Skip to main content

Volume Modelling

  • Chapter

Abstract

This chapter will present an overview of the emerging research area of volume modelling. To date, there has been considerable research on the development of techniques for visualising volume data, but very little on modelling volume data. This is somewhat surprising since the potential benefits of volume models are tremendous. This situation is explained by the fact that volume data is relatively new and researchers have spent their efforts in figuring out ways to “look” at the data and have not been able to afford the resources needed to develop methods for modelling volume data. In addition to providing a means for visualising volume data, some of the benefits of a volume model are the generation of hierarchical and multi- resolution models which are extremely useful for the efficient analysis, visualisation, transmission, and archiving of volume data. In addition, the volume model can serve as the mathematical foundation for subsequent engineering simulations and analysis required for design and fabrication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaufman K, Cohen D, Yagel R. Volume graphics. IEEE Computer, 1993; 26 (7): 51–64.

    Google Scholar 

  2. Kenwright D, Kao D. Optimization of time-dependent particle tracing using tetrahedral decomposition. In: Proc. IEEE Visualization ’95, Atlanta, GA, October 1995; 321–328.

    Google Scholar 

  3. Nelson TR. Ultrasound visualization. Advances in Computers, 1998; 47: 185–253.

    Article  Google Scholar 

  4. Fenster A, Downey DB. 3-D ultrasound imaging — A review. IEEE Engineering in Medicine and Biology Magazine, 1996; 15 (6): 41–51.

    Article  Google Scholar 

  5. Rohling RN, Gee AH, Berman L. Radial Basis Function Interpolation for 3-D Ultrasound. TR 327, Engineering Department, Cambridge University, UK, 1998.

    Google Scholar 

  6. Wang SM, Kaufman A. Volume sampled voxelization of geometric primitives. In: Proc. IEEE Symposium on Volume Visualization, Los Alamos, CA, October 1993; 78–84.

    Google Scholar 

  7. Wang S, Kaufman A. Volume sculpting. In: Proc. Symposium on Interactive 3D Graphics, April 1995; 151–156.

    Google Scholar 

  8. Nielson GM. Scattered data modeling. IEEE Computer Graphics and Applications, 1993; 13 (l): 60–70.

    Article  Google Scholar 

  9. Sederberg T, Parry S. Free-form deformation of solid geometric models. ACM/SIGGRAPH Computer Graphics, 1986, 20 (4): 151–160.

    Article  Google Scholar 

  10. MacCracken R, Joy K. Free-form deformations with lattices of arbitrary topology. ACM/SIGGRAPH Computer Graphics, 1996; 30 (4): 181–188.

    Google Scholar 

  11. Chui CK. An Introduction to Wavelets. Academic Press, San Diego, CA, 1992.

    Google Scholar 

  12. Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 1992; vol. 61, SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  13. Stollnitz E, DeRose A, Salesin D. Wavelets for Computer Graphics, Morgan Kaufman, San Francisco, 1996.

    Google Scholar 

  14. H.Muraki S. Volume data and wavelet transforms. IEEE Computer Graphics and Applications, 1993; 13 (4): 50–56.

    Article  Google Scholar 

  15. Muraki S. Multiscale volume representation by a DoG wavelet. Transactions on Visualization and Computer Graphics, 1995; 1 (2): 109–116.

    Article  MathSciNet  Google Scholar 

  16. Bonneau GP, Hahmann S, Nielson GM. BlaC wavelets: A multiresolution analysis with non-nested spaces. In: Proc. IEEE Visualization ’96, San Francisco, CA, October 1996; 43–48.

    Google Scholar 

  17. Nielson GM, Jung I, Sung J. Wavelets over curvilinear grids. In: Proc. of IEEE Visualization ’98, Research Triangle Park, NC, October 1998; 313–317.

    Google Scholar 

  18. Zhou Y, Chen B, Kaufman A. Multiresolution Tetrahedral Framework for Visualising Regular Volume Data. In: Proc. IEEE Visualization ’97, Phoenix, AZ, October 1997; 135–142.

    Google Scholar 

  19. Trotts I, Hamann B, Joy K, Wiley D. Simplification of tetrahedral meshes with error bounds. To appear in IEEE Transactions of Visualization and Computer Graphics, 1999.

    Google Scholar 

  20. Nielson GM. Tools for triangulations and tetrahedrizations, In: Nielson, Hagen, Mueller (eds). Scientific Visualization: Surveys, Techniques and Methodologies. IEEE CS Press, 1997; 429–525.

    Google Scholar 

  21. Maubach JM. Local bisection refinement for N-simplicial grids generated by reflection. SIAM Journal of Scientific Computing; 16(l):210–227.

    Google Scholar 

  22. Bey J. Tetrahedral mesh refinement. Computing, 1995; 55 (13): 355–378.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bank RE, Sherman AH, Weiser A. Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman R (ed), Scientific Computing, North Holland, Amsterdam, 1983; 3–17.

    Google Scholar 

  24. Grosso R, Luerig C, Ertl T. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In: Proc. IEEE Visualization ’97, Phoenix, AZ, October 1997; 387–394.

    Google Scholar 

  25. Coon SA. Surfaces for Computer-Aided Design of Space Forms. MIT, MAC TR-41, June 1967.

    Google Scholar 

  26. Nielson GM, Holliday D, Rox Roxborough T. Cracking the cracking problem with Coons patches. To appear in: Proc. IEEE Visualization ’99, San Fancisco, CA, 1999.

    Google Scholar 

  27. Ebert D, Musgrave K, Peachy D, Worley S, Perlin K. Texturing and Modeling: A Procedural Approach. Academic Press, San Diego, CA, 1998.

    Google Scholar 

  28. Qian X, Dutta D. Features in layered manufacturing of heterogeneous objects. In: Proc. SFFS ’98, Austin, Texas, 1998.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Nielson, G.M. (2000). Volume Modelling. In: Chen, M., Kaufman, A.E., Yagel, R. (eds) Volume Graphics. Springer, London. https://doi.org/10.1007/978-1-4471-0737-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0737-8_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-192-4

  • Online ISBN: 978-1-4471-0737-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics