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Preface 

This book addresses the automatic parallelisation of regular loop computations in
volving dense data structures. In order to achieve parallel code which is architecture
independent, scalable and of analytically predictable performance, scheduling in the 
bulk-synchronous parallel model of computation is considered. 

Our parallelisation approach combines two types of scheduling in a novel way. 
A class of parallelisation techniques termed template-matching scheduling is used to 
build the parallel version of certain loop computations starting from predefined, highly 
optimised schedule skeletons. A more complicated technique called generic loop nest 
scheduling tackles the parallelisation of nested loops whose structure matches none of 
the recognised computation templates. 

A collection of template-matching parallelisation methods is developed in the 
book. This collection builds on recent advances in automatic parallelisation and 
architecture-independent parallel programming, and includes two categories of sche
duling techniques. The subset of techniques belonging to the first category is dedicated 
to the parallelisation of uniform-dependence perfect loop nests. The second category 
of techniques addresses the parallelisation of several loop constructs that appear fre
quently in imperative programs and comprise non-uniform dependences. 

We also introduce a new scheme for the parallelisation of generic, untightly nested 
loops. This scheme comprises four steps: data dependence analysis, potential paral
lelism identification, data and computation partitioning, and communication and syn
chronisation generation. Due to the new algorithms employed in its last three steps, 
the scheme is able to identify coarse-grained potential parallelism, and to map it effi
ciently on the processor/memory units of a general purpose parallel computer. 

The effectiveness of architecture-independent loop parallelisation is assessed 
through a series of case studies addressing the parallelisation of several scientific com
puting problems. For each problem, the best known parallel solution is compared with 
the one obtained using the automatic scheduling techniques, as well as with the paral
lel schedule generated by a research tool that implements a subset of these techniques. 
This study reveals that the new parallelisation approach is feasible, and can be suc
cessfully applied to many scientific computations involving dense data structures. 

Except for a few minor corrections, this book represents the author's University of 
Oxford D.Phil. thesis. 
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