
Distinguished Dissertations

Springer
London
Berlin
Heidelberg
New York
Barcelona
Hong Kong
Milan
Paris
Singapore
Tokyo

Other titles published in this Series:

Extensional Constructs in Intensional Type Theory
Martin Hoffman

Search and Planning Under Incomplete Information: A Study Using Bridge Card Play
Ian Frank

Theorem Proving with the Real Numbers
John Harrison

Games and Full Abstraction for a Functional Metalanguage with Recursive Types
Guy McCusker

Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by
Artificial Evolution
Adrian Thompson

Models of Sharing Graphs: A Categorical Semantics of let and letrec
Masahito Hasegawa

Large Scale CoUaborative Virtual Environments
Chris Greenhalgh

Radu C. Calinescu

Architecture-Independent
Loop Parallelisation

, Springer

Radu C. Calinescu, DPhil, MSc
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
OXI3QD, UK

Series Editor

Professor C.J. van Rijsbergen
Department of Computing Science, University of Glasgow, G 12 8RZ, UK

ISSN 1439-9768

ISBN-13 978-1-4471-1197-9 Springer-Verlag London Berlin Heidelberg

British Library Cataloguing in Publication Data
Calinescu, Radu C.

Architecture-independent loop parallelisation.
{Distinguished dissertations}
1.Parallel processing {Electronic computers}
I.Titie
004.3'5
ISBN-13 978-1-4471-1197-9

Library of Congress Cataloging-in-Publication Data
Calinescu. Radu., 1968-

Architecture-independent loop parallelisation 1 Radu C. Calinescu.
p. cm .. - {Distinguished dissertations}

Includes bibliographical references and index.

ISBN-13: 978-1-4471-1197-9 e-ISBN-13: 978-1-4471-0763-7
DOl: 10.1007/978-1-4471-0763-7

1. Parallel processing {Computer science} 2. Computer architecture. 1. Title. II.
Distinguished dissertations {Springer-Verlag}
QA76.58.C34 2000
004'.35--dc21 00-037369

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of repro graphic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

© Springer-Verlag London Limited 2000

So/'tcover reprint of the hardcover 1st edition 2000

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Camera-ready by author

34/3830-543210 Printed on acid-free paper SPIN 10760296

Preface

This book addresses the automatic parallelisation of regular loop computations in
volving dense data structures. In order to achieve parallel code which is architecture
independent, scalable and of analytically predictable performance, scheduling in the
bulk-synchronous parallel model of computation is considered.

Our parallelisation approach combines two types of scheduling in a novel way.
A class of parallelisation techniques termed template-matching scheduling is used to
build the parallel version of certain loop computations starting from predefined, highly
optimised schedule skeletons. A more complicated technique called generic loop nest
scheduling tackles the parallelisation of nested loops whose structure matches none of
the recognised computation templates.

A collection of template-matching parallelisation methods is developed in the
book. This collection builds on recent advances in automatic parallelisation and
architecture-independent parallel programming, and includes two categories of sche
duling techniques. The subset of techniques belonging to the first category is dedicated
to the parallelisation of uniform-dependence perfect loop nests. The second category
of techniques addresses the parallelisation of several loop constructs that appear fre
quently in imperative programs and comprise non-uniform dependences.

We also introduce a new scheme for the parallelisation of generic, untightly nested
loops. This scheme comprises four steps: data dependence analysis, potential paral
lelism identification, data and computation partitioning, and communication and syn
chronisation generation. Due to the new algorithms employed in its last three steps,
the scheme is able to identify coarse-grained potential parallelism, and to map it effi
ciently on the processor/memory units of a general purpose parallel computer.

The effectiveness of architecture-independent loop parallelisation is assessed
through a series of case studies addressing the parallelisation of several scientific com
puting problems. For each problem, the best known parallel solution is compared with
the one obtained using the automatic scheduling techniques, as well as with the paral
lel schedule generated by a research tool that implements a subset of these techniques.
This study reveals that the new parallelisation approach is feasible, and can be suc
cessfully applied to many scientific computations involving dense data structures.

Except for a few minor corrections, this book represents the author's University of
Oxford D.Phil. thesis.

Acknowledgements

I would like to express my gratitude to Bill McColl, my supervisor; he has provided
invaluable advice and encouragement throughout the development of this thesis. I
am also indebted to Alex Gerbessiotis, Constantinos Siniolakis, Stephen Donaldson,
Alexandre Tiskin, Fabrizio Petrini, Jonathan Hill, Ronald Sujithan and all other cur
rent and former members of the Oxford BSP group for their comments on my work.

Special thanks are due to David J. Evans, Mike Giles, and Dan Stefanescu for their
suggestions at various moments during my D.Phil. course, and to Stephen Donaldson
and Tom Costello for proof-reading parts of the thesis.

Ga.etan Hains and Fabrizio Petrini kindly accepted to examine this work, their
valuable comments having led to several improvements in the final version of the
thesis. I am also grateful to my examiners for suggesting that my thesis should be
submitted to the Distinguished Dissertation competition.

To a great extent, this thesis represents the result of over twenty years of formal ed
ucation in my life. lowe my success over all these years to many remarkable teachers.
I am especially indebted to Octav Pastravanu for introducing me to the challenging
world of research.

I am deeply grateful to my parents, Rodica and Dumitru, and to my wife, Ani, for
their love, support and understanding; and to little Maria for reminding me that there
is much more to life than computer science.

This work was funded by an Overseas Research Studentship, a Dulverton Scholarship,
and an Oxford Overseas Bursary.

Contents

Glossary of Notations

List of Figures

1 Introduction
1.1 Motivation....................
1.2 Parallelisation Approach Proposed in the Book
1.3 Organisation of the Book

2 The Bulk-Synchronous Parallel Model
2.1 Introduction.............
2.2 Bulk-Synchronous Parallel Computers .
2.3 The BSP Programming Model
2.4 The BSP Cost Model
2.5 Assessing the Efficiency ofBSP Code .
2.6 The Development ofBSP Applications. .
2.7 BSP Pseudocode

3 Data Dependence Analysis and Code Transformation
3.1 Introduction....
3.2 Data Dependence

3.2.1 Definition

xiii

xvii

1
1
2
3

5
5
5
6
7
8
9

10

13
13
13
14

3.2.2 Data Dependence Representation 15
3.2.3 Dependence Tests. . . . 16
3.2.4 Dependence Graphs ... 16
3.2.5 Directed Acyclic Graphs . 16

3.3 Code Transformation Techniques. 17
3.3.1 Generalities........ 17
3.3.2 Loop Parallelisation .. , 17
3.3.3 Loop Interchange and Loop Permutation 18
3.3.4 Loop Distribution. 19
3.3.5 Loop Skewing, Wavefront Scheduling, and Iteration Space

Tiling . 20
3.3.6 Other Transformations for High-Performance Computing. .. 22

x Contents

4 Communication Overheads in Loop Nest Scheduling 23
4.1 Introduction................... 23
4.2 Related Work 25
4.3 Communication Overheads Due to Input Data . . 26

4.3.1 TheFootprintSizeofaPure-InputArray 27
4.3.2 Input Communication Overheads Due to Input/Output Arrays 36

4.4 Inter-Tile Communication Overheads 38
4.5 Summary 42

5 Template-Matching Parallelisation 43
5.1 Introduction........... 43
5.2 Related Work 43
5.3 Communication-Free Scheduling. 44

5.3.1 Scheduling Loop Nests Comprising Fully Parallel Loops 45
5.3.2 Scheduling Loop Nests with no Fully Parallel Loop. . . 47
5.3.3 Improving the Load Balancing of Communication-Free

Scheduling 50
5.4 Wavefront Block Scheduling 52

5.4.1 Scheduling Fully Permutable Loop Nests 53
5.4.2 Extension to Generic Uniform-Dependence Loop Nests. 58
5.4.3 Improving the Load Balancing of Wavefront Block Scheduling 60

5.5 Iterative Scheduling. 61
5.5.1 Description of the Technique. 61
5.5.2 Extension to Generic Loops and Load Balancing 64
5.5.3 Comparison with Wavefront Block Scheduling 65

5.6 Reduction Scheduling. 66
5.7 Recurrence Scheduling 68
5.8 Scheduling Broadcast Loop Nests 70

5.8.1 Definition of a Broadcast Loop Nest . 70
5.8.2 Scheduling Through Broadcast Implementation . 73
5.8.3 Scheduling Through Broadcast Elimination 78
5.8.4 Comparison of the Two Approaches. 81

5.9 Summary 82

6 Generic Loop Nest Parallelisation
6.1 Introduction........
6.2 Related Work
6.3 Data Dependence Analysis . .
6.4 Potential Parallelism Identification
6.5 Data and Computation Partitioning .
6.6 Communication and Synchronisation Generation
6.7 Performance Analysis .
6.8 Summary .

85
85
86
88
89
95

101
105
107

Contents xi

7 A Strategy and a Tool for Architecture-Independent Loop ParaDelisation 109
7.1 Introduction....................... 109
7.2 Related Work . 109
7.3 A Two-Phase Strategy for Loop Nest Parallelisation 111
7.4 BSPscheduler: an Architecture-Independent Loop Paralleliser 112

7.4.1 The Structure of the Parallelisation Tool. 112
7.4.2 The User Interface 113
7.4.3 The Parser Module. 114
7.4.4 The Dependence Analysis Module. 116
7.4.5 The Scheduling Modules . . . 117
7.4.6 The Code Generation Module 120

7.5 Summary 123

8 The Effectiveness of Architecture-Independent Loop Parallelisation 125
8.1 Introduction.................... 125
8.2 Matrix-Vector and Matrix-Matrix Multiplication. 125
8.3 LU Decomposition 127
8.4 Algebraic Path Problem. 129
8.5 Finite Difference Iteration on a Cartesian Grid . . 132
8.6 Merging. 134
8.7 Summary . 134

9 Conclusions 139
9.1 Summary of Contributions and Concluding Remarks 139
9.2 Future work directions 142

Appendix A. Theorem proofs 145

Appendix B. Syntax of the BSPscheduler input language 151

Appendix C. Syntax of the BSPscheduler output language 155

Appendix D. AutomaticaDy generated code for Example 7.5 157

Bibliography 161

Index 171

Glossary of Notations

Arithmetic

I x I the absolute value of x
fx 1 the ceiling ofx (y E Z such thaty- I < x ~ y)
l x J the floor of x (y E Z such that y ~ x < y + I)
gcd(XI ,X2, ... ,xn) the greatest common divisor of Xl ,X2, ... ,xn
min{xl,x2, ... ,xn} the minimum OfXl,X2, ... ,xn
max{xl,x2, ... ,xn} themaximumofxl,x2, ... ,xn
x mod y the remainder of the integer division of x by y

Sets

{}
{Xl ,X2,· .. ,xn}
#X
A,B,C, ...
N
Z
xEX
{x E T I P(x)}
PA
x .. y
X~Y

X\Y
XUY
XnY
XxY

Logic

ox
xVy
x I\y

the empty set
the set containing elements Xl, X2, ... , xn
the number of elements in set X
sets
the set of natural numbers ({ 0, 1,2, ... })
the set of integer numbers ({ ... ,-2, -1,0,1,2, ... })
set membership
set comprehension (the set of all x in T such that P(x) holds)
the powerset of A ({X I X ~ A})
the set {kE Z I x ~ k~y}, wherex,y E Z
set inclusion 01x E X ex E y)
set difference ({x E X I x ¢ Y})
set union ({x I x E XVx E Y})
set intersection ({x E X I x E Y})
the Cartesian product of sets X and Y ({ (x,y) I x EX I\y E Y})

negation (not x)
disjunction (x or y)
conjunction (x andy)

xiv Glossary of Notations

X=}y implication (ifx, theny)
"Ix EXepred
3x EXepred

universal quantification (pred holds for all x E X)
existential quantification (pred holds for at least one x E X)

Linear Algebra

A, S, C, . . . matrices
A = [ai, a2, ... , an] matrix A has columns a" a2, ... , an
A = [ai,j] matrix A has elements ai,j
AT the transpose of matrix A
detA the determinant of matrix A
rank A the rank of matrix A

the n x n identity matrix
D, v, x, ... vectors
x = [XI ,X2, ... ,xn]T the n-dimensional vector x has elements XI, X2, ... ,Xn
(XI ,X2, ... ,xn) the point of coordinates XI, X2, ... ,Xn in an n-dimensional space
diag(xi ,X2, ... ,xn) the matrix In [XI ,X2, ... ,XK]T
span{vl, v2, ... , yn} the vector space spanned by the vectors vi, v2, ... , yn
NX the vector space of x-dimensional vectors with natural elements

Asymptotic Notation

o (f(n))
o(f(n))
Q(f(n))
ro(f(n))
6(f(n))

{g(n) 13(c> O,no > 0) e "In ~no eg(n) :5cf(n)}
{g(n) IVc>Oe 3no>Oe Vn~nOeg(n) :5cf(n)}
{g(n) 13(c> O,no > 0) e "In ~no ecf(n) :5g(n)}
{g(n) IVc>O e 3no>0 eVn~noecf(n) :5g(n)}
{g(n) 13(cl > 0,C2 > O,no >0) e "In ~noecd(n) :5g(n) :5c2f(n)}

Automatic ParaUelisation and the BSP Model

a, b, c, ...
d, d I, d2, d3, ..•

footprint(a)
g
(j
i, ii, h, i3, ...

I
K
I, II, h, I), ...
L
£.

arrays
distance vectors
the footprint of array a
the BSP communication parameter
dependence graph
loop indices
the index vector of a perfect loop nest (i = [ii, h, ... ,iK]T) or
an iteration point ofa perfect loop nest (i = (il ,h, ... ,iK»
the iteration space of a perfect loop nest
the number of loops in a perfect loop nest
loops in a computer program
the BSP synchronisation parameter
loop nest

Glossary of Notations

p
S, S), S2, S3, ...
S)()S2

S)~S2
S)8oS2
S)8* S2
v,v),v2,v3, ...

the number of processor/memory units of a BSP computer
statements in a computer program
flow data dependence between statements S) and S2
data antidependence between statements S) and S2
output data dependence between statements S) and S2
generic data dependence between statements S) and S2
direction vectors

xv

List of Figures

2.1 A bulk-synchronous parallel computation

3.1
3.2
3.3
3.4

Types of data dependence.
The dependence graphs of the loop nests in Figure 3.1 .
Loop parallelisation .
Loop interchange

3.5 Loop distribution
3.6 Loop skewing . .

4.1 A K-level perfect loop nest
4.2 The algorithm for the computation of the footprint size of a single

array reference

5.1 The positive basis computation algorithm
5.2 A triangular loop nest and the block-cyclic partitioning of its iteration

space
5.3 The wavefront block schedule of a fully permutable loop nest.
5.4 The wavefront block scheduling of the loop nest in Example 5.5 .
5.5 The iterative schedule of a K-level uniform-dependence loop nest .. .
5.6 Parallel schedule for Example 5.6
5.7 The tiles computed by a non-boundary processor in two successive

supersteps of the iterative schedule in Example 5.6
5.8 A generic reduction loop nest
5.9 The generic form of a k-th-order recurrence loop .
5.10 A K -level broadcast loop nest, K ;::: 2
5.11 The j-th broadcast initialisation loop in Figure 5.10, 1 ~ j ~ J
5.12 Triangular linear system solution by forward substitution . . .
5.13 Gaussian elimination
5.14 Broadcast loop nest scheduling through broadcast implementation
5.15 Parallel solution of a triangular linear system
5.16 Augmented broadcast initialisation loop
5.17 A perfect loop nest equivalent to the broadcast loop nest in

Figures 5.10-5.11

7

14
16
18
19
20
21

24

31

48

52
53
57
62
64

64
66
69
71
71
72
73
74
78
79

80

xviii List of Figures

5.18 The ratio between the communication costs associated with the par
allelisation of a three-level broadcast loop nest through broadcast im
plementation and broadcast elimination, respectively 82

6.1 The scheme for the architecture-independent scheduling of generic
loop nests . 85

6.2 A generic, untightly nested loop, and its dependence graph 89
6.3 The potential parallelism identification algorithm . . . 93
6.4 The potential parallelism of the loop nest in Figure 6.2 95
6.5 The data partitioning algorithm 96
6.6 The computation partitioning algorithm 100
6.7 The partitioned parallel version of the loop nest in Figure 6.2 101
6.8 The synchronisation and communication generation algorithm 103
6.9 The BSP schedule of the generic, untightly nested loop in Figure 6.2 105
6.10 The performance analysis algorithm 106

7.1 The structure of the architecture-independent scheduling tool . 112
7.2 The BSPSCHEDULER user interface 113
7.3 A nested loop, and its normalised version generated by the parser . 115
7.4 The usage of the parser module . 116
7.5 The dependence analysis step 117
7.6 The actual paralle1isation step 120
7.7 The intermediate results of the parallelisation 121
7.8 The adjustment of array subscripts in the code generation step 122

8.1 Sequential LU decomposition. 128
8.2 Parallel LU decomposition 129
8.3 The sequential solution of the algebraic path problem 130
8.4 The BSP version of the APP computation loop. . . . 130
8.5 Sequential finite difference iteration 132
8.6 The BSP version of Gauss-Seidel finite difference iteration 133
8.7 The sequential merging of two sequences sorted in increasing order 134

