Skip to main content

Some Computable Complexity Measures for Binary Sequences

  • Conference paper
Sequences and their Applications

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Abstract

The well-known Kolmogorov complexity of binary sequences is a beautiful theoretical concept, but it is impractical since it is not computable. This paper will focus on complexity measures that are not only of theoretical interest, but that can also be obtained in an algorithmic manner, such as the linear complexity, the linear complexity profile, and the tree complexity. A survey of such complexity measures will be given, with an emphasis on recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Blackburn, A generalisation of the discrete Fourier transform: determining the minimal polynomial of a periodic sequence, IEEE Trans. Inform. Theory 40 (1994), 1702–1704.

    Article  MathSciNet  MATH  Google Scholar 

  2. S.R. Blackburn, A generalisation of the discrete Fourier transform, in “Applications of Finite Fields” (D. Gollmann, ed.), pp. 111–116, Oxford University Press, Oxford, 1996.

    Google Scholar 

  3. S.R. Blackburn, Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences, IEEE Trans. Inform. Theory 43 (1997), 537–548.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Calude, “Information and Randomness: An Algorithmic Perspective”, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  5. G. Christol, T. Kamae, M. Mendès France, and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401–419.

    MathSciNet  MATH  Google Scholar 

  6. T.W. Cusick, C. Ding, and A. Renvall, “Stream Ciphers and Number Theory”, Elsevier, Amsterdam, 1998.

    Google Scholar 

  7. Z. Dai and K. Zeng, Continued fractions and the Berlekamp-Massey algorithm, in “Advances in Cryptology — AUSCRYPT ‘80” (J. Seberry and J. Pieprzyk, eds.), Lecture Notes in Computer Science, Vol. 453, pp. 24–31, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  8. M. Dekking, M. Mendès France, and A. van der Poorten, FOLDS!, The Math. Intelligencer 4 (1983), 130–138,173–181,190–195.

    Google Scholar 

  9. C. Ding, G. Xiao, and W. Shan, “The Stability Theory of Stream Ciphers”, Lecture Notes in Computer Science, Vol. 561, Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  10. J.-L. Dornstetter, On the equivalence between Berlekamp’s and Euclid’s algorithms, IEEE Trans. Inform. Theory 33 (1987), 428–431.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.A. Games and A.H. Chan, A fast algorithm for determining the complexity of a binary sequence with period 272, IEEE Trans. Inform. Theory 29 (1983), 144–146.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.J.A. Jansen, “Investigations on Nonlinear Streamcipher Systems: Construction and Evaluation Methods”, Ph.D. Thesis, Technical University of Delft, 1989.

    Google Scholar 

  13. C.J.A. Jansen, The maximum order complexity of sequence ensembles, in “Advances in Cryptology — EUROCRYPT ‘81” (D.W. Davies, ed.), Lecture Notes in Computer Science, Vol. 547, pp. 153–159, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  14. C.J.A. Jansen and D.E. Boekee, The shortest feedback shift register that can generate a given sequence, in “Advances in Cryptology — CRYPTO ‘89” (G. Brassard, ed.), Lecture Notes in Computer Science, Vol. 435, pp. 90–99, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  15. C.J.A. Jansen and D.E. Boekee, On the significance of the directed acyclic word graph in cryptology, in “Advances in Cryptology — AUSCRYPT ‘80” (J. Seberry and J. Pieprzyk, eds.), Lecture Notes in Computer Science, Vol. 453, pp. 318–326, Springer-Verlag, Berlin, 1990.

    Chapter  Google Scholar 

  16. T. Kaida, S. Uehara, and K. Imamura, A new algorithm for the k -error linear complexity of sequences over GF(p m ) with period pn, this volume.

    Google Scholar 

  17. A. Klapper and M. Goresky, 2-adic shift registers, in “Fast Software Encryption” (R. Anderson, ed.), Lecture Notes in Computer Science, Vol. 809, pp. 174–178, Springer-Verlag, Berlin, 1994.

    Chapter  Google Scholar 

  18. A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and combiners with memory, J. Cryptology 10 (1997), 111–147.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory 22 (1976), 75–81.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Lidl and H. Niederreiter, “Finite Fields”, Addison-Wesley, Reading, MA, 1983; reprint, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  21. R. Lidl and H. Niederreiter, Finite fields and their applications, in “Handbook of Algebra” (M. Hazewinkel, ed.), Vol. 1, pp. 321–363, Elsevier, Amsterdam, 1996.

    Google Scholar 

  22. W.H. Mills, Continued fractions and linear recurrences, Math. Comp. 29 (1975), 173–180.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Mund, Ziv-Lempel complexity for periodic sequences and its cryptographic application, in “Advances in Cryptology — EUROCRYPT ‘81” (D. W. Davies, ed.), Lecture Notes in Computer Science, Vol. 547, pp. 114–126, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  24. H. Niederreiter, Sequences with almost perfect linear complexity profile, in “Advances in Cryptology — EUROCRYPT ‘87” (D. Chaum and W.L. Price, eds.), Lecture Notes in Computer Science, Vol. 304, pp. 37–51, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  25. H. Niederreiter, The probabilistic theory of linear complexity, in “Advances in Cryptology — EUROCRYPT ‘88” (C.G. Günther, ed.), Lecture Notes in Computer Science, Vol. 330, pp. 191–209, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  26. H. Niederreiter, Keystream sequences with a good linear complexity pro-file for every starting point, in “Advances in Cryptology — EUROCRYPT ‘89” (J.-J. Quisquater and J. Vandewalle, eds.), Lecture Notes in Computer Science, Vol. 434, pp. 523–532, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  27. H. Niederreiter, Finite fields and cryptology, in “Finite Fields, Coding Theory, and Advances in Communications and Computing” (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 359–373, M. Dekker, New York, 1993.

    Google Scholar 

  28. H. Niederreiter and H. Paschinger, Counting functions and expected values in the stability theory of stream ciphers, this volume.

    Google Scholar 

  29. H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity 12 (1996), 187–198.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Niederreiter and M. Vielhaber, Simultaneous shifted continued fraction expansions in quadratic time, Applicable Algebra Engrg. Comm. Comput. 9 (1998), 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Niederreiter and M. Vielhaber, An algorithm for shifted continued fraction expansions in parallel linear time, Theoretical Computer Science,to appear.

    Google Scholar 

  32. F. Piper, Stream ciphers, Elektrotechnik and Maschinenbau 104 (1987), 564–568.

    Google Scholar 

  33. R.A. Rueppel, Stream ciphers, in “Contemporary Cryptology: The Science of Information Integrity” (G.J. Simmons, ed.), pp. 65–134, IEEE Press, New York, 1992.

    Google Scholar 

  34. M. Stamp and C.F. Martin, An algorithm for the k-error linear complexity of binary sequences with period 2n, IEEE Trans. Inform. Theory 39 (1993), 1398–1401.

    Article  MathSciNet  MATH  Google Scholar 

  35. L.R. Welch and R.A. Scholtz, Continued fractions and Berlekamp’s algorithm, IEEE Trans. Inform. Theory 25 (1979), 19–27.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory 23 (1977), 337–343.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London

About this paper

Cite this paper

Niederreiter, H. (1999). Some Computable Complexity Measures for Binary Sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0551-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0551-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-196-2

  • Online ISBN: 978-1-4471-0551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics