Skip to main content

An Essay in Classifying Self-organizing Maps for Temporal Sequence Processing

  • Conference paper
Advances in Self-Organising Maps

Abstract

This paper presents a possible classification of modifications and adaptations of Self-organizing Maps (SOMs) for temporal sequence processing. Four main application areas for SOMs and temporal sequences have been identified. These are prediction, control, monitoring and mining. In order to model temporal relations among the data items within these application domains, usually an adaptation of the original learning algorithm, a modification of the network topology, or a combination of SOMs with special visualization techniques is made. Distinct approaches of SOMs for temporal sequence processing are classified into this scheme. Often, and in order to handle more complex domains, several adaptation forms are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T. (1982), “Self-organized formation of topologically correct feature maps”. Biological Cybernetics, 1982; 43: 141–152

    Article  MathSciNet  Google Scholar 

  2. Kohonen, T.: Self-Organizing Maps, Springer Verlag, New York, 1995

    Google Scholar 

  3. Deboeck, G., Kohonen, T. (Eds.). Visual Explorations in Finance with Sef-organizing Maps, Springer, 1998

    Google Scholar 

  4. Kaski, S. Data exploration Using Self-organizing Maps. PhD Thesis, Helsinki University ofTecnology, 1997

    MATH  Google Scholar 

  5. Olli Simula and Esa Alhoniemi. SOM Based Analysis of Pulping Process Data, Proceedings of International Work-Conference on Artificial and Natural Neural Networks (IWANN ’99), Springer, 1999; Vol. II: 567–577

    Google Scholar 

  6. Ultsch, A., Siemon, H.P.: Kohonen’s Self-Organizing Neural Networks for Exploratory Data Analysis. In: Proc. Intl. Neural Network Conf. INNC90, Paris, Kluwer Academic, 1990: 305–308

    Google Scholar 

  7. Himberg, J. A SOM based cluster visualization and its application for false coloring. Proceedings of IEEE-INNS-ENNS Intl. Joint Conf. on Neural Networks (IJCNN’2000), Como, 24–27 July, Italy, 2000; Vol III: 587–592

    Google Scholar 

  8. Ultsch, A. Guimaräes, G., Schmidt, W.: Classification and Prediction of Hail using Self-Organizing Neural Networks, Intl. Conference on Neural Networks, ICNN’96, Washington, 3–6 June, 1996: 1622–1627

    Google Scholar 

  9. T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski. Recurrent SOM with Local Linear Models in Time Series Prediction. Proc. of ESANN’98, 6th European Symposium on Artificial Neural Networks, D-Facto, Brussels, Belgium, 1998: 167–172

    Google Scholar 

  10. Vesanto, J. Using the SOM and Local Models in Time-Series Prediction. Proc. Of Workshop on Self-Organizing Maps (WSOM’97), Espoo, Finland, June 4–6, 1997: 209–214.

    Google Scholar 

  11. Jörg Walter, Helge Ritter. Investment Learning with Hierarchical PSOM. In: D. Touretzky and M. Mozer and M. Hasselmo (ed.): Advances in Neural Information Processing Systems 8 (NIPS*95), 1996: 570–576.

    Google Scholar 

  12. Joutsiniemi, S.L., Kaski, S., Larsen, T.A.: Self-Organizing Map in Recognition of Topographic Patterns of EEG Spectra. IEEE Transactions on Biomedical Engineering, Vol. 42, No. 11, November, 1995; 1062–1068

    Article  Google Scholar 

  13. Guimarães, G.: Temporal knowledge discoverẏ with self-organizing neural networks. In: Part I of the Special issue (Guest Editor: A. Engelbrecht): Knowledge Discovery from Structured and Unstructured Data, The International Journal of Computers, Systems and Signals (IJCSS), 2000: 5–16

    Google Scholar 

  14. Kohonen, T.: The „Neural” Phonetic Typewriter, In: Computer, 1988: 11–22

    Google Scholar 

  15. Utela, P.,Kangas, J., Leinonen, L.: Self-Organizing Map in Acoustic Analysis and OnLine Visual Imaging of Voice and Articulation. In: I. Aleksander, J. Taylor (Eds.): Artificial Neural Networks, Elsevier Science Publisher, 1992; 2: 791–794

    Google Scholar 

  16. Leinonen, L., Hiltunen, T., Torkkola, K., Kangas, J.: Self-organized Acoustic Feature Map in Detection of Forcative-Vowel Coarticulation. In: J. Acoust. Soc. Am., 1993; 6: 3468–3474

    Article  Google Scholar 

  17. Mujunen, R.,Leinonen, L, Kangas, J., Torkkola, K.: Acoustic Pattern Recognition of /s/ Misarticulation by the Self-Organizing Map. In: Folia Phoniatr., 1993; 45: 135–144

    Article  Google Scholar 

  18. Behme, H., Brandt, W.D., Strube, H.W.: Speech Recognition by Hierarchical Segment Classification. In: S. Gielen, B. Kappen (Eds.): Proc. Intl. Conf. on Aritificial Neural Networks (ICANN 93), Amsterdam, Springer Verlag, London, 1993: 416–419

    Google Scholar 

  19. Kaski, S., Joutsiniemi, S.L.: Monitoring EEG Signal with the Self-Organizing Map. In: S. Gielen, B. Kappen (Eds.): Intl. Conf. on Artificial Neural Networks (ICANN 93), Amsterdam, Springer Verlag, London, 1993: 974–977.

    Google Scholar 

  20. Principe, J.C., Wang, L.: Non-Linear Time Series Modeling with Self-Organizing Feature Maps. In: Proc. IEEE Workshop on Neural Networks for Signal Processing, Piscataway, NJ, IEEE Service Center, 1995: 11 -20.

    Google Scholar 

  21. Lin, S, Si, J. Self-organization of Firing Activities in Monkeys Motor Cortex: Trajectory Computation from Spike Signals. Neural Computation, 1998; 9: 607–621

    Article  Google Scholar 

  22. Kasslin, M.,Kangas, J., Simula, O.: Process State Monitoring usinf Self-Organizing Maps. In: I. Aleksander, J. Taylor (Eds.): Artificial Neural Networks, Elsevier Science Publisher, 1992; 2: 1531–1534

    Google Scholar 

  23. Tryba, V.,Goser, K.: Self-Organizing Feature Maps for Process Control in Chemistry. In: T. Kohonen, K. Mäkisara, O. Simula, J. Kangas (Eds.): Artificial Neural Networks, Elsevier Science Publisher, North Holland, 1991: 847–852

    Google Scholar 

  24. Ultsch, A.: Self-Organized Feature Maps for Monitoring and Knowledge Acquisition of a Chemical Process, Gielen, S., Kappen, B. (Eds.): Proc. International Conference on Artifical Neural Networks (ICANN 93) Amsterdam September, Springer-Verlag, 1993:864–867

    Google Scholar 

  25. Olli Simula, Esa Alhoniemi, Jaakko Hollmdn, Juha Vesanto. Monitoring and modeling of complex processes using hierarchical self-organizing maps, Proceedings of the {IEEE} International Symposium on Circuits and Systems (ISCAS’96), Supplement May, 1996: 73–76

    Google Scholar 

  26. Esa Alhoniemi and Jaakko Hollmen and Olli Simula, Juha Vesanto. Process Monitoring and Modeling using the Self-Organizing Map, Integrated Computer Aided Engineering, John Wiley & Sons, 1999; 6, No.l: 3–14

    Google Scholar 

  27. Kohonen, T.: The Hypermap Architecture. In: T. Kohonen, K. Mäkisara, O. Simula, J. Kangas (Eds.): Artificial Neural Networks, Elsevier Science Publishers, North Holland 1991: 1357–1360

    Google Scholar 

  28. Brückner, B., Franz, M., Richter, A.: A Modified Hypermap Architecture for Classification of Biological Signals. In: I. Aleksander, J. Taylor (Eds.): Artificial Neural Networks, Elsevier Science Publisher, 1992; 2:1167–1170

    Google Scholar 

  29. Kangas, J.: Temporal Knowledge in Locations of Activations in a Self-Organizing Map. In: I. Aleksander, J. Taylor (Eds.): Artificial Neural Networks, Elsevier Science Publisher, 1992; 2: 117–120

    Google Scholar 

  30. Ritter, H., Martinetz, T., Schulten, K. Topology-conserving maps for learning visuo- motor coordination, Neural Networks 1989; 2: 159–168

    Article  Google Scholar 

  31. Ritter, H.: Parametrized Self-Organizing Maps for Vision Learning Tasks. In: M. Marinaro, P.G. Morasso (Eds.): Proc. Intl. Conference on Artificial Neural Networks (ICANN 94), Italy, Springer Verlag, 1994:.803–810.

    Google Scholar 

  32. Walter, J. A. PSOM Network: Learning with Few Examples. Procs Intl. Conf. On Robotics and Automation (ICRA), IEEE, 1998

    Google Scholar 

  33. Walter, J.A., Schulten, K.J.: Implementation of Self-Organizing Neural Networks for Visual-Motor Control of an Industrial Robot. In: IEEE Transactions on Neural Networks, January, 1993; 4, No. 1: 86–95.

    Article  Google Scholar 

  34. Midenet, S., Grumbach, A.: Learning Associations by Self-Organization: The LASSO Model. In: Neurocomputing, Elsevier Science Publisher, 1994; 6: 343–361.

    Google Scholar 

  35. T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski, “Temporal Sequence Processing using Recurrent SOM”, KES’98, 2nd Int. Conf. on Knowledge-Based Intelligent Engineering Systems, Adelaide, Australia, April 1998, 1: 290–297

    Google Scholar 

  36. Chappel, G.J.,Taylor, J.G.: The Temporal Kohonen Map. Neural Networks, 1993; 6: 441–445

    Article  Google Scholar 

  37. Jiang, X., Gong, Z., Sun, F., Chi, H.: A Speaker Recognition System Based on Auditory Model. In: World Congress on Neural Networks (WCNN 94), Hillsdale, NJ., Lawrence Erlbaum, 1994; 4: 595–600

    Google Scholar 

  38. Kemke, C.,Wiehert, A.: Hierarchical Self-Organizing Feature Maps for Speech Recognition. In: Proc. of the World Congress on Neural Networks (WCNN 93) Hillsdale, 1993; 3: 45–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Guimarães, G., Moura-Pires, F. (2001). An Essay in Classifying Self-organizing Maps for Temporal Sequence Processing. In: Advances in Self-Organising Maps. Springer, London. https://doi.org/10.1007/978-1-4471-0715-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0715-6_34

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-511-3

  • Online ISBN: 978-1-4471-0715-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics