
Specification and Refinement using a
Heterogeneous Notation for

Concurrency and Communication

Richard Paige
Department of Computer Science, York University

Toronto, Ontario, Canada.paige@cs.yorku.ca

Abstract

It is shown how to combine the Z formal specification notation with a predica-
tive notation so as to be able to specify and reason about concurrency and commu-
nication. The integration is carried out so as to alleviate some of the limitations
noted with previous integration approaches, such as the inability to use Z proof
rules and tools with the integrated notation. In the process, it is demonstrated that
it is not necessary to combine Z with a very different behavioural formalism in
order to reason about concurrency.

1 Introduction

The Z notation [15] has proven to be useful and appropriate for specifying and rea-
soning about sequential software and hardware systems. The strengths of Z include
its ability to construct specifications by parts, its growing tool support, and its proof
system. Recent work on Z has studied its application toconcurrent systems. In this
growing body of work, there are two general classes of approaches:

1. Extension approaches,which apply Z, perhaps with some strengthening of spec-
ification or proof technique, to concurrent systems, e.g., [3].

2. Integration approaches,in which Z is combined with notations that are consid-
ered better suited to specifying and reasoning about time or concurrency, e.g.,
temporal logic [2], TLA [10], or CCS [7].

An advantage claimed with extension approaches is that compatibility with existing Z
proof techniques and tools can be maintained. A disadvantage claimed of integration
approaches is that they may have difficulty reconciling the semantics of the separate
notations [3], especially when very different notations, such as Z and CCS, need to be
combined. This can result in compatibility problems with the integrated notation and
existing Z tools and proof rules.

This paper has several goals. First, we intend to demonstrate that it is possible to
resolve some of the noted disadvantages with integration approaches and concurrency
with Z. Second, we will demonstrate that it is not necessary to combine Z with a very
different notation—such as CCS or TLA—in order to be able to reason about concur-
rency. We show that combining Z with a similar (though complementary) notation will
suffice for reasoning about concurrency as well as communication. Finally, we show

1

that the integrated notation can support kinds of reasoning, e.g., regarding liveness and
safety properties, akin to the application of Z to concurrency in [3].

We commence by constructing a heterogeneous notation, syntactically and seman-
tically combining Z with predicative notation [8], for specifying and reasoning about
concurrency and communication. We show how the semantics of the separate nota-
tions can be resolved, and how the notation can be used in specification, refinement
and proof of properties. The approach is applied in several small specification, refine-
ment, and proof case studies.

1.1 Organization of the Paper

We start with an overview of previous work, concentrating on the approach of Evans
[3]; an aim of our paper is to show that an integrated notation for concurrency can be
used in a manner similar to how Z is used for concurrency in [3]. Further, we will also
show that there are advantages to using the integrated notation over Evans’ approach.
After a brief overview of predicative notation in Section 2.1, we explain our approach
to integrating notations, in Section 3. Section 4 explains how to specify concurrency,
and presents an example of proof of safety and liveness properties. Section 5 extends
specification to communication through channels, and discusses deadlock. The ap-
proach is illustrated with several examples. Finally, we discuss the approach and its
limitations, consider tool support, and summarize some further work.

2 Previous Work and Background

A number of different approaches to combining Z, concurrency, and proof have ap-
peared in the literature. The main body of work in this area is by Duke et al [2], Fergus
and Ince [4], Gotzhein [7], Evans [3], and Lamport [10].

The first three integration approaches propose the use of temporal logic in proving
safety and liveness properties of Z specifications; this requires extending Z to temporal
logic. With these approaches, temporal logic is used to reason about the histories of
state changes that are produced by Z specifications. Operational styles of reasoning
are used to prove properties by directly examining histories, an approach that has been
suggested as impractical for all but the smallest of specifications [3].

Lamport [10] has suggested an approach to concurrency that integrates Z with
TLA. In this integration, schemas are interpreted as actions, thus allowing use of TLA’s
inference rules to verify safety and liveness properties. Temporal logic operators must
still be added to Z, and existing Z proof tools cannot be used directly.

Evans’ work [3] has focused on the direct application of Z to specifying concurrent
systems. Evans’ approach augments Z specifications with an additional specification
describing the system’s dynamic behaviour given in terms of allowable sequences of
state changes. Evans produces proof rules that can be used to verify safety and liveness
properties of specifications. The standard Z rules are strengthened to ensure preserva-
tion of safety and liveness. The goal of Evans’ approach is to maintain compatibility
with existing Z proof techniques, and existing Z proof tools.

2.1 Predicative programming

Predicative programming is due to Hehner [8]. It is a program design calculus in which
programs are specifications. Specifications are predicates on pre- and poststate (values
of variables in the poststate are annotated with a prime; initial values of variables are
undecorated). The weakest specification is> (“true”), and the strongest specification
is? (“false”). Refinement is boolean implication.

Definition 1. A predicative specificationP on prestate� and poststate�0 is refined by
a specificationQ if 8�; �0 � (P(Q).

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. Since refinement is just implication, carrying out
a refinement is equivalent to carrying out a logical proof. Therefore, the refinement
rules of predicative programming are laws of boolean logic; see [8] for a list.

Predicative specifications can be combined using the familiar operators of boolean
theory, along with all the usual program combinators. The program combinators in-
clude sequencing (‘.’), selection (if-then-else), repetition (while-do), and procedure
call. The notation also has aframe construct. The specificationframe w � P means
that predicateP can change variablesw, but no other variables; if the state consists of
disjoint collections of variablesw and�, thenframe w�P is equivalent to(P^�0 = �).

Unlike Z, predicative programming is a wide-spectrum language, and therefore
is very well-suited to refinement. Further, the method is well-suited to specifying
and reasoning about real-time, concurrent, and communicating systems. A variant
theory, presented in [9], maintains all the useful laws and theorems of [8], but allows
specification of intermediate states of a computation. This is useful in specifying
concurrency, as well as for proving liveness properties.

In the modified theory, state variables are treated as functions of time. The value
of variablex at timet is xt. An expression likex + y is a function of time; its argu-
ment is distributed to its variable operands as follows:(x + y)t = xt + yt. Standard
programming notations are defined as follows.

ok = t0 = t

x := e = t0 = t + 1 ^ xt0 = et^ yt0 = yt^ : : :

P: Q = 9 t00 : t � t00 � t0 � P[t00=t0] ^Q[t00=t]

if b then P elseQ = bt^ P_ : bt^Q

(Without loss of generality, it is assumed that an assignment takes 1 unit of time,
and no other program takes time.) The notationP[a=b] means “substitutea for b in
P”. Recursive calls in specifications are allowed: if a specificationP is refined by
specificationS, thenScan make recursive calls toP, providing that time is increased
before the call.

To retain the look of the standard predicative notation, we usex for xt andx0 for
xt0 when we do not need to talk about intermediate states.

2.1.1 Bunch notation

Bunches are used in [8] as a type system. A bunch is a collection of values, and can be
written as in this example:2; 3; 5. Some bunches are worth naming, such asnull (the
empty bunch),nat (the natural numbers),xnat (the extended naturals, which include
1), int (the integers), and so on. More interesting bunches can be written with the aid
of the solution quantifierx, pronounced “those”, as in the examplexi : int � i2 = 4. We
use the asymmetric notationm; ::n for xi : int �m� i < n.

Bunches can also be used as a type system, as in the declarationvar x : nat (per-
haps with restrictions for easy implementation). More generally,A : B is a boolean
expression saying thatA is a subbunch ofB. For example,

2 : nat nat: int

We write functions in a standard way, as in the example� n : nat�n+1. When the
domain of a function is an initial segment of the natural numbers, we sometimes use
a list notation, as in[3; 5; 2; 5]. The empty list is[nil]. We also use the asymmetric
notation[m; ::n] for a list of integers starting withm and ending beforen. List length
is #, and list catenation is+. By letting list = �T : �list � 0; ::#(list T) ! T then
list T consists of all lists whose items are of typeT.

2.1.2 Concurrency

Predicative programming includes notations for concurrent specification and for com-
munication. Combined with the aforementioned notion of time, this allows for speci-
fication and refinement of real-time, concurrent, interactive systems.

The independent composition operatork applied to specificationsP andQ is de-
fined so thatP k Q (pronounced “P parallelQ”) is satisfied by a machine that behaves
according toP and at the same time, in parallel, according toQ. The formal meaning
of k is as follows. We first definewait as a specification whose execution takes an
arbitrary amount of time and leaves all other variables� unchanged during that time.

wait = t0 � t ^ 8 t00 : t � t00 � t0 � (�t00 = �t0)

Independent composition can be defined as follows. Letv andw be bunches of vari-
ables, andP andQ predicative specifications. Then

(frame w � P) k (frame v �Q) =

frame w � P^ frame v � (Q: wait) _ frame w � (P: wait) ^ frame v �Q

Informally, if P leaves a variable unchanged, thenQdetermines the final value, while if
Q leaves a value unchanged,P determines its final value. The time for the independent
composition is the maximum of the process times.

Thek operator obeys a collection of useful laws, e.g., symmetry, associativity, and
distributivity. Independent compositions can also be refined by steps and by parts:

� Refinement by Steps:if A (B k C andB (C andC (E are theorems,
thenA(D k E is a theorem.

� Refinement by Parts: if A (B k C andD (E k F are theorems, then
A^D ((B^ E) k (C^ F) is a theorem.

2.1.3 Communication

Process communication is by any number of named channels. Communication on a
channelc is described by two constant infinite listsMc andTc called themessage script
andtime script, and two extended natural variablesrc andwc called theread cursor
and thewrite cursor. The message script is the list of all messages that pass along the
channel, while the time script is the corresponding list of times that the messages were
or are or will be sent. The read cursor is a state variable saying how many messages
have been input on the channel; the write cursor is a state variable saying how many
messages have been output on the channel.

Here is an example: it says that if the next input on channelc is even, then the next
output on channeld will be >, otherwise it will be?.

Mdwd = even(Mcrc)

Four programming notations are provided for communication. Letc be a channel.

c? = rc := rc + 1

c = Mc(rc � 1)

c!e = Mc(wc) = e^ Tc(wc) = t ^ (wc := wc + 1)

?c = Tc(rc) < t

c? specifies a computation that reads one input on channelc. The channel namec is
used to denote the message that was last previously read on the channel.c!e specifies
a computation that writes messageeon channelc. And?c is a boolean expression that
is true if and only if there is unread input available on channelc.

Channel declaration introduces a new channel within some local portion of a spec-
ification. A channel declaration applies to what follows it. The syntax and semantics
of a channel declarationc applied to specificationP is

chan c : T � P = 9Mc : list T � 9Tc : list xnat� var rc;wc : xnat := 0 � P

T is the type of communications on channelc. Time is of type extended natural, but
could also be extended integer, rational, or real. The channel declaration also sets the
read cursorrc and write cursorwc to initial value0.

Here is an example of two concurrent processes communicating on channelc.

chan c : int � c!2 k (c?: x := c)

The process that puts2 on the channelc can be executed in parallel with the process
that reads an integer from channelc and assigns this value tox. Simplifying, using the
definition ofchan, we find that this specification is equivalent tox := 2, as expected.

By itself, predicative programming is useful and appropriate for specifying and
refining concurrent, communicating systems. The issue in this paper is in terms of
combining Z with predicative notation so that Z can also make use of these notions.

3 Approach to Heterogeneity

The approach to formally defining the meaning of heterogeneous notations that we use
is from [11, 12]. Translations are defined between formal notations of interest. The

translations provide the mechanisms by which a heterogeneous specification can be
given a formal semantics using a homogeneous specification, via mapping the original
specification into a single-notation formulation. A set of notations and translations
between them, which is to be used to give a formal semantics to heterogeneous spec-
ifications, is called aheterogeneous basis. The small heterogeneous basis that we use
in this paper consists of the Z notation and the predicative notation, with translations
between them. It is derived from a much larger basis given in [11]. We require only
one translation in the basis, a mapping from Z to predicative notation.

To translate from a Z schemaOp == [�S; i? : I ; o! : O j P] to a predicative
specification, we use the translationZToPP, defined as follows.

ZToPP(Op) b= frame w � (preOp) P)

The framew consists of the variables inSand the operation outputs. Two options exist
for translating the inputsi?: they can be mapped to state variables (andZToPPcan be
used unchanged); or they can be mapped to procedure parameters. In the latter case,
Opwould be translated to the predicative specificationprocOp= � i : I � ZToPP(Op).
ThoughZToPPis written as a total function, we require that for anyOp that includes a
state schema by� convention,P 6= true, because predicative notation cannot describe
terminating yet arbitrary computations [12].

In [14], detailed justifications for integrating notations—and, in particular, similar
notations—are made.

3.1 Syntax of heterogeneous specifications

When integrating notations, both the syntax and the semantics of the separate lan-
guages must be reconciled. On the surface, semantic reconciliation seems to be the
harder problem: in order to prove properties about the combined notation, we must
give the combined notation a formal semantics, typically by translation. This process
may be difficult, especially if the notations are very different and present radically dif-
ferent views and models of a system. But reconciling syntax need not be trivial either.
If the notations, when combined, form a new notation with an ambiguous grammar,
then changes in the syntax of one or both of the notations may be necessary.

Ambiguities in syntax arise when combining Z and predicative notation. In pred-
icative notation,̂ and_ are applied to and produce predicates. In Z,^ and_ are used
as both predicate and schema operators. Thus, in a notation combined from predica-
tive notation and Z, if we write the specificationS^ P, we cannot tell whether̂ is an
operator applied to predicates or to schemas.

We disambiguate the notations by usingg andf for schema disjunction and
schema conjunction, respectively.

3.2 Semantics of heterogeneous specifications

The translationZToPPis the basis for formally defining the semantics of compositions
of Z specifications and predicative specifications, by translating heterogeneous speci-
fications into homogeneous specifications. In this paper, heterogeneous specifications

are given a semantics in terms of predicative notation. Therefore, we always write
heterogeneous specifications under the assumption that Z partial specifications can be
translated into predicative notation. This provides anintersection semanticsto hetero-
geneous specifications [11]; it is so-called because the semantics of the new language
is effectively the intersection of the separate languages.

To obtain the meaning of a heterogeneous specification, it must be explained how
to translate the specification into predicative notation. The translationZToPPis de-
fined only on Z specifications, so we must extend it to the heterogeneous notation. The
extension applies over the syntax tree of a heterogeneous specification. The reader is
directed to [14] for full details. Since a heterogeneous notation has its semantics in
predicative notation, predicative refinement can be strengthened to be applicable to
heterogeneous specifications. See [14] for rules for refining heterogeneous specifica-
tions composed from Z and predicative specifications.

A useful implication of this semantics for heterogeneous specifications is that Z
refinements are preserved under the translation. That is, if a Z specificationAOp is
refined by Z specificationCOp, using the standard definition of Z algorithm refinement
[15], thenAOp is also refined byCOp using the standard predicative definition of
refinement (applying the translationZToPPbehind-the-scenes).

Theorem 1.Let AOpandCOpbe Z specifications on state�, and suppose thatAOpv
COp, wherev is Z operation refinement; thus, preAOp) preCOp and preAOp^
COp) AOp. Then8�; �0 � (ZToPP(AOp)(ZToPP(COp)).

Proof of Theorem 1.Suppose thatAOpv COp. Then

AOpv COp = 8�; �0 � (preAOp) preCOp) ^ (preAOp^ COp) AOp)

) 8�; �0 � (preAOp) AOp)((preCOp) COp)

= 8�; �0 � ZToPP(AOp)(ZToPP(COp)

An important corollary of Theorem 1 is that when refining a heterogeneous specifica-
tion, Z refinement techniques can be applied to Z specifications, and this results in a
predicative refinement of the heterogeneous specification. For example, letAOpand
COpbe Z specifications andQ a predicative specification, whereAOpv COp. Then
it is a theorem that

AOpk Q (COpk Q

AOpv COp implies thatAOp(COp, and by refinement by parts (Section 2.1.2),
the result holds. More generally, sequencing can be replaced by any combinator over
which predicative refinement is monotonic, and the result still holds.

In [6], Fischer suggests that a necessary condition for a useful combination of
notations is that the combination preserves refinement, i.e., ifA is refined byB in one
of the original notations, thenA is refined byB in the heterogeneous notation. The
condition in [6] pertained to data refinement; Theorem 1 shows that notations can be
combined so that the relationship holds for algorithm refinement as well.

The integration of Z and predicative notation that we have presented is simpler
than integrations involving very different notations—e.g., Z and a process algebra
[6]—because the notations present similar views of a system and have a similar notion

of state transition. The integrated notation also now possesses facilities for specifying
and reasoning about concurrency and communication, as we now demonstrate. This
demonstration aims to show that to talk about concurrency and communication with
Z, it need not be necessary to integrate wildly different notations.

4 Concurrency

In this section, we discuss how to specify concurrent processes using the combina-
tion of Z and predicative notation. The process extends the definition of independent
composition,k, to heterogeneous specifications.

First, we show howk can be applied to Z schemas. LetOp1 andOp2, be schemas
where each can be translated into predicative notation. They are as follows.

Op1 == [�S; i? : I ; o! : O j P] Op2 == [�T; j? : J; k! : K j Q]

Then

Op1 k Op2 = ZToPP(Op1) k ZToPP(Op2)

= frame w � (preOp1) P) k frame x � (preOp2) Q)

Variables in state schemasSandT are considered to be translated to variables local to
the independent composition, as are the schema outputs. Inputs can either be translated
to local variables, or parameters of procedures.

The definition of independent composition of Z schemas has the limitations noted
with the operator in [8]. In particular, it is not suited for passing values of variables
via shared memory (for this, we will need communication, presented in Section 5).

Consider a simple example of a system with three natural number variables.

State== [x; y; z : N]

There are two operation schemas, as follows.

Op1 == [�Statej x0 = z^ y0 = y^ z0 = z]
Op2 == [�Statej x0 = x^ y0 = z^ z0 = z]

Then the parallel composition of these schema is:

Op1 k Op2 = ZToPP(Op1) k ZToPP(Op2)

= (x0 = z^ y0 = y^ z0 = z) k (x0 = x^ y0 = z^ z0 = z)

= x0 = y0 = z0 = z

Nothing has to be changed in our definition in order to be able to use time. Suppose,
for example, that we changed our parallel composition to

(Op1 ^ t0 � t = 2) k (Op2 ^ t0 � t = 1)

Then the semantics of this specification would be

x(t + 2) = zt^ y(t + 2) = zt^ z(t + 2) = zt^

x(t + 1) = xt^ y(t + 1) = zt^ z(t + 1) = zt

The intermediate states are shown in the semantics; the state at timet + 1 is due to
Op2, while the state at timet + 2 is due toOp1.

An advantage of using a heterogeneous approach to concurrency with Z is that
operands ofkmay be written in Z or in predicative notation. This gives us the flexibil-
ity to use the most appropriate notation and refinement relation to specify and refine
each process: for Z specifications, we can use Z refinement; for predicative specifi-
cations, we can use predicative refinement. It may also be advantageous to use pred-
icative refinement on Z specifications, because predicative refinement is just boolean
implication, which is simpler than Z refinement.

4.1 Example

We contrast using the combination of Z and predicative notation with using Evans’
extension of Z [3], applied to a simple telecommunications protocol from [17]. We
show that the heterogeneous notation can produce specifications and proofs that are
comparable in size and complexity to those of Evans.

Evans’ specification of the protocol is as follows. LetM be the set of messages
that the protocol handles, andStatebe the state schema for the protocol.in andout
are state variables describing the incoming and outgoing messages, respectively. The
invariant states thatout is a suffix ofin.

State== [in; out : seqM j 9 s : seqM � in = sa out]

The valid initial states are specified by operation schemaInit.

Init == [Statej in = h i]

Transmission and reception of messages is via theTransmitandReceiveoperations.

Transmit
�State
m? : M

in0 = hm?ia in
out0 = out

Receive
�State

in0 = in
#out0 = #out+ 1 _ out0 = out

This completes the traditional Z specification of the system. The dynamic specification
augments the traditional one, to describe behaviour in terms of allowable sequences
of state changes that result from execution of system operations. First, a next-state
schema for the protocol is defined.

NextState== Transmitg Receive

The dynamic behaviour of the protocol is specified by schemaParBehaviour.

ParBehaviour
� : N1 ! State

� validcomp (fInit � �Stateg; fNextState� �State7! �State0g)
� wf fReceive� �State7! �State0g

validcomp is true for all state changes in which the first step belongs to the initial
state of the system, and in which subsequent steps are related by the next-state rela-
tion. Nondeterministic selections are made on enabled state changes. Weak fairness,
throughwf is also specified.wf is true for any behaviour in which the set of state
changes is always eventually executed. These operators are formally specified in [3].

Informally, the specificationParBehaviourcaptures the intuitive behaviour of the
protocol:Receives andTransmits may happen in parallel. This is simulated by nonde-
terministic interleaving. Note that this specification does not guarantee progress.

The heterogeneous specification of the system reuses the Z specifications ofReceive
andTransmit. Dynamic behaviour is specified using independent composition.

Behaviour= (Receivek Transmit): Behaviour

Informally, the system carries outReceiveandTransmitin parallel indefinitely. For-
mally, the behaviour is specified as a fixed-point construction. Initialization can be
specified by sequencing, i.e.,(Init0: Behaviour). In Behaviour, Receivehas the option
of doing nothing each time it is enabled. Thus, progress is not guaranteed, but it can
be by constraining theReceiveoperation in exactly the same way as is done in [3]. To
do this, theReceiveoperation is extended to[Receivej out0 6= out]. [13] discusses
extendingBehaviourto specify weak fairness.

4.2 Safety and liveness

In [3], Evans shows how to prove safety and liveness properties with the extension of
Z, via a collection of new proof rules. We now briefly discuss how to carry out safety
and liveness proofs with the heterogeneous notation, using our own formulations of
UNITY-style rules.

We begin with safety properties. LetA be as follows.

A = (S0 k : : : k Sk�1): A

EachSi may be a Z operation schema or a predicative specification.A is invariant
with respect to a propertyP (which is a predicate on a state�) if the independent
composition preservesP, i.e.,

8 t; t0 � ((S0 k : : : k Sk�1)) (P) P0))

whereP0 is identical toP but is in terms of the post-state�0. In general, we cannot
prove invariant properties by parts, because the processesSi may interfere with each
other (e.g., ifSi changes variablex, andSj also changesx but to a different value).
However, in the case where theframes of all processes are disjoint, it will hold that

(S0 k : : : k Sk�1)) (S0 _ : : : _ Sk�1) (1)

and then we can prove the invariance ofP by parts, by showing that

8 i : 0; ::k � 8 t; t0 � Si) (P) P0)

If we can prove (1), then safety properties can be proven by parts. Partwise proof can
also be abetted by following guidelines on the use of independent composition. In [8],

it is recommended not to write independent compositions where processes interfere
with each other—i.e., with intersectingframes—because it can lead to unsatisfiable
specifications. Communication constructs can be used to avoid this difficulty.

In [3], proof of safety properties by parts is possible in general because paral-
lelism is simulated by nondeterministic interleaving;k in this paper is approximately
conjunction, thus requiring an extra satisfiability constraint (which is effectively (1)).

Consider the following example, showing thatBehavioursatisfies the invariant
P = (9 s� in = s+out). Because the processes ofBehaviourchange different variables,
it suffices to show that each process maintains the invariant. Thus, we would need to
show thatReceivesatisfiesP. The proof obligation for this step is

8 t; t0 � Receive) (P) P0)

P is the state invariant. After applyingZToPPto Receive, we must prove

8 t; t0 � (P) (in0 = in ^#out0 = #out+ 1 _ out0 = out^ P0))) (P) P0)

which istrue. Transmitsimilarly satisfies the invariantP. And thus, so doesBehaviour.
Liveness properties are more complex to prove. One useful liveness property,

suggested in [3], isleads-to. P leads-toQ is informally defined as “ifP is true then
eventually an enabled operation will causeQ to become true”. For a concurrent system
like A, above, the formal meaning ofP leads-toQ is

8 t; t0 � P) (9 t00 : t � t00 � t0 � (A) Q0)[t00=t])

Informally, the rule expresses that ifP holds at timet, then there is some timet00 in the
course of steps of behaviour of the concurrent systemA at whichQ0 is established.

Proving that a system satisfies aleads-toproperty using this definition may be
complicated. If an inductive proof is not needed (i.e.,P will lead-to Q after a single
step in the computation), we must prove that

8 t; t0 � P) 9 t00 : t � t00 � t0 � ((S0 k : : : k Sk�1)) Q0)[t00=t]

because the processesSi may change some of the same variables. If all processes have
disjoint frames, then condition (1) will hold, and theleads-toproperty can be proven
by parts in much the same way as Evans [3].

There are two possible versions of theleads-torule: one for weak fairness, the
other strong fairness. We consider the former here. There are three main steps in a
leads-toproof, providing that we have shown that the proof can be done by parts.

1. Show that each operationSi in the system either leavesP invariant, or establishes
the propertyQ.

8 i : 0; ::k � 8 t; t0 � Si) (P) P0 _Q0)

2. Show thatP enables a weakly fair operationSj , i.e.,8 t � P) (preSj).

3. Show that the weakly fair operationSj establishesQ under assumptionP.

8 t; t0 � P) (Sj) Q0)

To establish the soundness of this rule, suppose that the three conditions hold (as will
(1)). For any computation in whichP holds initially, the first condition ensures that
a valid step (where a step corresponds to the execution of an operationSi) will either
preserveP or establishQ0. By the second condition, the weakly fair operation is
continuously enabled throughout the computation. As a consequence of the third rule
and fairness,Sj will eventually be executed, resulting inQ0 being established.

This rule will be insufficient for inductive proofs, wherein it is useful to introduce
a variant that is decreased on each iteration. For such systems, we must show

(P^ N = n) leads�to ((Q_ N < n) ^ P)

whereN is a variant over a well-founded set.
For the systemBehaviour, we might want to prove that, under a progress con-

straint,

(#in > #out^#in = k) leads�to (#out= k)

i.e., that ifk messages are input, then eventuallyk messages are output. Assume that
Receiveis a weakly fair operation. First, we must constrainBehaviourso as to ensure
eventual reception of messages. Due to the flexibility of the heterogeneous notation,
this is easy to do. We simply modifyReceiveto [Receivej out0 6= out].

We can use the inductive rule to prove liveness (because condition (1) holds, since
the processes ofBehaviourchange different variables). Let a variantN bek�#out,
P be#in > #out^ #in = k, let Q be#out = k, and letI be the property of state
schemaState. First, we must show that the weakly fair operation is always enabled.

8 t � P^ I ^ (k�#out= n)) preReceive

Next, we show that each system operation either maintainsP or establishesQ. The
first part shows this forReceive; the similar obligation forTransmitis in [13].

8 t; t0 � ZToPP(Receive)) ((P^ I ^ k�#out= n))

P0 ^ k�#out0 = n_Q0 _ k�#out0 < n^ I 0)

Finally, we show that the operation establishesQ or decreases the variant.

8 t; t0 � P^ I ^ k�#out= n) (ZToPP(Receive)) Q0 _ k�#out0 < n^ I 0)

The first obligation holds because#in > #out implies the precondition ofReceive.
The second condition holds becauseReceiveincreases#out, thus decreasing the vari-
ant. The last formula holds sinceReceiveincreases#outby 1, which either guarantees
thatQ0 holds or that the variant is decreased.

Proving safety and liveness properties with the heterogeneous notation is more
complex in general than with Evans’ approach, in part because concurrency in the no-
tation is effectively conjunction, as opposed to disjunction in [3]. In order to prove
these properties by parts, an extra satisfiability proof obligation must be discharged.
In general, safety and liveness properties will not be provable by parts with the het-
erogeneous notation. However, if we use the independent composition operator as
suggested in [8] (i.e., avoid writing to shared memory) and instead make use of the
communication operators presented in the next section, then a partwise approach to
proof can be used. This allows us, effectively, to use the notation in much the same
way as Evans’ approach.

5 Communication

Now we consider input and output between processes. Input and output is by channels,
through which a computation communicates with its environment. The computation
may be specified in Z or in predicative notation or in a combination, perhaps via an
independent composition. The channels are specified in predicative notation, as was
discussed in Section 2.1. We illustrate the approach with two examples.

5.1 Example: mutual exclusion

The first example is a simple system involving mutual exclusion and synchronization.
The problem is derived from one in [8]. We specify a concurrent queueing system
with two processes. One process adds jobs to a shared queue, while a second process
removes jobs and services them. We write a heterogeneous specification of the sys-
tem (omitting details of how a job is to be serviced), and then write a specification
expressing a mutual exclusive access property that the system must satisfy.

The specification commences by introducing a basic typePROCESS, to stand for
the type of processes, as well as aRESULTtype, to stand for an operation status
output.

RESULT ::= SUCCESSj FAIL

The system state is as follows.

State
queue: seq

1
PROCESS

numjobs: N

numjobs= #queue

OperationAddJobplaces new jobs into the queue.

AddJob
�State
job? : PROCESS

numjobs0 = numjobs+ 1

queue0 = queuea [job?]

The operation that removes a job from the queue and services it is as follows (we
ignore the details of the servicing).

ServiceJob
�State
result! : RESULT

numjobs> 0
queue0 = tail(queue)
numjobs0 = numjobs� 1
result! = SUCCESS

RServiceJob
�State
result! : RESULT

numjobs= 0
result! = FAIL

We now use the heterogeneous notation to specify the system. The specification is

chan a : int � chan b : int � P k Q

where

P = Np: a!>: AddJob: a!?: P

Q = Nq: b!>: (ServiceJobgRServiceJob): b!>: Q

Np is a specification that performs some initialization forAddJob; Nq performs initial-
ization for the service operations. To ensure that mutual exclusion is guaranteed, the
specification must satisfy

: 9 i : wa; ::1 � 9 j : wb; ::1 � (Mai ^ Tai � Tbj < Ta(i + 1)) _

(Mbj ^ Tbj � Tai < Tb(j + 1))

The condition above states that a message does not arrive on channela at the same
time as a message on channelb (and vice versa).

The specification can be refined by parts: Z refinement can be applied toAddJob
andServiceJob; predicative refinement can be applied to the remaining portions.

5.2 Example: short-term scheduler

We now present a more detailed example that combines use of concurrency, com-
munication, and refinement. The problem we wish to solve is that of constructing a
simulator for a scheduler that can provide service either in a first-come first-served or
a round-robin fashion. The initial requirements are as follows.

A system is needed to simulate two short-term schedulers. The system must

first generate test data, and second, simulate either a first-come first-served (FCFS)

or a round-robin (RR) scheduler. The generator part produces two vectors of data,

one holding NUMBERrandom CPU burst lengths, and the other holding NUMBER

random arrival times. Bursts should be generated so that 80% of burst lengths

are uniformly distributed between 0:1 and 1:0, with the remaining 20% between 1:0

and 10:0. The arrival times of the processes must have a Poisson distribution, with

parameter LAMBDA. The second component simulates the selected algorithm on

the test data, starting with the circular “ready” queue (length 100) holding INITIAL

jobs. Total and average wait times should be output upon completion.

A rough sketch of the system is in Fig. 1.
In Fig. 1, circles are processes, rectangles are external entities in the environment,

and parallel lines are data stores. Data flow between processes, entities, and data stores
is written using arrows. To formally specify the system, we use predicative notation
for its strengths: for specifying communication and concurrency, and for specifying
iterative details. We use Z for everything else, i.e., individual processes. Before doing
so, we specify the state of the system, and formalize the terms used in Fig. 1.

INITIAL, LAMBDA, andNUMBERwere described in the informal requirements.

Data ReadyQueue

SCREEN

numplaced

simulator

SimResults

Output
Stats

Simulate
Place

Select
Algorithm

InitialGenerator USER

Fig. 1: Rough sketch of simulator system

INITIAL;NUMBER: N
LAMBDA : R

The system’sready queueholds the processes that are to be serviced. The queue is
modeled as a sequence ofCells.

Cell
burstlength; arrivaltime : R
group : Z

ReadyQueue
ready: seq

100
Cell

arriving; head; tail; length: N

TheReadyQueueis made up of a sequence ofCells, as well as the pointers necessary
to maintain and update the queue (i.e.,tail andheadpointers). Finally, the data store
used to hold the data generated and used by the simulator is specified as a state schema.

Data== [bursts; arrivals : seqNUMBERR]

Available simulation algorithms are specified as a type:ALGTYPE ::= rr j fcfs.
At least two channels appear to be necessary for this system: one between pro-

cessesPlaceInitialandSimulate, and another betweenSelectAlgorithmandSimulate.
Fig. 1 suggests names for these channels:numplaced, andsimulator, respectively.
These are specified in predicative notation.

chan numplaced: nat � chan simulator: ALGTYPE

We now provide specifications of selected processes, concentrating on the most inter-
esting: those for the generator and the simulator. The purpose of theSimulateprocess
is to read values on its channels and then simulate a scheduler on the data generated
by the remaining parts of the system. We write this as a heterogeneous specification.

Simulate = numplaced? k simulator?:

time; arriving; current := arrivals(length); numplaced; bursts(0):

while (0 < length< 100) do (

if (simulator= fcfs) then FCFSelseRR:

current := ready(head): dequeue)

FCFS and RR specify the behaviour of the first-come first-served and round-robin
schedulers, respectively. Predicative notation is well-suited for specifying the iterative
parts of the simulator, because it is a wide-spectrum language. TheFCFSschema is
as follows.

FCFS
�ReadyQueue
marr : N

marr = maxfj : arriving::NUMBER� 1 j time> arrivals(j)g
head6= (tail + marr� arriving) mod 100
8 i : 0::marr� 1 � 9 new: Cell�
new:burstlength= bursts(arriving + i)
new:arrivaltime= arrivals(arriving + i)� arrivals(INITIAL)
new:group= bbursts(i)c
ready0((tail + i) mod 100) = new

tail0 = (tail + marr� arriving) mod 100
length0 = length+ (marr� arriving)
arriving0 = marr

(The schemaRRis similar.) Informally, the operation queues all those jobs that would
have arrived during the service of the current job.marr is the maximum (last) job to
arrive during the service of the current job.

Before simulation can begin, data should be generated, and the system must be
initialized. Initialization involves placingnumplaceddata items in the queue and se-
lecting a scheduling algorithm before simulation.

Generator: (chan numplaced: nat � chan simulator: rr ; fcfs�

(PlaceInitialk SelectAlgorithm): Simulate): OutputStats

Data is generated using a random number generator,rand, which returns a random
real. TheGeneratorschema is as follows.

Generator
�Data

arrivals0(0) = 0
(bursts0(0) = 0:9� rand+ 0:1 _ bursts0(0) = 9:0� rand+ 1:0)
8 i : 1::NUMBER� 1�
(bursts0(i) = 0:9� rand+ 0:1 _ bursts0(i) = 9:0� rand+ 1:0)
(arrivals0(i)� arrivals0(i � 1) = �LAMBDA� loge rand)

The operation calculates burst and arrival times forNUMBER jobs, where a burst
time is either between 0 and 1, or between 9 and 10. Arrival times have a Poisson
distribution with parameterLAMBDA.

OutputStatsmight be trivially formalized asOutputStats = Screen!datawhere
Screenis a declared channel anddata the simulation data. Similarly,SelectAlgorithm
might be

SelectAlgorithm = while : ?Userdo ok: User?: simulator!User

whereUser is a declared channel.
Now (safety) refinement can occur. We omit most of the details, since they can be

found elsewhere [13]. TheGeneratorspecification can be implemented as a simple
loop, using standard Z refinement techniques and refinement by parts (Section 2.2.1).
This can occur due to Theorem 1. The guard on the loop implementing the generator
is i < NUMBER, a loop variant isNUMBER� i, and a loop invariant is:

1 � i < NUMBER^

8 j : 1; ::i � arrivals(j)� arrivals(j � 1) = �LAMBDA� loge rand^

(bursts(j) = 0:9� rand+ 0:1 _ bursts(j) = 9:0� rand+ 1:0)

The first step of the refinement is to introduce a local variable,n, and to split the
Generatorspecification into a leading assignment and a loop partial specification.
The second step is to refine the loop to a loop body, where the body is a collection
of assignment statements. The proof obligations are standard from [18]. The result of
the refinement is the following program:

n; arrivals(0); i := rand; 0; 1;

bursts(0) := if (n� 0:8) then 0:9� rand+ 0:1 else9:0� rand+ 1;

do (i � NUMBER)!

n := rand; bursts(i); arrivals(i); i :=

if (n� 0:8) then 0:9� rand+ :1 else9:0� rand+ 1;

�LAMBDA� loge(rand) + arrivals(i � 1);

i + 1

od

The Z schemaFCFScan also be refined using the standard Z refinement rules. To
carry out this refinement, we first define a standard queueing procedureenqueue. Re-
finement is done by first noticing that inFCFS, the local variablenewas well as the

body of the universal quantifier, can be replaced by anenqueueoperation. We also
notice that the purpose of the universal quantifier is to add all arriving processes to the
ready queue, providing that such an addition does not exceed the queue size. This can
be refined to a loop: the loop terminates if the queue is full (length= 100), if there
are no more waiting processes, or if all processes that arrived during servicing of the
current job have been queued.

do b!

enqueue(bursts(arriving); arrivals(arriving)� arrivals(INITIAL); bbursts(arriving)c);

arriving := arriving + 1

od

whereb is

time> arrivals(arriving) ^ arriving < NUMBER^ length 6= 100

6 Discussion

The aim of integrating Z with predicative notation is to construct a notation that is
suitable for specification and design of concurrent and communicating systems. It
is not our aim to intentionally produce a notation that will be appropriate for other
tasks. We therefore chose to combine Z with predicative notation, because predicative
notation is a sufficient partner for Z in the tasks that we want to carry out. If we had
wanted to carry out tasks beyond specification and reasoning about concurrency and
communication, combining Z with a different notation would be appropriate.

In [3], Evans suggests a number of disadvantages to integrating Z with notations—
like CSP, TLA, or CCS—that may be better suited to specifying concurrent behaviour:
reconciling the semantics of the individual notations; using existing Z tools; and, poor
use of the Z proof system. The integration of Z with predicative notation that we have
presented in this paper addresses these limitations, as we now discuss.

Reconciling the semantics of separate notations can be difficult, especially for very
different notations (though see [16]). But predicative notation and Z can be used to
present the same view of a system. Therefore, combining these notations is simpler
than, say, combining Z and CSP. Since predicative notation provides the techniques
that we require—for reasoning about concurrency and communication—it does not
appear to be necessary to consider alternative integrations for these purposes.

With an integration of Z with CSP, the ability to use existing Z or CSP tools with
the new notation will be reduced or removed. With the integration of predicative no-
tation with Z in this paper, the ability to use Z tools remains, at least with respect to
Z partial specifications, because of the result that says a valid Z refinement implies
a valid predicative refinement; Fischer [6] previously suggested the value of this ca-
pability. Some translation work may have to be done to heterogeneous specifications
in order to get information regarding the system state needed to use the Z tools, but
because our integration of notations is both syntactical and semantical, this is possible
and relatively straightforward. With a purely semantic integration of notations, e.g.,
[5], this is not possible.

By using predicative notation as the semantic basis for the heterogeneous notation,
we allow ourselves to use theorem provers based on typed set theory to support rea-
soning. So, for example, PVS can be used to support the predicative—and therefore
the heterogeneous—notation. This suggests the need for a tool that will automatically
translate heterogeneous specifications into PVS.

We have shown that the integrated notation can be used to carry out the tasks that
are possible using Evans’ extension. However, the approach has a number of advan-
tages over Evans’ work. A theoretical advantage is that miracles can be expressed in
predicative programming, unlike in Z; this has been suggested as useful for simpli-
fying data refinement. Predicative programming has built-in mechanisms for talking
about time, space, and communication; we can use communication constructs and talk
about real-time in the integrated notation without any further work. Evans’ approach
needs to be further extended in order to use such mechanisms. Further, it is easier
to carry out refinement in predicative programming, due to its wide-spectrum nature.
When we want to carry out refinement, we can use the predicative subset of the in-
tegrated notation. However, Evans’ approach does produce some simpler proof rules
(e.g., for liveness) than seem to be possible with predicative programming.

Our suggestion is not that the aforementioned problems with approaches that com-
bine very different notations—like Z and CSP—will not arise. Rather, by carefully
choosing compatible notations—like Z and predicative notation—and by understand-
ing the roles each notation will play in the integration, the complications may prove to
be less than critical.

7 Conclusions

In this paper, it has been shown how the Z notation can be used, in combination with
the predicative notation of [8], to specify and reason about concurrent, real-time, com-
municating behaviours. A motivation for the work was to attempt to demonstrate that
limitations noted with previous integrations [2, 4, 7] could be partially alleviated by
integrating Z with the right notation. A second motivation was to demonstrate that it
is not necessary to integrate Z with a very different notation, like a process algebra, in
order to talk about concurrency. It was demonstrated that Z and predicative notation
could be integrated so that the semantics of the notation allows practically full use of
Z and maintains the ability to use Z proof techniques and tools on Z partial specifi-
cations. The need is created for a framework that allows combined use of existing Z
tools, and prover tools like PVS.

The approach was aimed at showing how heterogeneous specifications could be
used for concurrency and communication. An important aspect of this work is that it
shows that it need not be necessary to extend Z in order to discuss concurrent, real-
time, or communicating behaviour. Therefore, the standard Z notation can be used,
augmented with predicative specifications that are well-suited to talking about such
behaviours.

Acknowledgements.This research was carried out with the assistance of the National
Sciences and Engineering Research Council of Canada.

References

[1] K.M. Chandy and J. Misra,Parallel Program Design, Addison-Wesley,
1988.

[2] R. Duke and G. Smith, Temporal logic and Z specifications.Australian
Computer Journal,21(2), May 1989.

[3] A.S. Evans, A case study in specifying, verifying, and refining a parallel
system in Z. To appear inParallel Processing Letters.

[4] E. Fergus and D. Ince, Z specifications and modal logic.Proc. Software
Engineering 90, Cambridge, 1990.

[5] C. Fischer, CSP-OZ: a combination of Object-Z and CSP. InProc.
FMOODS ‘97, Chapman and Hall, 1997.

[6] C. Fischer, How to combine Z with a process algebra. InProc. ZUM ’98,
LNCS 1493, Springer-Verlag, 1998.

[7] R. Gotzhein, Specifying open distributed systems with Z. InProc.
VDM’90, LNCS 428, Springer-Verlag, 1990.

[8] E.C.R. Hehner,A Practical Theory of Programming, Springer-Verlag,
1993.

[9] E.C.R. Hehner, Abstractions of time. InA Classical Mind: Essays in Hon-
our of C.A.R. Hoare,Prentice-Hall, 1994.

[10] L. Lamport, TLZ. InProc. ZUM ’94, Springer-Verlag, 1994.

[11] R.F. Paige, A meta-method for formal method integration. InProc. Formal
Methods Europe ’97, LNCS 1313, Springer-Verlag, 1997.

[12] R.F. Paige, Comparing extended Z with a heterogeneous notation for rea-
soning about time and space. InProc. ZUM ’98, LNCS 1493, Springer-
Verlag, 1998.

[13] R.F. Paige, Specification and refinement using a heterogeneous notation
for concurrency and communication. Technical Report CS-98-07, York
University, October 1998.

[14] R.F. Paige, Heterogeneous notations for pure formal method integration.
To appear inFormal Aspects of Computing,1999.

[15] J.M. Spivey,The Z Notation: A Reference Manual, Prentice-Hall, 1989.

[16] G. Smith, A semantic integration of Object-Z and CSP for the specifi-
cation of concurrent systems. InProc. FME ’97, LNCS 1313, Springer-
Verlag, 1997.

[17] J. Woodcock and J. Davies,Using Z, Prentice-Hall, 1996.

[18] J.B. Wordsworth,Software Development with Z, Addison-Wesley, 1992.

