Skip to main content

Estimating Relevant Input Dimensions for Self-organizing Algorithms

  • Conference paper

Summary

We propose a new scheme for enlarging generalized learning vector quantization with weighting factors for the several input dimensions which are adapted according to the specific task. This leads to a more powerful classifier with little extra cost as well as the possibility of automatically pruning irrelevant input dimensions. The method is tested on real world satellite image data and compared to several well known algorithms which determine the intrinsic data dimension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Augusteijn, K. A. Shaw, and R. J. Watson. A study of neural network input data for ground cover identification in satellite images. In S. Gielen and B. Kappen, editors, Proc. ICANN’93, Int. Conf. on Artificial Neural Networks, pages 1010–1013, London, UK, 1993. Springer.

    Google Scholar 

  2. H.-U. Bauer and T. Villmann. Growing a Hypercubical Output Space in a Self-Organizing Feature Map. IEEE Transactions on Neural Networks, 8(2):218–226, 1997.

    Article  Google Scholar 

  3. T. Bojer, B. Hammer, D. Schunk, and K. Tluk von Toschanowitz. Relevance determination in learning vector quantization. To appear at ESANN’01.

    Google Scholar 

  4. C.L. Blake and C. J. Merz, UCI Repository of machine learning databases, Irvine, CA: University of California, Department of Information and Computer Science.

    Google Scholar 

  5. J. Campbell. Introduction to Remote Sensing. The Guilford Press, U.S.A., 1996.

    Google Scholar 

  6. B. Fritzke. Growing grid: a self-organizing network with constant neighborhood range and adaftation strength. Neural Processing Letters, 2(5):9–13, 1995.

    Article  Google Scholar 

  7. I. Gath and A. Geva. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 773–791, 1989.

    Article  Google Scholar 

  8. R Grassberger and I. Procaccia. Maesuring the strangeness of strange attractors. Physica, 9D: 189–208, 1983.

    MathSciNet  Google Scholar 

  9. D. Gustafson and W. Kessel. Fuzzy clustering with a fuzzy covariance matrix. In Proceedings of IEEE CDC’79, pages 761–766, 1979.

    Google Scholar 

  10. A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7): 1483–1492, 1997.

    Article  Google Scholar 

  11. S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In Proceedings of IJCNN’92, pages 413–418, 1998.

    Google Scholar 

  12. T. Kohonen. Learning vector quantization. In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 537–540. MIT Press, 1995.

    Google Scholar 

  13. T. Kohonen. Self-Organizing Maps. Springer, 1997.

    MATH  Google Scholar 

  14. T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7(3): 507–522, 1993.

    Google Scholar 

  15. U. Matecki. Automatische Merkmalsauswahl für Neuronale Netze mit Anwendung in der pixelbezogenen Klassifikation von Bildern. Shaker, 1999.

    MATH  Google Scholar 

  16. E. Merenyi. The challenges in spectral image analysis: An introduction and review of ANN approaches. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99), pages 93–98, Brussels, Belgium, 1999. D facto publications.

    Google Scholar 

  17. A. Meyering and H. Ritter. Learning 3D-shape-perception with local linear maps. In Proceedings of IJCNN’92, pages 432–436, 1992.

    Google Scholar 

  18. E. Oja. Principal component analysis. In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 753–756. MIT Press, 1995.

    Google Scholar 

  19. H. Ritter. Self-organizing maps in non-euclidean spaces. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 97–108. Springer, 1999.

    Chapter  Google Scholar 

  20. A. S. Sato and K. Yamada. Generalized learning vector quantization. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages 423–429. MIT Press, 1995.

    Google Scholar 

  21. P. Somervuo and T. Kohonen. Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10(2): 151–159, 1999.

    Article  Google Scholar 

  22. M.-K. Tsay, K.-H. Shyu, and P.-C. Chang. Feature transformation with generalized learning vector quantization for hand-written Chinese character recognition. IE1CE Transactions on Information and Systems, E82-D(3): 687–692, 1999.

    Google Scholar 

  23. T. Villmann and E. Merenyi. Extensions and modifications of the Kohonen-SOM and applications in remote sensing image analysis. In U. Seiffert and L.C. Jain (eds.): Self-Organizing Maps. Recent Advances and Applications, pages 121–145. Springer, 2001

    Google Scholar 

  24. T. Villmann. Benefits and limits of the self-organizing map and its variants in the area of satellite remote sensoring processing. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99), pages 111–116, Brussels, Belgium, 1999. D facto publications.

    Google Scholar 

  25. T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks, 8(2): 256–266, 1997.

    Article  Google Scholar 

  26. W. Wienholt. Entwurf Neuronaler Netze. Verlag Harri Deutsch, Frankfurt/M., Germany, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Hammer, B., Villmann, T. (2001). Estimating Relevant Input Dimensions for Self-organizing Algorithms. In: Advances in Self-Organising Maps. Springer, London. https://doi.org/10.1007/978-1-4471-0715-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0715-6_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-511-3

  • Online ISBN: 978-1-4471-0715-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics