Springer-Verlag London Ltd.

Also in this series:

Gustavo Deco and Dragan Obradovic An Information-Theoretic Approach to Neural Computing 0-387-94666-7

Achilleas Zapranis and Apostolos-Paul Refenes Principles of Neural Model Identification, Selection and Adequacy 1-85233-139-9

Walter J. Freeman Neurodynamics: An Exploration in Mesoscopic Brain Dynamics 1-85233-616-1

H. Malmgren, M Borga and L. Niklasson (Eds) Artificial Neural Networks in Medicine and Biology 1-85233-289-1

Mark Girolami Advances in Independent Component Analysis 1-85233-263-8

Robert M. French and Jacques P. Sougné (Eds) Connectionist Models of Learning, Development and Evolution 1-85233-354-5

Artur S. d'Avila Garcez, Krysia B. Broda and Dov M. Gabbay Neural-Symbolic Learning Systems 1-85233-512-2

Roberto Tagliaferri and Maria Marinaro Neural Nets – WIRN VIETRI-01 1-85233-505-X

Related Title

Robert Hecht-Nielsen and Thomas McKenna (Eds) Computational Models for Neuroscience: Human Cortical Information Processing 1-85233-593-9

Neural Networks and the Financial Markets

Predicting, Combining and Portfolio Optimisation

Jimmy Shadbolt, MSc Econostat New Quant Limited, Berkshire, UK

John G. Taylor, BA, BSc, MA, PhD, FlnstP Centre for Neural Networks, Department of Mathematics, King's College, Strand, London WC2R 2LS, UK

Series Editor J.G. Taylor, BA, BSc, MA, PhD, FlnstP Centre for Neural Networks, Department of Mathematics, King's College, Strand, London WC2R 2LS, UK

British Library Cataloguing in Publication Data Neural networks and the financial markets : predicting, combining and portfolio optimisation. - (Perspectives in neural computing) 1.Rate of return - Computer simulation 2.Rate of return -Forecasting 3. Neural networks (Computer science) I.Shadbolt, Jimmy II. Taylor, John, 1931-332.6

Library of Congress Cataloging-in-Publication Data Neural networks and the financial markets : predicting, combining, and portfolio optimisation / Jimmy Shadbolt and John G. Taylor (eds.). p. cm. -- (Perspectives in neural computing) Includes bibliographical references and index. ISBN 978-1-4471-0151-2 (eBook) ISBN 978-1-85233-531-1 DOI 10.1007/978-1-4471-0151-2 1. Neural networks (Computer science) 2. Finance--Data processing. I. Shadbolt, Jimmy, 1951- II. Taylor, John Gerald, 1931- III. Series. OA76.87 .N4749 2002 006.3'2--dc21

2002067024

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

Perspectives in Neural Computing ISSN 1431-6854

http://www.springer.co.uk

© Springer-Verlag London 2002 Originally published by Springer-Verlag London Limited in 2002

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

Typesetting: Ian Kingston Editorial Services, Nottingham, UK

34/3830-543210 Printed on acid-free paper SPIN 10842959

Preface

This is a book about the methods developed by our research team, over a period of 10 years, for predicting financial market returns.

The work began in late 1991, at a time when one of us (Jimmy Shadbolt) had just completed a rewrite of the software used at Econostat by the economics team for medium-term trend prediction of economic indicators. Looking for a new project, it was suggested that we look at non-linear modelling of financial markets, and that a good place to start might be with neural networks.

One small caveat should be added before we start: we use the terms "prediction" and "prediction model" throughout the book, although, with only such a small amount of information being extracted about future performance, can we really claim to be building predictors at all? Some might say that the future of markets, especially one month ahead, is too dim to perceive. We think we can claim to "predict" for two reasons. Firstly we do indeed predict a few per cent of future values of certain assets in terms of past values of certain indicators, as shown by our track record. Secondly, we use standard and in-house prediction methods that are purely quantitative. We allow no subjective view to alter what the models tell us. Thus we are doing prediction, even if the problem is very hard. So while we could throughout the book talk about "getting a better view of the future" or some such euphemism, we would not be correctly describing what it is we are actually doing. We are indeed getting a better view of the future, by using prediction methods.

The initial results looked very promising, and we soon had a small team working on one-month-ahead bond prediction. Late in 1992 we were given funds to manage on the basis of those predictions. Over the nine years since then we have continuously managed funds and consistently outperformed our benchmark (the Salomon Index). The team came to be known as the *NewQuant* Team, and the product the *NewQuant* Product. References are made throughout the book to both as *NewQuant*.

The contributors to this book have all contributed directly to our work, either as researchers in our team or as consultants on specific aspects.

We would like to thank them heartily for their efforts.

Others who have contributed to our work (but not the book) in more or less chronological order are Paul Refenes, Magali Azema-Barak and Ugur Bilge (who got us up to date with neural networks), John Coyne (who worked with genetic algorithms for input selection and developed our first network integration models), Drago Indjic (who developed, amongst other things, a method that turned out to be the same as Leo Breiman's Bagging), Dario Romare (linear modelling and wavelets), Pano Vergis (PCA, mutual information) and David Chippington (our software backup and system admin). On the way, Brian Ripley kicked our butts and forced some very serious analysis of what we were doing.

Some research directions have been examined and abandoned; some of those will probably be revisited when we have solutions to the problems encountered. Some have taken up to a year to deliver the goods and are part of our toolkit today. In all over 50 person years have gone into our research.

The problems encountered along the way are those due to our living on the edge of randomness. Unlike in most other disciplines, the predictability of our data is marginal – the error bounds are almost as wide as the data variance. We cannot make claims of models fitting data with 90% confidence levels; in fact, we hope only to be consistently a few per cent better than random. The ultimate test of whether our models have value comes only from using them to allocate funds in a portfolio, and here we can make claims to success.

The *NewQuant* process must be considered as a whole, from the economics used for initial input selection, through the quantitative data selection, prediction modelling and model combining, to the portfolio optimisation. No individual model is of use on its own: it is only through the whole process that we can derive benefit.

We would like to close by thanking Charles Diamond, the MD of Econostat, for continued support, allowing the work reported here to be performed.

> Jimmy Shadbolt John G. Taylor

Contents

Lis	t of (Contributors	iii
Par	t I	Introduction to Prediction in the Financial Markets	
1	Int	roduction to the Financial Markets	3
	1.1	The Financial Markets	3
	1.2	Economics and the Markets	5
	1.3	Financial Markets and Economic Data	6
	1.4	What Are We Predicting?	7
	1.5	The Overall Process	8
2	Uni	variate and Multivariate Time Series Predictions	1
	2.1	Philosophical Assumptions 1	1
	2.2	Data Requirements 1	6
	2.3	Summary	22
3	Evi	dence of Predictability in Financial Markets	23
	3.1	Overview	23
	3.2	Review of Theoretical Arguments	24
	3.3	Review of Empirical Research	26
	3.4	Predictability Tests	29
	3.5	Beyond Tests for Market Efficiency	32
	3.6	Summary	32
4	Boı	nd Pricing and the Yield Curve	35
	4.1	The Time Value of Money and Discount Factors 3	35
	4.2	Pricing Bonds 3	\$6
	4.3	Bond Yield and the Yield Curve	37
	4.4	Duration and Convexity	38
	4.5	Summary	39
5	Dat	a Selection	11
	5.1	Introduction	11
	5.2	The General Economic Model	12
	5.3	Proxies	12
	5.4	Principal Components	13

5.5	Summary		•													4	ł5
	4																

Part II Theory of Prediction Modelling

6	Gener	al Form of Models of Financial Markets	49
	6.1	Introduction	49
	6.2	Cost Functions	49
	6.3	Parameterisation	51
	6.4	Econometric Models	52
	6.5	Summary	53
7	Overfi	tting Generalisation and Regularisation	55
,	7 1	Overfitting and Generalisation	55
	7.1	Early Stopping	56
	7.2	Information Criteria	57
	7.5		57
	7.4	Weight Decay	50
	7.5		50
	7.0 7.7		20
	1./	Summary	59
8	The Be	ootstrap, Bagging and Ensembles	61
	8.1	Introduction	61
	8.2	The Bias–Variance Trade-Off	61
	8.3	The Bootstrap	62
	8.4	Bagging	63
	8.5	Bootstrap with Noise	65
	8.6	Decorrelated Models	66
	8.7	Ensembles in Financial Market Prediction	67
٥	Tinoar	Models	60
,		Introduction	60
	9.1	Pariou of Linear Forecasting Mathada	70
	9.2	Maying Average/Smoothing Methods	70
	9.5	ADMA ADIMA and Time Carico Degracion Medale	70
	9.4	ARMA, ARIMA and Time Series Regression models	72
	9.5	Contegration and Error Correction Models	73
	9.6		74
	9.7		75
	9.8	Summary	76
10	Input	Selection	77
	10.1	Introduction	77
	10.2	Input Selection	77
	10.3	Mutual Information	81
	10.4	Summary	83
		•	

Part III Theory of Specific Prediction Models

11	Neura	l Networks	57
	11.1	What Are Neural Networks?	57
	11.2	The Living Neuron	;9
	11.3	The Artificial or Formal Neuron	9
	11.4	Neural Network Architectures	0
	11.5	Neural Network Training Rules 9	2
	11.6	Further Comments on Neural Networks 9	3
12	Learn	ing Trading Strategies for Imperfect Markets 9	5
	12.1	Introduction	5
	12.2	Trading Predictability 9	6
	12.3	Modelling Trading Strategies 9	8
	12.4	Experimental Design and Simulation Experiments 10	1
	12.5	Summary	8
13	Dynar	nical Systems Perspective and Embedding	9
	13.1	Introduction	9
	13.2	Practical Problems 11	2
	13.3	Characterising and Measuring Complexity 11	3
	13.4	SVD Smoothing	4
	13.5	Summary	5
14	Vector	r Machines	7
	14.1	Introduction	7
	14.2	Support Vector Machines 11	7
	14.3	Relevance Vector Machines	8
	14.4	Optimising the Hyperparameters for Regression 12	0
	14.5	Optimising the Hyperparameters for Classification 12	0
	14.6	Summary	1
15	Bayesi	an Methods and Evidence	3
	15.1	Bayesian Methods 12	3
	15.2	A Bayesian View of Probability 12	3
	15.3	Hypothesis Testing 12	5
	15.4	The Bayesian Evidence Ratio 12	7
	15.5	Conclusions	0

Part IV Prediction Model Applications

16	Yield	Curve Modelling
	16.1	Yield Curve Modelling 133
	16.2	Yield Curve Data
	16.3	Yield Curve Parameterisation
	16.4	Predicting the Yield Curve
	16.5	Conclusion

17	Predic	cting Bonds Using the Linear Relevance Vector
	Machi	ine
	17.1	Introduction
	17.2	The RVM as a Predictor
	17.3	Input Variable Selection
	17.4	Summary and Conclusions
		,
18	Artifi	cial Neural Networks
	18.1	Introduction
	18.2	Artificial Neural Networks
	18.3	Models
	18.4	Summary
10	Adama	ing Log Naturalia 167
19	Adapt	The Duebless
	19.1	
	19.2	Adaptive Lag Networks 167
	19.3	Training the Adaptive Lag Network
	19.4	Test Results
	19.5	Modelling
	19.6	Summary and Conclusions
20	Netwo	rk Integration
	20.1	Making Predictions with Network Ensembles
	20.2	The Network Integrator 177
	20.3	The Random Vector Functional Link (RVFL) 178
	20.4	Summary
21	Cointe	egration
	21.1	Introduction
	21.2	Construction of Statistical Mispricings
	21.3	Conditional Statistical Arbitrage Strategies
	21.4	Application of Cointegration-Based Methodology
		to FTSE 100 Stocks
	21.5	Empirical Results of Conditional Statistical Arbitrage
		Models
	21.6	Summary
22	Inint (Ontimication in Statistical Arbitrage Trading 102
44	Joint V	Introduction
	22.1	Introduction
	22.2	Statistical Mispricing
	22.3	Controlling the Properties of the Forecasting Model 195
	22.4	Modelling the Trading Strategy 196
	22.5	Joint Optimisation 197
	22.6	Empirical Experiments
	22.7	Summary

X

23	Univa	riate Modelling 203
	23.1	Introduction
	23.2	Nearest Neighbours 203
	23.3	The Group Method of Data Handling (GMDH) 205
	23.4	The Support Vector Machine (SVM) Predictor
		Model
	23.5	The Relevance Vector Machine (RVM) 209
24	Comb	vining Models
	24.1	Introduction
	24.2	Linear Combiners
	24.3	A Temperature-Dependent SOFTMAX Combiner 212
	24.4	The Combiner Algorithm
	24.5	Results
	24.6	Conclusions

Part V Optimising and Beyond

25	Portfo	olio Optimisation
	25.1	Portfolio Optimisation
	25.2	Notation and Terminology 222
	25.3	Scope of Portfolio Optimisation Methods 224
	25.4	Efficient Set Mathematics and the Efficient Frontier 225
	25.5	Construction of Optimised Portfolios Using Quadratic
		Programming 229
	25.6	Issues in Practical Portfolio Construction 230
	25.7	What Portfolio Selection Requires
	25.8	The Process of Building an Optimised Portfolio 234
	25.9	Example of an Asset Allocation Portfolio 236
	25.10	Alternative Measures of Risk and Methods of
		Optimisation
	25.11	Questions about Portfolio Optimisation and
		Discussion
26	Multi-	Agent Modelling 247
	26.1	Introduction
	26.2	The Minority Game
	26.3	A General Multi-agent Approach to the Financial
		Markets
	26.4	Conclusions
27	Finan	cial Prediction Modelling: Summary and Future
27	Avent	les 253
	27.1	Summary of the Results 253
	27.2	Underlying Aspects of the Approach
	27.3	Future Avenues 255
	27.5	

Further Reading	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	259
References	•		•	•	•	•	•	 •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2 61
Index	•			•		•	•		•	•	•	•	•	•		•	•		•	•	•				•	•	•	269

List of Contributors

John G. Taylor Professor of Mathematics Kings College, London, UK Director of Research Econostat New Quant Ltd, Wargrave, UK

Jimmy Shadbolt Head of Research Econostat New Quant Ltd, Wargrave, UK

Chris Adcock Professor of Economics University of Sheffield Sheffield, UK

David Attew Econostat New Quant Ltd, Wargrave, UK

Neil Burgess, PhD Vice President Portfolio Products Institutional Equity Division Morgan Stanley London, UK

Neep Hazarika, PhD Econostat New Quant Ltd, Wargrave, UK

Sebastian Larsson, PhD Econostat New Quant Ltd, Wargrave, UK

Neville Towers, PhD Risk Analysis Manager London Electricity Plc London, UK