2 programs from
SML prototypes, to solve problems in computer vision, have led to the auto-
mated exploitation of nested skeleton parallelism from sites of nested higher
order functions (HOFs), using proof planning to synthesise HOF's in programs
that lack them.

Preface xvil

Chapter 6 by Pelagatti describes P3L ~ a coordination language in which
applications can be expressed by means of combining task- and data-parallel
skeletons. The programmer concentrates on application structure, without cod-
ing single low-level interactions. The main difference between P3L and other
coordination languages is that it is designed to make the performance of pro-
grams predictable from the cost of their sequential parts and from the knowledge
of the constituent skeletons. Costs can be used by programmers to take sensible
decisions during parallel software development and by compilers to optimise the
global application structure. This chapter presents the parallel model underly-
ing P3L, discusses parallel software development using cost models, and details
P3L implementation. Examples and results for a few real size applications are
shown.

Chapter 7 by Rabhi focuses on a “coarse-grained” skeleton, namely the Static
Iterative Transformation (SIT) skeleton, which can be thought of as a data
parallel operator applied through several iteration steps. It describes several
parallel programming environments that allow customised applications to be
automatically generated for a variety of machines. Projects vary in the choice
of notations for skeleton parameters (e.g. functional languages, visual abstrac-
tions) and implementation platforms (e.g. PVM, BSP).

Part II is dedicated to design patterns and other related concepts, applied
to other areas such as real-time, embedded and distributed systems.

Chapter 8 by Cross and Schmidt studies the design of real-time and embed-
ded distributed applications and in particular how to effectively address Quality
of Service (QoS) requirements. They propose a design pattern, called the Qual-
ity Connector Pattern, which enables application developers to specify their QoS
requirements to the middleware infrastructure. The pattern also manages the
middleware operations that implement these QoS requirements in an optimal
way. A practical implementation using real-time CORBA is described.

Chapter 9 by Rana and Walker is also related to the design of distributed
applications using standardised components and middleware. It uses the “Grid”
concept in which distributed processes are either providers or consumers of ser-
vices. This enables the separation of concerns: distributed applications can be
rapidly assembled as service invocations without concern about the underlying
infrastructure, and this infrastructure can be changed or upgraded without af-
fecting the applications. Design patterns fit in very well with this approach.
A designer can use patterns to rapidly construct applications, and each pat-
tern can be coded in a particular programming language or makes use of “grid
enablers” such as Globus or Legion (this need be of no concern to the designer).

Chapter 10 by Benatallah, Dumas, Fauvet and Rabhi is very similar in its
approach: it separates design concerns (using patterns) and implementation
(using the service abstraction). The approach focuses on the area of Business-
to-Business systems and provides implementation clues that work not only for
traditional middleware platforms (e.g. CORBA and Java) but also for XML-
based technologies and inter-enterprise workflows. A suite of design patterns,
dealing with service wrapping (i.e. integration of legacy applications), service
contracting, service composition, service discovery and service execution, are
proposed.

xviii Preface

Finally, Chapter 11 by Aboulhamid, Bois and Charest addresses the design
(called codesign) of systems that involve mixed software and hardware compo-
nents. The complexity arises from a large design space caused by a multiplicity
of decisions and alternatives: identifying parts of the requirements that should
be implemented in hardware, software or a mixture of both; defining a sched-
ule of processes allocated to processors while preserving timing constraints; es-
tablishing communication and synchronisation links between components, etc.
Again, design patterns are proposed as a solution for reducing the complexity of
the design activity. On the one hand, they incorporate good-quality design expe-
rience that has proved useful in successful design projects. On the other, they
free the designer’s mind from low-level implementation considerations, while
pointing the way to implementation solutions using languages such as VHDL
and SystemC.

Target Audience

The book provides an important collection of texts for an advanced undergrad-
uate course or graduate course on Parallel or Distributed Systems Design. It
will hopefully become a useful reference work for researchers undertaking new
projects in this area. Readers must have a strong background in computer pro-
gramming languages and computer systems. Part I of the book requires some
background in mathematics and formal methods.

Acknowledgements

We wish to thank all the authors for their hard work and effort in creating this
book, and in particular Greg Michaelson for his assistance during the proposal
phase. We are especially grateful to Feras Dabous, Yun Ki Lee, Holger Bischof
and Marie-Christine Fauvet for their help with the formatting in LaTeX and
to Phil Bacon for improving our presentation. We would also like to thank
Rosie Kemp, Melanie Jackson and Karen Borthwick of Springer-Verlag London
for their comments, suggestions and professional advice during the publishing
process.

Fethi Rabhi (f.rabhiQunsw.edu.au)
Sergei Gorlatch (gorlatch@cs.tu-berlin.de)

Contents

List of Contributors. xxiii
1 Foundations of Data-parallel Skeletons 1
1.1 Motivation 1
1.2 The Idea of Programming with Skeletons 2
1.3 Skeletonson Lists. 3
1.4 Case Study: Maximum Segment Sum, 10
1.5 Automatic Extraction of Catamorphisms. 13
1.6 Categorical Data Types 16
1.7 Conclusions e 24
2 SAT: A Programming Methodology with Skeletons and
Collective Operations 29
2.1 Imtroduction. e 29
2.2 “Send-Receive Considered Harmful” 31
2.3 SAT: A Methodology Outline 32
2.4 The Challenge of Simplicity 35
2.5 Collective Operations as Homomorphisms 37
2.6 The Challenge of Expressiveness 45
2.7 The Challenge of Programmability 48
2.8 The Challenge of Predictability 51
2.9 The Challenge of Performance. 55
2.10 Conclusions e e e e e 57
3 Transforming Rapid Prototypes to Efficient Parallel Programs 65
3.1 Introduction. 65
3.2 Skeletal Programming with HDC 67
3.3 A Collection of Skeletons 69
3.4 An Example Skeleton Implementation: map 75
3.5 Case Study: The Metric Travelling Salesperson Problem 78
3.6 A Higher-order Program 83
3.7 Conclusions e 88

Contents

Parallelismn Abstractionsin Eden 95
4.1 Introduction. 95
4.2 Eden’s Main Features 96
4.3 SkeletonsinEden.0 L. 100
4.4 Application Parallel Programming 115
4.5 Related Work and Conclusions 124
Skeleton Realisations from Functional Prototypes 129
5.1 Functional Prototyping and Parallelism 129
5.2 Prototyping and Transformation 131
5.3 Prototyping Parallel Computer Vision Algorithms and Systems . 132
5.4 Towards Skeleton-based Compilers 136
5.5 PMLS Compiler 140
5.6 Case Study: Matrix Multiplication 144
5.7 Conclusions 150
Task and Data Parallelismin P3L 155
6.1 Introduction. 155
6.2 Background o 156
6.3 The P3L Model of Parallel Computation 158
6.4 The Pisa Parallel Programming Language 161
6.5 Parallel Software Design in P3L 166
6.6 Implementing P3L 173
6.7 Some Experimental Results 181
6.8 Conclusions and Related P3L Research 182
Skeleton-based Programming Environments 187
7.1 Introduction., 187
7.2 A Classification of Parallel Algorithms 187
7.3 Algorithmic Skeletons as a Basis for Programming Environments 189
74 POPE e 191
7.5 SITSS e 195
76 SkelMG e 199
7.7 Conclusions e 205
Applying the Quality Connector Pattern 209
81 Imtroduction. 209
8.2 The Quality Connector Pattern 216
83 RelatedWork 229
8.4 Concluding Remarks and Future Directions 231
Service Design Patterns for Computational Grids. 237
9.1 Motivation and Introduction. L. 237
9.2 Resource and Service Management in Grids 240
9.3 Design Patterns to Support Services 248

94 Conclusions e 262

Contents xxi

10 Towards Patterns of Web Services Composition 265
10.1 Introduction e 265
10.2 Review of Enabling Technologies 266
10.3 The External Interactions Gateway Pattern 271
10.4 The Contract-based Outsourcing Pattern 276
10.5 The Service Composition Pattern 280
10.6 Service Discovery Pattern 284
10.7 The Composite Service Execution Pattern 287
10.8 Conclusions oo e 292

11 Multi-paradigm and Design Pattern Approaches for
HW/SW Designand Reuse 297
11.1 Introduction 297
11.2 Characteristics of a Design Environment 300
11.3 Implementation Languages 301
11.4 Commonality and Variationin VHDL 304
11.5 Design Reuse and Hardware Libraries 305
11.6 Variation and Configuration 308
11.7 Use of Design Patterns 313
11.8 Conclusions o it 324

List of Contributors

Mostapha El Aboulhamid

DIRQO, Université de Montréal,
2920 Ch. de la Tour, CP6128 Centre-Ville, Montréal, Québec, Canada
aboulham@iro.umontreal.ca

Boualem Benatallah

School of Computer Science and Engineering
University of New South Wales, Sydney NSW 2052, Australia
boualem@cse.unsw.edu.au

Holger Bischof

Technische Universitidt Berlin, Fakultdt fiir Elektrotechnik und Informatik
Sekr. FR 5-6, Franklinstrafe 28/29, 10587 Berlin, Germany
bischof@cs.tu-berlin.de

Guy Bois

DGEGI, Ecole Polytechnique de Montréal,
CP6079 Centre-Ville, Montréal, Québec, Canada
~guy.bois@polymtl.ca

Luc Charest

DIRO, Université de Montréal,
2920 Ch. de la Tour, CP6128 Centre-Ville, Montréal, Québec, Canada
chareslu@iro.umontreal.ca

Murray Cole

Division of Informatics, University of Edinburgh,
King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
mic@dcs.ed.ac.uk

xxiv List of Contributors

Joseph K. Cross

Lockheed Martin Tactical Systems, St. Paul, Minnesota, USA
joseph.k.cross@lmco.com

Marlon Dumas

Centre for Information Technology Innovation
Queensland University of Technology, Brisbane QLD 4001, Australia
m.dumas@qut.edu.au

Marie-Christine Fauvet

LSR-IMAG Laboratory, University of Grenoble
BP 53X, 38420 Grenoble Cedex, France
Marie-Christine.Fauvet@imag.fr

Jorg Fischer

Technische Universitat Berlin

Fakultit fiir Elektrotechnik und Informatik

Sekr. FR 5-6, Franklinstraie 28/29, 10587 Berlin, Germany
jfischer@cs.tu-berlin.de

Sergei Gorlatch

Technische Universitdt Berlin

Fakultat fiir Elektrotechnik und Informatik

Sekr. FR 5-6, Franklinstra8e 28/29, 10587 Berlin, Germany
gorlatch@cs.tu-berlin.de

Christoph A. Herrmann

Universitat Passau

Fakultat fiir Mathematik und Informatik

Innstr. 33, 94032 Passau, Germany
herrmann@fmi.uni-passau.de, www.fmi.uni-passau.de/cl/hdc/

List of Contributors

XXv

Christian Lengauer

Universitit Passau

Fakultat fiir Mathematik und Informatik

Innstr. 33, 94032 Passau, Germany
lengauer@fmi.uni-passau.de, www.fmi.uni-passau.de/cl/hdc/

Rita Loogen

Philipps-Universitdt Marburg

Fachbereich Mathematik und Informatik
Hans-Meerwein-Strafie, Lahnberge, D-35032 Marburg, Germany
loogen@mathematik.uni-marburg.de

Greg Michaelson

Department of Computing and Electrical Engineering
Heriot-Watt University, Riccarton, EH14 4AS
gregQcee.hw.ac.uk

Yolanda Ortega

Universidad Complutense de Madrid, Departamento de Sistemas
Informaticos y Programacién, E-28040 Madrid, Spain
yolanda@sip.ucnm.es

Susanna Pelagatti
Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, 56125 Pisa, Italy
susanna@di.unipi.it

Ricardo Pena

Universidad Complutense de Madrid, Departamento de Sistemas
Informaticos y Programacién, E-28040 Madrid, Spain
ricardo@sip.ucm.es

Steffen Priebe

Philipps-Universitdt Marburg

Fachbereich Mathematik und Informatik
Hans-Meerwein-Strafle, Lahnberge, D-35032 Marburg, Germany
priebe@mathematik.uni-marburg.de

xxvi List of Contributors

Fethi A. Rabhi

School of Information Systems, Technology and Management
The University of New South Wales, Sydney 2052, Australia
f.rabhi@Qunsw.edu.au

Omer F. Rana

Department of Computer Science
Cardiff University, Cardiff CF24 3XF, UK

o.f.rana@cs.cf.ac.uk

Fernando Rubio

Universidad Complutense de Madrid, Departamento de Sistemas
Informéticos y Programacién, E-28040 Madrid, Spain
fernando@sip.ucm.es

Norman Scaife

Japanese Advanced Institute of Science and Technology,
Asahidai 1-1, Tatsunokuchi, Nomigun, Ishikawa, 923-1211 Japan
norman@jaist.ac. jp

Douglas C. Schmidt

Electrical & Computer Engineering, University of California, Irvine, USA
schmidtQuci.edu

David W. Walker

Department of Computer Science
Cardiff University, Cardiff CF24 3XF, UK
david.w.walker@cs.cf.ac.uk

