Skip to main content

Derivation Schemes in Twin Open Set Logic

  • Chapter
Collision-Based Computing
  • 316 Accesses

Abstract

Several logic-like structures have been developed to analyze classical mechanical systems. These phase space logics are examples of a wider class of structures known as derived logics. Many of the derived logics for classical systems are non-Boolean so it is natural to ask about the existence of derivation schemes in these logics. The prime example of a derivation scheme is the one in classical logic given by entailment, implication, and modus ponens. This chapter presents the relation between these three aspects of classical logic and shows that these three exist only when the logic is Boolean. The chapter then considers some possible alternative derivation schemes for the particular derived logic known as twin open set logic. We show how twin open set logic describes a collision model of computation. We then consider this collision model to choose between alternatives for a derivation scheme for twin open set logic when that logic is applied to collision models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birkhoff G. and von Neumann J. The logic of quantum mechanics Ann. of Math. 37 (1936) 823–43.

    Google Scholar 

  2. Cohen - Tannoudji C., Diu B., and Laloe F. Quantum Mechanics, Vol. I (John Wiley and Sons, New York, 1977).

    Google Scholar 

  3. Cohen - Tannoudji C., Diu B. and Laloe F. Quantum Mechanics, Vol. II (John Wiley and Sons, New York, 1977).

    Google Scholar 

  4. Feynman R.P. Feynman Lectures on Computation (Addison Wesley, Reading, Massachusetts, 1996).

    Google Scholar 

  5. Hardegree G.M. The conditional in abstract and concrete quantum logic In: Hooker C.A., Editor The Logico-Algebraic Approach to Quantum Mechanics, Volume II (Reidel, Dordrecht-Holland, 1975).

    Google Scholar 

  6. Gibbins P. Particles and Paradoxes: The Limits of Quantum Logic (Cambridge University Press, Cambridge and New York, 1987).

    Book  MATH  Google Scholar 

  7. Grätzer G. General Lattice Theory (Birkhäuser, Basel, 1998).

    MATH  Google Scholar 

  8. Gries D. and Schneider F.B. A Logical Approach to Discrete Maths (Springer-Verlag, New York, Berlin, and Heidelberg, 1994).

    Google Scholar 

  9. Kleene S.C. On a notion for ordinal numbers J. Symbolic Logic 3 (1938) 150–155.

    Google Scholar 

  10. Krone J. and Westmoreland M.D. Collision models for multiple-value gates The Journal of Multiple Valued Logic 6 (2001) 405–421.

    Google Scholar 

  11. Munkres J.F. Topology: A First Course (Prentice-Hall, Englewood Cliffs, NJ, 1974).

    Google Scholar 

  12. Nielsen M.A. and Chuang I.L. Quantum Computation and Quantum Computation (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  13. Penrose R. The Emporer’s New Mind (Oxford University Press, Oxford, 1989).

    Google Scholar 

  14. Peres A. Quantum Theory: Concepts and Methods (Kluwer Academic Press, Dordrecht, Boston, London, 1993).

    Google Scholar 

  15. Reichenbach H. Philosophic Foundations of Quantum Mechanics (University of California Press, Berkeley and Los Angeles, 1944, 1965);29–37 reprinted in The Logico-Algebraic Approach to Quantum Mechanics C. A. Hooker, Editor (Reidel, Dordrecht-Holland, 1975)

    Google Scholar 

  16. Westmoreland M.D. and Schumacher B.W. Non-Boolean derived logics for classical systems Phys. Rev. A 48 (1993) 977–985.

    Article  MathSciNet  Google Scholar 

  17. Westmoreland M.D., Schumacher B.W. and Bailey S. Three-valued logics for classical phase spaces International Journal of Theoretical Physics 35 (1996) 31–62.

    MathSciNet  Google Scholar 

  18. Westmoreland M.D., Krone J. and Schumacher B.W. Analysis of billiard ball computation using phase space logics Physica D 120 (1998) 236–252.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Westmoreland, M.D., Krone, J. (2002). Derivation Schemes in Twin Open Set Logic. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics