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Preface 

This book is about how to do computation in a structureless medium popu­
lated with mobile objects. No wires, no valves, nothing is there: just compact 
patterns wandering in space, smashing one to another and calculating. 

- What do I need to build a collision-based computer? 
- A couple of balls will do! ... Do you enjoy snooker? 
- You're kidding me? 
- OK, solitons in optical media, breathers in polymers ... 
- You know, I'm not a bench scientist ... 
- Then, how about gliders in cellular spaces? 
- Hmm, I'll think it over ... 

A computing device may be either generally purposive, universal, or spe­
cialized. A universal processor can do almost anything; specialized - almost 
nothing. Personal computers are universal, microwave oven controllers are 
specialized. One may study two types of universality - logical, or computa­
tional, and simulational. Abstract machine as well as real physical, chemical 
or biological system, is called computationally universal if it implements a 
functionally complete, or universal, set of Boolean functions in its spatio­
temporal dynamic. Most constructions studied in the book are computa­
tionally universal, because they realize universal systems of logical gates in 
hierarchical collisions of mobile objects. If a system simulates behavior of a 
universal machine, which universality has been already proved, it is called 
simulationally universal. Somewhere in this book you can find collision-based 
implementations of simulational universality, related usually to embedding 
of a Turing machine, a register machine, or a counter machine in a medium 
with colliding particles, balls or gliders. 

A universal processing device can be either structured, heterogeneous, 
compartmentalized and stationary or structureless, homogeneous, architec­
tureless and dynamic. Structured devices have wires to transmit information, 
valves to process it; structureless devices have nothing of it. Quanta of infor­
mation are represented by mobile objects (either by their presence/absence 
or particular types, colors) that travel in the space. Trajectories of the ob­
jects can be seen as wires. The objects change their trajectories or states when 
smashed to other objects. Thus, information is transformed and computation 
is implemented. 
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There are several sources of collision-based computing. Studies dealing 
with collisions of signals, traveling along discrete chains, one-dimensional 
cellular automata, lie in the very beginning of the field. The ideas of collid­
ing signals, existing from the nineteenth century in physics and physiology, 
have been put in automata framework just recently, around 1965, when pa­
pers by A. J. Atrubin [3], P. Fisher [13], and A. Waksman [28] were pub­
lished. Namely, Atrubin studied multiplication in one-dimensional cellular 
automata; Waksman gave an eight-state solution for a firing squad synchro­
nization problem; and, Fisher showed how to generate prime numbers in cel­
lular automata. The Atrubin-Fisher-Waksman approach triggered develop­
ment of various imaginable constructs aimed to boost computation-potential 
of homogeneous automata networks. 

In 1971 E.R. Banks [5] showed how to build wires and simple gates in 
configurations of a two-dimensional binary-state cellular automaton. This 
was the architecture-based construct. Thus, a wire was represented by a par­
ticular stationary configuration of cell states; this was rather a simulation of a 
"conventional" electrical, or logical, circuit. Banks's design was relieved of its 
heterogeneity ten years later, when Game of Life made our world "wireless". 

In 1982 Elwyn Berlekamp, John Conway and Richard Gay proved that 
Game of Life "can imitate computers" [6]. They mimicked electric wires by 
lines "along which gliders travel" and demonstrated how to do a logical gate 
by crashing gliders one to another. Chapter 25 of their "Winning Ways" [6] 
brought to us admirable computing designs that do not simply look fresh 
twenty years later but are still re-discovered again and again by Game of 
Life enthusiasts all over the Net. Berlekamp, Conway and Gay employed a 
vanishing reaction of gliders - two crashing gliders annihilate themselves 
- to build a NOT gate. They adopted Gosper's eater to collect garbage 
and to destroy glider streams. They used combinations of glider guns and 
eaters to implement AND and OR gates, and the shifting of a stationary 
pattern (block) by a mobile pattern (glider) when designing auxiliary storage 
of information. 

"There is even the possibility that space-time itself is granular, composed 
of discrete units, and that the universe, as Edward Fredkin of M.I.T. and oth­
ers have suggested, is a cellular automaton run by an enormous computer. 
If so, what we call motion may be only simulated motion. A moving particle 
in the ultimate microlevel may be essentially the same as one of our glid­
ers, appearing to move on the macro level , whereas actually there is only an 
alteration of states of basic space-time cells in obedience to transition rules 
that have yet to be discovered." - finishes Berlekamp-Conway-Gay's book 
[6]. Their last words were about Fredkin. 

Meantime, in 1978 Edward Fredkin and Tommaso Toffoli submitted a 
one-year project proposal to DARPA, which got funding, and thus started 
unfolding a chain of remarkable events. Originally, Fredkin and Toffoli aimed 
to "drastically reduce the fraction of" energy "that is dissipated at each 
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computing step" (see Chapter 2). To design a non-dissipative computer they 
constructed a new type of a digital logic - conservative logic - that con­
serves both "the physical quantities in which the digital signals are encoded" 
and "the information present at any moment in a digital system" (see Chap­
ter 2). They further developed these ideas in the seminal paper "Conservative 
Logic" , published in 1982 ("a second edition" of the paper is included in book 
as Chapter 3). Thus, a concept of ballistic computers emerged. The Fredkin­
Toffoli model of conservative computation - the billiard ball model - ex­
plores "elastic collisions involving balls and fixed reflectors". Generally, they 
proved that given a container with balls we can do any kind of computation. 

The billiard ball model got yet further push when Norman Margolus in­
vented a cellular-automaton implementation of the model. He published this 
result in 1984. "Margolus neighbourhood" and "billiard ball model cellular 
automata" are exploited widely nowadays. We have reprinted his "Physics­
Like Models of Computation" as a chapter in our present book. 

The story we told you is just one of many possible explanations of how 
the field of collision-based computing arose. 1 

It is a painful experience to give the book a structure. All problems are 
equally interesting. All results are equally significant. All authors are equally 
prominent. Anyway, a linear order must be obeyed. Roughly third of the 
chapters deal with derivatives of the billiard ball model, other chapters study 
physical aspects of collision-based computing and the rest discuss particulars 
of traveling patterns in cellular automata. 2 

1 To get to the Margolus neighborhood you've got to pass the Fredkin gate, walk 
across the Bunimovich stadium and get out of the Toffoli gate. 

2 While localization in nonlinear media are familiar to almost anyone, educated to 
a basic science level, a concept of cellular automata, which are tackled in almost 
every chapter of the book, still puzzles an average student or an academician. 
In a majority of "theoretical" works cellular automata playa role of a discrete 
substrate where all scenarios of collision-based computing unfold. 

A cellular automaton is an all discrete universe, with discrete time, discrete 
space and discrete states. "Atoms", or cells, of the universe are arranged in regular 
structures, called lattices or arrays. Each cell takes discrete states and updates 
its states in a discrete time, depending on the states of its neighbors. All cells 
update their states in parallel. 

Stanislaw Ulam was the first who, in the late 1930s, suggested updating matrix 
elements in parallel and locally, depending on the states of each element's local 
neighborhood [26]. The idea was taken by John von Neuman and developed to 
a theory of self-reproducible machines [18,10]. Zuse's "structured cellular space" 
[33] is yet another good historical introduction to the field, particularly because 
it is written by a father of modern computing. Further readings may include 
Toffoli's and Margolus's "cellular machines" [25], which really turned thousands 
of amateurs to the field of automata structures, cellular automata simulations and 
a concept of discrete universe. Wolfram's collection of papers [31] could be a good 
starting point as well. The cellular-automaton approach to the physical world, 
outlined in [25], is developed further by Weimar [29]. A series of rigorous results 
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We start the volume with an arousable piece of text - "Symbol Super 
Colliders" - authored by Tommaso Toffoli. This is about physics and com­
putation, importance of collision in physical and other worlds, and "spacetime 
tapestry" of an artificial computation. Chapter 1 will turn readers' minds in 
the right direction. 

The following three chapters, Chapters 2, 3 and 4, are classical. They 
also show what happened over twenty years ago. They are "Design Principles 
for Achieving High-Performance Submicron Digital Technologies" (written 
in 1978 and never published before, Chapter 2) and "Conservative Logic" 
(originally published in International Journal of Theoretical Physics in 1982, 
reprinted here as Chapter 3) by Edward Fredkin and Tommaso Toffoli; and, 
"Physics of Computation" (originally published in Physica D in 1984, 
reprinted here as Chapter 4).3 

Chapter 4 proposes a billiard ball model cellular automaton; this construct 
is employed in several chapters of the book. An impression of the transition 
from the past to the present is particularly strong when you are getting 
to Chapter 5 - "Universal Cellular Automata Based on the Collisions of 
Soft Spheres" - by Norman Margolus. Essentially, computation with soft 
spheres is more akin to computation in a lattice gas system. Norman Margolus 
derives perfect momentum conserving models of ballistic computation by 
removing mirrors out of the computation space. In this context, he considers 
reflections without mirrors, crossover and routing of signals, dual-rail logic, 
and updates his original billiard ball model cellular automaton to incorporate 
soft spheres. The chapter closes with an intriguing excursion in relativistic 
cellular automata and semi-classical models of collision dynamics. The next 
two chapters continue the study of ballistic computing models along the lines 
drawn by Norman Margolus. 

Thus, in Chapter 6 - "Computing Inside the Billiard Ball Model" -
Jerome Durand-Lose applies his expertise in reversible computing, automata 
models of transition phenomena and grain sorting in sand piles to derive 
intriguing results related to reversible cellular automata models of collision-

on cellular-automata simulation of nonlinear media can be found in Chopard and 
Droz's book [12]. 

Other recommended reading may include Aladyev's [4] and Voorhees's [27] 
"algebraic" treats of cellular automata, and Wuensche's and Lesser's [32] guide 
to global dynamics of one-dimensional cellular automata. Theoretical aspects of 
cellular-automaton theory of parallel computing are well presented in Garzon's 
book [14] and a collective monograph [16] edited by Mazoyer and Delorme. While 
talking about computing it is also worth looking at Chaudhuri's text [11] on 
cellular-automata based solutions of various codes and combinatorial logics, and 
Sipper's [22] and Adamatzky's [2] studies. 

3 These three texts are not simply reprinted, they are typeset from scratch, some 
figures are redrawn, and the chapters are carefully checked and corrected by the 
authors. So, Chapters 2, 3 and 4 look rather like second editions of the original 
papers. 
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based computing. Firstly, Jerome Durand-Lose constructs block cellular au­
tomata, aka partitioning cellular automata, as a generalization of billiard ball 
model cellular automata. Then he shows, via implementation of reversible 
logic gates, that a two-counter machine is simulated in block cellular au­
tomata. Several problems of intrinsic universality and uncomputability in 
billiard ball model cellular automata are tackled in the chapter as well. 

Kenichi Morita and his colleagues have a solid track record in stud­
ies of cellular automata, reversible computing, grammar and grammar ar­
rays, and logical systems for knowledge representations. Their first result is 
dated back to 1986 when Morita constructed a memory unit from Fredkin 
gate [17]. Other findings include computational universality of one- and two­
dimensional cellular automata, self-reproduction and solution of firing squad 
synchronization problem in reversible cellular automata. The title "Universal 
Computing in Reversible and Number-Conserving Two-Dimensional Cellular 
Spaces" of Chapter 7, by Kenichi Morita, Yasuyuki Tojima, Katsunobu Imai 
and Tsuyoshi Ogiro, speaks for itself. There, Fredkin gate, a basic element 
of conservative logic, is embedded in a bit-conserving reversible partitioning 
cellular automaton. This embedding is demonstrated via generalization of 
Margolus's billiard ball model cellular automaton to more complicated grids 
and advanced state transition functions. Then (reversible) counter machines 
are compactly (with a use of rotating mirrors) implemented in a space-time 
dynamic of the reversible automata. 

Novel ways of logical formalization of collision-based computing models 
are suggested in Chapter 8 - "Derivation Schemes in Twin Open Set Logic" 
- by Michael D. Westmoreland and Joan Krone. The authors offer several 
alternative derivation schemes and logical systems that may well describe 
ballistic models of computation in a more realistic way than it was done 
before. For example, with use of Westmoreland-Krone logical primitives a 
sensitivity to initial conditions and particulars of final results' measurement 
can be sensibly assessed. 

The authors put the first touches on the picture of their theory in 1993 
when Michael Westmoreland and Benjamin Schumacher wrote a paper on 
non-classical logics for classical systems [30]. In this chapter Michael West­
moreland and Joan Krone fuse their experience in proof rules, classical phase 
space logics, verification of functionality, quantum channels, inductive struc­
tures and three-valued logics to present a non-standard, alternative, logical 
description of collision-based computing models. 

At this stage we've put aside reversibility of computation, the billiard ball 
model - we can do without it when entering the world of gliders, particles, 
automata signals, solitons and other mobile localizations in nonlinear media. 

Chapter 9 - "Signals in Cellular Automata" - by Marianne Delorme 
and Jacques Mazoyer exposes a huge slice of modern theory of "geometrical 
computation" in one- and two-dimensional cellular automata. Actually, it was 
Jacques Mazoyer who strikingly improved the solution of the firing squad 
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synchronization problem in 1987 [15]. Also, in 1998 Jacques Mazoyer and 
Marianne Delorme edited a collection of inquiries in computing potential 
of cellular automata [16]. That book is, possibly, the first ever consistent 
collection of contributions devoted entirely to the computation not simulation 
aspects of cellular automata. 

In this book, Marianne Delorme and Jacques Mazoyer study various types 
of cellular automata, which support propagation of information quanta, or 
signals. Particularly, they show how a cellular automaton can transform 
one type of a signal to another. They demonstrate how to design a one­
dimensional cellular automaton that supports infinite families of signals of dif­
ferent speeds. Feasibility of Delorme-Mazoyer constructions is demonstrated 
in problems of multiplication in one-dimensional cellular automata. 

In 1974 Kenneth Steiglitz wrote a textbook on discrete systems [23]; then 
he authored other academic best sellers - an introduction to discrete opti­
mization [19] (printed in 1982 and reprinted in 1998) and a handbook on 
digital signal processing [24], published in 1996. This explains why Ken Stei­
glitz was one of those who discovered parity filter cellular automata [20]. The 
automata of this type are not simply analogs of infinite impulse response dig­
ital filters but they also exhibit soliton-like dynamics of localizations. This 
discovery led to the formation of a concept of particle machines - machines 
that perform computation by colliding particles in one-dimensional cellular 
automata. So far, in Chapter 10 - "Computing with Solitons: A Review and 
Prospectus" - Mariusz Jakubowski, Ken Steiglitz and Richard Squier invite 
us to take a brief tour into a theory of particle machines and its application 
to computing with one-dimensional solitons. Various designs of soliton gates 
are discussed in a context of massively-parallel processors. 

Theory of particle machines and discrete, automata, analogs of solitons 
are studied in a context of iterated automaton maps, or iterons, by Pawel 
Siwak, Chapter 11 - "Iterons of automata". Pawel considers two classes 
of iterons. The first class includes mobile localizations, signals or particles, 
which emerge in classical cellular automata, cells of which update their states 
in parallel. The second class of iterons consists of traveling patterns arising 
in serially updated automata networks. The serial updating of an automaton 
chain is similar to a sort of filtering known as infinite impulse response or re­
cursive filtering. The chapter gives us striking examples of phenomenology of 
particles in parallel and serial automaton chains. We are not told what types 
of logical functions can be implemented in collisions of the studied particles. 
However, for searching minds this is not a problem. Just from the pictures of 
particles collisions one can derive a great variety of possible collisions-based 
computational operations. Amongst other remarkable features, Siwak's chap­
ter considers automata localisations in "classical" terms of mathematical ma­
chines, thoroughly classifies most types of discrete signals, builds a parallel 
between automata gliders, solitons and digital filters, and suggests ways to 
design automata rules that support solitons. 
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Steve Blair and Kelvin Wagner, authors of Chapter 12 - "Gated Logic 
with Optical Solitons", are renowned experts in theory and practice of op­
tical computing. They are the people who brought soliton-based computing 
to the realms of the physical world. They are the guys who not simply think 
but act for the future. Their views on soliton logic, expressed in Chapter 12, 
result from decades of research in acousto-optic matrix multipliers, many­
dimensional optical soliton dragging logic, adaptive optical networks, pulse 
propagation in non-resonant materials, interaction of solitons and nonlinear­
ities, acousto-optic devices, cascadable spatial soliton circuits and tunable 
optic filters. 

First, Steve Blair and Kelvin Wagner give an accessible introduction to 
digital logic and discuss a set of requirements to a logical gate. Second, they 
show why solitons are good for collision-based computing; temporal, spatial 
and spatio-temporal soliton logic gates are designed there. Third, a typical 
logical circuit requires composition of many gates, and they are studied in 
the rest of the chapter. To demonstrate that soliton logical gates may form 
self-consistent cascades with signal fanout, Steve Blair and Kelvin Wagner 
study gate transfer function, details of spatial soliton dragging and collision 
interactions. They prove feasibility of their approach by designing cascaded 
inverters and NOR gates. 

In Chapter 13 -"Finding Gliders in Cellular Automata" - Andrew 
Wuensche describes how to classify cellular-automaton rules for a spectrum of 
ordered, complex - supporting gliders, and chaotic dynamics. Also methods 
of "automatic" filtering of gliders and parametrization of automata global 
dynamics are discussed there. 

The chapter arose from Andrew Wuensche's inquires into space-time dy­
namics of discrete matter at the edge of phenomenology and complexity. 
In 1992 Andy presented us with his marvelous atlas of global dynamics of 
one-dimensional cellular automata [32]. His volume gives an accessible intro­
duction to discrete dynamics, guides to parametrization of global dynamics of 
automata networks, and displays breathtaking pictures of cellular-automata 
global transition graphs. Wuensche's chapter in this book is as lavishly illus­
trated as any of his publications. 

There are traveling localizations everywhere - solitons in optical me­
dia, breathers in polymers, excitons in mono-molecular arrays, worms in liq­
uid crystals, groups of oscillons in vibrating granular materials and quasi­
particles in reaction-diffusion systems. The phenomena are discussed in An­
drew Adamatzky's Chapter 14 - "New Media for Collision-Based Comput­
ing". An illuminating comparison of logical-gate architectures realized in 
"real" systems and their automata models gives us a vision of what types 
of collision-based computer prototypes can be built in laboratories. 

The findings, discussed in Chapter 14, result from research directions out­
lined in Adamatzky's previous books on reconstruction of cell state transition 
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rules from global configurations of cellular automata [1] and on spatial com­
putation in active nonlinear media [2]. 

Particle dynamics on two-dimensional lattices with fixed, rotating or flip­
ping mirrors is amazingly interpreted in terms of Turing machines by Leonid 
Bunimovich and Milena Khlabystova in Chapter 15. In their lattice gas model 
of a Turing machine, a particle, hoping from one vertex to another, repre­
sents a reading or writing head of the machine. The lattice is populated with 
mirrors, which are analogs of symbols, written on the tape. When traveling 
on the lattice, particles rotate or flip mirrors thus updating contents of the 
Turing tape. 

A knowledgeable reader would benefit from a look at the previous publi­
cations by Leonid Bunimovich, related to dynamics theory. We could refer to 
a wonderful collection of papers on dynamical systems, compiled and edited 
by Leonid in 1989. More recent results on dynamical systems are summarized 
in two more books - notes of Sinai's seminars on dynamical systems [8] and 
ergodic theory of dynamical systems [9]. The Bunimovich-Khlabystova re­
sults on dynamic of Lorentz gases may also help us to refresh and reconsider 
ideas related to classical models of collision-based universality, billiard ball 
model or number-conserving reversible cellular automata. 

A book should close on a nice, accessible and, possibly, not too boring 
note. The last three chapters of the book do this well. 

Chapter 16 combines arithmetic operations, implemented in a particle 
machine, with a self-replicating loop. All authors of the chapter - Enrico Pe­
traglio, Gianluca Tempesti and Jean-Marc Henry - are from the famous Log­
ics Systems Lab (EPFL, Switzerland), an incubator of embryonic electronics, 
bio-inspired machines and evolving reconfigurable hardware. The ultimate 
goal of the approach is to find efficient ways of "natural" growing of large­
scale integrated circuits. In the chapter, a cellular automaton is developed 
that is capable of self-replication, based on a modified version of the Langton 
loop. Techniques of Jakubowski-Steiglitz-Squier particle-machine computa­
tion are adopted and modified to program the self-replicating automaton to 
implement such arithmetical tasks as binary addition and multiplication. 

Game of Life cellular automaton is the first formal model which is proved 
to be collision-computationally universal [6]. It is the most famous and the 
most talked about cellular automaton. Surprisingly, the Game of Life did not 
get proper treatment in academic journals - significant results and mirac­
ulous constructions are still attributed rather to cyberspace. To fill the gap, 
and to attract more Game of Life fans to the field of collision-based comput­
ing, we include two chapters dealing with the Game of Life. 

Chapter 17 - "Implementation of Logical Functions in the Game of Life" 
- by Jean-Philippe Rennard gives a brief introduction to the subject and 
then shows particulars of logical gate implementation via collision of glider 
streams. The chapter partly overlaps with a popular excursion to the field of 
Artificial Life, prepared by Jean-Philippe Rennard [21]. 
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Sophisticated and detailed constructions of Game of Life implementation 
of a universal Turing machine are presented by Paul Rendell in his Chapter 18 
- "Turing Universality of the Game of Life". The constructions include an 
adder, a sliding block memory, a memory cell and many more fascinating 
parts. Even a finite state device and a Turing tape are designed from station­
ary cellular patterns, glider and spaceship guns, and other curiosities. 
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