
.
K.

from
nt is
en an
most

tate
ulator
int for
tion is
s to
ome
ryless
imal
imple

e the
ects
m a
pre-

for-
ving
ses
post-
ter-
its

del
evel-

e for
atic

o ear-
on the
the-
rieve
more
Retrenchment and Punctured Simulation

R. Banacha, M. Poppletona,b

aComputer Science Dept., Manchester University, Manchester, M13 9PL, U.K
bSchool of Mathl. and Inf. Sciences, Coventry University, Coventry, CV1 5FB, U.

banach@cs.man.ac.uk , m.r.poppleton@coventry.ac.uk

Abstract: Some of the shortcomings of using refinement alone as the means of passing
high level simple models to actual detailed implementations are reviewed. Retrenchme
presented as a framework for ameliorating these. In retrenchment the relationship betwe
abstract operation and its concrete counterpart is mediated by extra predicates, allowing
particularly the description of non-refinement-like properties, and the mixing of I/O and s
aspects in the passage between levels of abstraction. Stepwise simulation, the ability of sim
to mimic a sequence of execution steps of the simulatee, is introduced as the reference po
discussing the broader semantic issues surrounding retrenchment. Punctured simula
introduced as a naturally occurring phenomenon implicit in the ability of retrenchment
describe of non-refinement-like properties; and it is shown to have relevance even in s
refinements. Two special cases of retrenchment, simple simulable retrenchment and memo
regular retrenchment are introduced. Both enjoy a unique domain property for large max
punctured simulations, and the former has an easy stepwise simulation property too. A s
case study is presented. The B-Method and notation are used throughout the paper.
Keywords: Retrenchment, Simulation, Punctured Simulation, B-Method.

1 Introduction

In [Banach and Poppleton (1998)], we proposed retrenchment in order to liberalis
notion of refinement. The purpose of this was to enable more of the informal asp
of development to be captured within a formal framework. A retrenchment step fro
more abstract to a more concrete level of abstraction admits strengthening of the
condition and weakening of the postcondition, and the mingling of state and I/O in
mation between the levels of abstraction in question. This is accomplished by ha
two extra predicates per retrenched operation, the WITHIN and CONCEDES clau1,
the former expressing the precondition strengthening, and the latter expressing the
condition weakening. Most specifically, non-refinement-like behaviour can be en
tained within the framework via the weakened postcondition. This in turn perm
inconvenient low level detail of the true system from interfering with an idealised mo
at a high level of abstraction, leading to hopefully cleaner, more comprehensible d
opment routes.

[Banach and Poppleton (1998)] was concerned with making the engineering cas
the retrenchment notion. We considered it important to proceed in this more pragm
manner at the outset, as the experience with refinement showed in hindsight that to
ly an emphasis on mathematical elegance could have detrimental consequences
development activity for realistic problems. In this paper we focus on some of the
oretical properties of retrenchment. Specifically, since retrenchment allows the ret
relation to be violated in the after-state of an execution step, and also because the

1. As we have called them in the concrete syntax of the B-Method.

stract
ay
m it.
mu-
rge
t the

hy
stem
ach
tions
ntral
nt on
nd
iliar

spe-
is we
main
mem-
Sec-

trate
No-

sed
ne-
t can
thor-

sub-
ocess
concrete level of abstraction may contain operations that do not appear at the ab
level, the simulation relation between the two levels, familiar from refinement, m
break down completely. We study this situation to see what can be recovered fro
Specifically we introduce punctured simulation, a behavioural notion describing si
lations “with holes in them”, and show that in special cases of retrenchment, “la
maximal” punctured simulations possess a unique domain property, which is abou
best one could hope for in the context of such a general notion.

In more detail, the rest of this paper is as follows. In section 2 we briefly recall w
refinement is too strong a notion to conveniently encompass much of realistic sy
building activity. For a much fuller treatment of such motivational issues see [Ban
and Poppleton (1998)]. In section 3 we present retrenchment and the proof obliga
that give it semantic content. In section 4 we define stepwise simulation, the ce
concept for discussing wider semanic issues for retrenchment, and briefly comme
our choice of definition. In section 5 we introduce punctured simulation formally a
give some basic properties, showing in fact that it has relevance even in the fam
world of B refinement. In section 6, simple simulable retrenchment is introduced, a
cial case of retrenchment with properties quite close to those of refinement. For th
get a straightforward stepwise simulation result, and we see that the unique do
property mentioned above holds. In section 7, another special case is introduced,
oryless regular retrenchment, and a similar unique domain property is established.
tion 8 presents a small case study of a model power generation plant to illus
punctured simulation. Section 9 concludes. The B-Method and Abstract Machine
tation [Abrial (1996a), Wordsworth (1996), Lano and Haughton (1996)] are u
throughout the paper. By providing in particular a fixed syntactic framework for refi
ment, they provide a very convenient structure into which the ideas of retrenchmen
be placed. This also helps in comparing refinement and retrenchment although a
ough treatment of that topic is beyond the scope of this paper.

2 The Trouble with Refinement

We will start with a small example taken from an idealised process management
system. Suppose we must defensively implement the operation of adding a new pr
newprocto an existing pool of processesprocs. In the B notation we would write (a
little loosely for brevity) at the abstract level:

MACHINE Proc_Machine
VARIABLES procs
INVARIANT procs⊆ PROCS
INITIALISATION procs := ∅
OPERATIONS

AddProc (newproc) =̂
IF

newproc∈ PROCS
THEN

procs := procs∪ { newproc }
END

END

We might want to refine this to a situation in which the setprocswas represented by an
injective sequence of the constituent processes,procsseq. For pragmatic reasonsproc-

y ap-

mine

con-

di-

h

en
at em-

rete

the
eful-
evels.
sseqwould be limited in size to 15 elements say. Set union becomes represented b
pending sequences. So the resulting refinement would turn out as follows:

REFINEMENT Proc_Machine_R
REFINES Proc_Machine
VARIABLES procsseq
INVARIANT procsseq∈ iseq(PROCS) ∧ size(procsseq) ≤ 15∧

procs = rng(procsseq)
INITIALISATION procsseq := < >
OPERATIONS

AddProc (newproc) =̂
IF

newproc∈ PROCS ∧ newproc∉ rng(procsseq) ∧
size(procsseq) < 15

THEN
procsseq := procsseq [newproc]

END
END

Unfortunately this is not a refinement in the technical sense. To see this let us exa
the proof obligation of refinement as generated in the B-Method:

INVA ∧ INVC ∧ trm(AddProcA)
⇒ trm(AddProcC) ∧ [AddProcC] ¬ [AddProcA] ¬ INVC

HereINVA andINVC are the abstract and concrete invariants respectively (and the
crete invariant contains the retrieve relationprocs= rng(procsseq)). Furthermore
trm(AddProcA) and trm(AddProcC) are the abstract and concrete termination pre
cates (normally called preconditions in non-B parlance). And[AddProcC] ¬ [AddPro-
cA] ¬ INVC asserts that for every step that the concrete operationAddProcC makes,
there is a step that the abstract operationAddProcA can make that establishes the trut
of the concrete invariantINVC , in the abstract and concrete after-states.

Consider what this says when| procs | = 15 andnewproc∉ procs. We have to show
two things. Firstly thattrm(AddProcC) , which is justtrue , can be derived from the
hypotheses. Buttrue holds anyway so there is nothing to prove here. However wh
we secondly check that for every concrete step we have to have an abstract step th
ulates it, we run into trouble since as well as other things we have to prove:

procs⊆ PROCS ∧
procsseq∈ iseq(PROCS) ∧ size(procsseq) ≤ 15∧ procs= rng(procsseq) ∧ true

⇒
newproc∈ PROCS ∧ newproc∉ procs∧ size(procsseq) = 15

⇒
[skip] ¬ [procs := procs∪ { newproc }] ¬ (procs = rng(procsseq))

This is evidently false since in the after-statesprocswill have an extra element com-
pared toprocsseq. To get a genuine refinement we would have to push the conc
level finiteness requirement up to the abstract level.

But this is a bad idea we claim. It acts only to obscure the simplicity and clarity of
abstract system as we originally wished to conceive it. This in turn weakens the us
ness of the abstract level by narrowing the gap between abstract and concrete l

∩

ithin

fied,
the

res-
cas-

ould

loud
a
man-
on in

ap-
its

cep-

the
t as

e ab-
rep-
tract
n ab-

ans of
sues
not

ht up
ncrete
The

ncrete
rent
able
rig-
f a
tiva-
98)].
This leads to a shallower development route, capturing less of the design activity w
the formal framework.

One technical device that leads to a way out of the formal conundrum just identi
and one that is much favoured in the formal development community, is to amplify
key statement in the abstract operation to:

procs := procs∪ { newproc } [] skip

In this particular case,skip , ([] is the choice combinator in B), would do just what the
concrete operation does in the (null) ELSE branch of the conditional, so we could
cue the situation and recover a refinement. More generally though, we couldn’t just
ually insert “[]skip” and leave it at that. We would need to writeskip alone as the body
of the abstract operation, and have a suitably trivial retrieve relation, so that we c
rely on the fact that with a trivial retrieve relation,any terminating operation (that pre-
serves it) refinesskip . Obviously in such a situation theskip says nothing at all about
the relationship between the “true” abstract and concrete levels, except to signal
and clear that whatever it is, it is certainlynota refinement relationship. Therefore as
technique for capturing design decisions in the engineering of real systems in the
ner illustrated (as opposed to its proper role as an identity for sequential compositi
the calculus of generalised substitutions), we considerskip harmful.

Returning to our putative refinement above, when we are indeed in the| procs| = 15 and
newproc∉ procssituation, the concrete system simply does nothing. Would this be
propriate in reality? Of course not. We would want the operation to at least inform
caller that it was unable to fulfil the normal demand, and that it was taking an ex
tional action. For this we would need a change of signature, eg.

res←— AddProc (newproc)

Theresoutput would indicate success or failure regarding the normal functioning of
operation. Evidently changing the signature is not within the province of refinemen
it is conventionally understood, so incorporating a more concrete signature into th
stract level, particuarly when its role in the ideal abstract model would be spurious,
resents at best another unnecessary distraction from the simplicity of the abs
system, or at worst a further undesirable narrowing of the abstraction gap betwee
stract and concrete systems.

We see that there are drawbacks to using conventional refinement as the sole me
going from an abstract description of a system to a concrete one. Evidently the is
we have raised are rather trivial in the case of a small illustrative example, but it is
hard to imagine that in realistic situations, the level of detail that needs to be broug
to the abstract system in order for there to be a refinement between abstract and co
worlds is so great that it overwhelms the underlying concepts of the abstract model.
supposedly abstract model then becomes little more than a restatement of the co
model in another language. Such a thing is not terrible in itself of course — the diffe
perspectives of the two descriptions can each illuminate the other — but the valu
goal of setting out how the real system definition is arrived at from the designer’s o
inal simplified ideas is lost. In this manner we briefly promote the introduction o
more liberal notion than refinement which we intend to bridge that gap. Such mo
tional issues are discussed much more extensively in [Banach and Poppleton (19

od-
T
ith

ab-
found
f the

low
vel-

of a

t
f each
a

he
with

con-

f
nec-
3 Retrenchment

The top level system construct in B is the MACHINE which expresses the abstract m
el of the system being built. A MACHINE is refined via the top level REFINEMEN
construct which roughly speaking contains similar components to a MACHINE , w
the exception that its INVARIANT clause contains the retrieve relation which links
stract and concrete variables. The abstract variables in question are those to be
in the top level construct being refined, this being named in the REFINES clause o
REFINEMENT , and refers to either a MACHINE or a preceding REFINEMENT .

Retrenchment may be viewed as a variation on refinement. For flexibility we will al
either a MACHINE or a REFINEMENT to be retrenched, since the result of the de
opment step is essentially the specification of a fresh problem. Here is the syntax
RETRENCHMENT .

MACHINE M (a) MACHINE N (b)
RETRENCHES M

VARIABLES u VARIABLES v
INVARIANT I (u) INVARIANT J (v)

RETRIEVES G (u , v)
INITIALISATION X (u) INITIALISATION Y (v)
OPERATIONS OPERATIONS

o ←— OpName (i) =̂ p←— OpName(j) =̂
S (u , i , o) BEGIN

END T (v , j , p)
LVAR

A
WITHIN

P (i , j , u , v , A)
CONCEDES

C (u , v , o , p , A)
END

END (3.1)

Thus we have a MACHINEM(a) , with typical operation given by the signatureo ←—
OpName(i) , the body ofOpNamebeing a generalised substitutionS(u, i, o) . On the
right we have a MACHINEN(b) , together with the RETRENCHESM clause and re-
trieve relation RETRIEVESG(u, v) . (We insist that the retrieve relation and invarian
are given separately in a retrenchment in order to separate concerns.) The body o
operationp ←— OpName(j) is now a ramified generalised substitution, that is to say
generalised substitutionT(v, j, p) , together with its ramification, the LVAR , WITHIN ,
CONCEDES clauses. EachOpNameof M must appear ramified withinN , but we allow
additional operations inN . (These could be specified trivially byskips in M but we
consider such uses ofskip at least undesirable not to say harmful.) If we strip away t
RETRENCHES clause, the RETRIEVES clause, and the ramifications, we end up
just a normal B MACHINE .

Speaking informally, the ramification of an operation allows us to describe how the
crete operation fails to refine its abstract counterpart. The LVARA clause, which is op-
tional, allows us to introduce logical variablesA that remember before-values o
variables and inputs, so that we may refer to them in the context of the after-state if

ses.
ab-
t

f the
DES
. In

ct and
e

find

ed in

ond-

e

itting
the

th in
pply

tro-

the
efine-
e nat-
essary. The scope of the LVAR declaration is the WITHIN and CONCEDES clau
The job of the WITHIN clause is to describe nontrivial relationships between the
stract and concrete before-values of variablesu andv , and abstract and concrete inpu
valuesi andj , and to define values for the logical variablesA . It is used to strengthen
the precondition as we will see below, and thus may contain any strengthening o
retrieve relation required in the retrenchment step. The purpose of the CONCE
clause is to provide a similar storehouse for information concerning the after-state
particular, the CONCEDES clause involves abstract and concrete variables, abstra
concrete outputs, and the logical variablesA , and weakens the retrieve relation in th
after-state allowing non-refinement like behaviour to be expressed. These ideas
more precise expression in the proof obligations which we now list.

We take for granted an environment where all the necessary identifiers are defin
terms of basic types. Then there are the conventional machine POs forM andN . Firstly
the initialisation POs:

[X(u)] I(u)

[Y(v)] J(v)

and then the invariant preservation POs:

I(u) ∧ trm(S(u, i, o)) ⇒ [S(u, i, o)] I(u)

J(v) ∧ trm(T(v, j, p)) ⇒ [T(v, j, p)] J(v)

Next we have the sharp retrenchment initialisation PO which is just like the corresp
ing refinement initialisation PO:

[Y(v)] ¬ [X(u)] ¬ G(u, v)

and finally we have the retrenchment PO for operations which reads:

(I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(T(v, j, p)) ∧ P(i, j, u, v, A))
⇒

trm(S(u, i, o)) ∧ [T(v, j, p)] ¬ [S(u, i, o)] ¬
(G(u, v) ∨ C(u, v, o, p, A)) (3.2)

The antecedents of this PO contain the invariants and retrieve relation (I(u) ∧ G(u, v) ∧
J(v)) , and moreover thetrm(T(v, j, p)) clause is strengthened by the WITHIN claus
P(i, j, u, v, A) . These assumptions allow us to infer the abstracttrm(S(u, i, o)) clause,
and also that the familiar “[T(v, j, p)] ¬ [S(u, i, o)] ¬” structure establishes for the
after-states either the retrieve relation, or the CONCEDES clause, the latter perm
reference to outputs as well as after-states, and to before-data as remembered inA
variables. The justification of the precise form of this PO was discussed at leng
[Banach and Poppleton (1998)]. Beyond those considerations which continue to a
here, we will say that it leads to a clean notion of stepwise simulation which we in
duce in the next section.

We give an example of retrenchment by redoing our failed refinement above within
new framework. Given our preceding comments about the appropriateness of a r
ment step between the desired two levels of abstraction, the following seems a mor
ural development step.

efine-
utput

N-

vokes
t no-

port.
ich
th se-
ls re-
dis-

t

MACHINE Proc_Machine_Ret
RETRENCHES Proc_Machine
SETS RESPONSES = {added , notadded}
VARIABLES procsseq
INVARIANT procsseq∈ iseq(PROCS) ∧ size(procsseq) ≤ 15
RETRIEVES procs = rng(procsseq)
INITIALISATION procsseq := < >
OPERATIONS

res←— AddProc (newproc) =̂
BEGIN

IF
newproc∈ PROCS ∧ newproc∉ rng(procsseq) ∧
size(procsseq) < 15

THEN
procsseq := procsseq [newproc] ||
res := added

ELSE
res := notadded

END
LVAR

LL , PP
WITHIN

LL = size(procsseq) ∧ PP = procsseq
CONCEDES

(LL = 15∧ procsseq = PP ∧ res = notadded) ⇔ ¬(res = added)
END

END

Note how the CONCEDES clause allows us to express what happens when the r
ment relationship breaks down, as well as allowing us to say something about the o
res, which did not exist at the abstract level. Note also how the occurrences ofprocsseq
in the WITHIN clause refer to the before-value while the occurrence in the CO
CEDES clause refers to the after-value, necessitating the use ofPP .

4 Stepwise Simulation

The generality of the relationships we are prepared to admit as retrenchments, pro
the question of what is the fundamental semantic anchor point for the retrenchmen
tion. Our stance is, that this lies in the kinds of simulation that retrenchments sup
The basic simulation notion that we focus on is that of stepwise simulation, by wh
we mean the simulation of a sequence of steps of the simulatee by an equal leng
quence of steps of the simulator. This choice is dictated by various technical detai
garding different notions of simulation that it is beyond the scope of this paper to
cuss. We write a step of a machine such asM of (3.1) in the form:

u -(i, m, o)-› u′

whereu andu′ are the before and after states,m is the name of the operation (where i
can help, we writeS , the body ofm , instead ofm itself), andi ando are the input and
output ofm . This signifies that (u, i) satisfy trm(S) , and that (u, i, u′, o) satisfy the
before-after predicate ofm(which in B parlance says that (u′, o) is a possible result from

∩

e

bstract
re-

ctions.
and
o into

a se-
ases

tract
. We

We

on-
t in-

the
f

(u, i)). When discussing properties of sequences of steps,last(T) will denote the index
of the last state mentioned inT , andr ∈ dom•(T) will meanr ∈ [0 … last(T) – 1] if
T is finite, andr ∈ NAT otherwise. Similarly for sequences of any type. In general w
need to distinguishOpsM , the operation names at the abstract level, fromOpsN the op-
eration names at the concrete level, whereOpsM ⊆ OpsN .

Definition 4.1 Let (3.1) be a retrenchment. Suppose thatT ≡ [v0 -(j0, m0, p1)-› v1 -
(j1, m1, p2)-› v2 …] is an execution sequence ofN , and thatS ≡ [u0 -(i0, m0, o1)-› u1 -
(i1, m1, o2)-› u2 …] is an execution sequence ofM , where [m0, m1, …] is a sequence
overOpsM . ThenS is a stepwise simulation ofT iff G(u0, v0) holds, and for allr ∈
dom•(T) there is anAr such that:

G(ur, vr) ∧ Pmr
(ir, jr, ur, vr, Ar) ∧

(G(ur+1, vr+1) ∨ Cmr
(ur+1, vr+1, or+1, pr+1, Ar)) (4.1)

Note that it is the concrete sequence that we are taking as the simulatee, and the a
one that is the simulator. This is definitely the more appropriate perspective for
trenchment, made more so by the considerations of the next and subsequent se
The picture for conventional refinement is less clear: who should be the simulator
who the simulatee can be argued both ways, but again we do not have space to g
details.

5 Punctured Simulation

The last section defined stepwise simulation as the ability to simulate the whole of
quence. But the CONCEDES clause in a retrenchment makes it suitable for c
where simulation simply breaks down as a result of incompatibility between abs
and concrete models, even though the retrenchment operation PO remains valid
look at this more closely now.

Let us consider a simulation of a concrete execution which has just broken down.
have succesfully simulated some steps, arriving at statesur andvr , and having estab-
lished (G(ur, vr) ∨ C(ur, vr, or, pr, Ar–1)) . However we are unable to establish (G(ur, vr)
∧ Pmr

(ur, vr, ir, jr, Ar)) for the next concrete stepvr -(jr, mr, pr+1)-› vr+1 . Common sense
and some algebra shows that this could be because:

(I) mr ∉ OpsM , or
(II) mr ∈ OpsM , butPmr

(ur, vr, ir, jr, Ar) does not hold, or
(III) mr ∈ OpsM , C(ur, vr, or, pr, Ar–1) holds butG(ur, vr) does not hold.

Of course, (II) and (III) may hold simultaneously. Furthermore, after one or more n
simulable steps, non-simulability may be contributed to by the failure of the abstrac
variant, i.e.

(IV) ¬ (∃ ur • I(ur) ∧ G(ur, vr))

These conditions (I)–(IV) delineate the ways in which retrenchment can describe
failure of simulability. Any or all of them may explain non-simulability at any point o
a concrete executionT , which we summarise as the failure of condition (S) thus:

(S) (∃ ur, ir, Ar • I(ur) ∧ G(ur, vr) ∧ Pmr
(ur, vr, ir, jr, Ar))

(The remaining condition for simulability, thetrm condition, we take care of viaT .)

from

ap-
-
orks)
er of
c-

ty.
ility
nch-

l
s

a-
f the
This
Definition 5.1 Let (3.1) be a retrenchment and suppose thatv is a concrete state ofN .
If (∃ u • I(u) ∧ G(u, v) ∧ J(v)) holds, we say thatv is 0-recoverable. We say thatv is s-
recoverable iff at leastsconcrete steps are required to reach a 0-recoverable state
v . If there is no suchs we callv irrecoverable.

The possibility of needing to recover from a faulty situation is a familiar one in real
plications. Often a singleResetaction is all that is required and 1-recoverability suffic
es. Then again there are systems (for example complex high power electrical netw
which require a much more carefully staged recovery, consisting of a larger numb
steps. And just because a concrete state iss-recoverable does not mean that any parti
ular concrete execution sequence indeed recovers from it in preciselyssteps; the recov-
ery may itself partially fail, requiring a more protracted route back to simulabili
Equally one can imagine that at a sufficiently high level of abstraction, the possib
of failure and the necessity of recovery might be out of scope for the model. Retre
ment allows for these possibilities via the following very general concept.

Definition 5.2 Let (3.1) be a retrenchment and suppose thatT ≡ [v0 -(j0, m0, p1)-› v1
-(j1, m1, p2)-› v2 …] is a concrete execution sequence ofN . A punctured (stepwise)
simulationS of T is a subset dom(S) of dom•(T) , and a mapφS from dom(S) to steps
of M , φS(r) = ur -(ir, mr, or+1)-› ur+1 , such that:

(1) For eachr ∈ dom(S) , I(ur) holds.

(2) For eachr ∈ dom(S) , for an appropriateAr , (4.1) holds for the stepsur -(ir, mr,
or+1)-› ur+1 andvr -(jr, mr, pr+1)-› vr+1 indexed byr .

(3) For each adjacent pair {r, r+1} ∈ dom(S) , the steps indexed byr andr+1 agree on
the value ofur+1 .

Fig. 1 illustrates the general idea.

Definition 5.3 Let (3.1) be a retrenchment. Suppose thatT ≡ [v0 -(j0, m0, p1)-› v1 -
(j1, m1, p2)-› v2 …] is a concrete execution sequence ofN , and letS be a punctured
simulation ofT . A portion of dom(S) is a maximal interval of consecutive natura
numbers in dom(S) . A portionπ of S is a maximal run of consecutive execution step
of S , the image underφS of a portion, dom(π) , of dom(S) . Runs of consecutive exe-
cution steps ofT indexed by maximal intervals of (dom•(T) – dom(S)) are called ex-
ceptions.

Fig. 1 shows two portions ofS and three exceptions. Normally in a punctured simul
tion we would expect the exceptions to consist exclusively of non-simulable parts o
concrete execution sequence, but there is nothing in Definition 5.2 to ensure this.
is addressed in the following definition.

• • • • • • • • • • • • • •

• • • • • • • •S

T
•

Fig. 1. A punctured simulation.

he

ed

-

red

l on
ple
iliar

punc-
he two
shows

ave a
ample
aling

se in
h the
have

es, a
We
Definition 5.4 Let (3.1) be a retrenchment. Suppose thatT ≡ [v0 -(j0, m0, p0)-› v1 -
(j1, m1, p1)-› v2 …] is a concrete execution sequence ofN , and letS~ be a punctured
simulation ofT . S is a (punctured) subsimulation ofS~ iff it is a punctured simulation
of T in its own right, dom(S) ⊆ dom(S~) , and both simulations agree as maps on t
common parts of their domains.S is a proper subsimulation ofS~ iff dom(S) ≠
dom(S~) . S is a subsimulation ofS~ iff S~ is a supersimulation ofS . A punctured sim-
ulation (ofT) is maximal iff it is not a proper subsimulation of some other punctur
simulation ofT . A portionπ of a punctured simulationS of T is maximal iff there is
no proper supersimulationS~ of S containing a portionπ~ properly containingπ . A
portionπ of a punctured simulationS of T is called large iff there is no punctured sim
ulationS~ of T containing a portionπ~ such that dom(π) ⊆/ dom(π~) . A maximal punc-
tured simulation whose portions are all large is called a large maximal punctu
simulation.

Obviously a stepwise simulation is a maximal punctured simulation which is tota
its domain (and so contains just one large portion). The following counterexam
shows that the concept of punctured simulation is relevant even in the more fam
world of B refinement.

Counterexample 5.5 Consider the B refinement:

MACHINE M REFINEMENT N
REFINES M

VARIABLES uu VARIABLES vv
INVARIANT uu : NAT ∧ INVARIANT vv : NAT ∧

uu ∈ {1, 2} vv = 0
INITIALISATION uu := 1 INITIALISATION vv := 0
OPERATIONS OPERATIONS

Op =̂ Op =̂ skip
PREuu = 1
THEN uu := 2
END

END END

Fig. 2 shows that either the first or the second abstract step alone forms a maximal
tured simulation of the two step concrete execution sequence beneath, because t
abstract steps are unable to agree on a common intermediate abstract state. This
that maximal punctured simulations are neither unique nor do they necessarily h
unique domain, even under apparently favourable circumstances. The counterex
also indicates that punctured simulation is not simply an alternative means of de
with situations that need stuttering (i.e. the interspersing of arbitrary finite runs ofskips
into abstract execution sequences — see eg. [Abadi and Lamport (1991)]), becau
a punctured simulation the final abstract state of one portion need not coincide wit
first abstract state of the next portion: in particular two consecutive portions must
an exception of at least one concrete step between them.

The main point of the rest of this paper, is to show that under suitable circumstanc
unique domain property can be proved for large maximal punctured simulations.
start with a very general construction.

f
date
they
red by
n

al

ing the
l por-

ich
ation.
tion.
Theorem 5.6 Let (3.1) describe a retrenchment and letT ≡ [v0 -(j0, m0, p1)-› v1 -(j1,
m1, p2)-› v2 …] be an execution sequence ofN . ThenT has a maximal punctured sim-
ulationS ≡ [u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2 …] .

Proof. Consider the steps ofT . Some of them may be simulable. Any simulation o
such a simulable step forms a portion of a punctured simulation by itself. Candi
simulations of adjacent simulable steps can be combined into bigger portions if
agree on the abstract states at their interfaces. These portions are partially orde
the supersimulation relation. Since dom•(T) provides an upper bound for the domai
of any such portion, maximal portions exist by Zorn’s Lemma. Let the set of maxim
portions beΠMax . We useΠMax to constructS as follows.

1. r := 0

2. REPEAT steps 3, 4, 5

3. WHILE there is no element of ΠMax starting at indexr
DO r := r + 1
END

4. CHOOSE an elementπ of ΠMax starting atr and include it inS

5. r := r + size(π) + 1

6. UNTIL all indices ofT have been considered

EvidentlyS so constructed is maximal.

The above result cannot be strengthened to assert largeness (without strengthen
hypotheses) because nothing prevents a scenario in which there are two maxima
tions in ΠMax which overlap but such that neither is included in the other; but wh
nevertheless are such that either could be included in a maximal punctured simul
We leave the reader to construct easy counterexamples based on the following situa

Example 5.7

MACHINE M RETRENCHMENT N
RETRENCHES M

VARIABLES uu VARIABLES vv
INVARIANT uu : NAT1 INVARIANT vv : NAT ∧

vv = 0
INITIALISATION uu :∈ NAT1 INITIALISATION vv := 0
OPERATIONS OPERATIONS

•
•

•

•
•

•

•
•

•0

1
2

Fig. 2. Simulation steps not forming a stepwise simulation.

esult
ty for

es:

g.

ab-

i-
Op =̂ uu := uu + 1 Op=̂
END BEGIN

skip
WITHIN

uu < 4
CONCEDES

false
END

END

6 Simple Simulable Retrenchment

In this section we define a class of retrenchments for which a stepwise simulation r
can be proved, and then show that this carries through to a unique domain proper
large maximal punctured simulations.

Definition 6.1 For a retrenchment like (3.1), suppose the joint initialisation establish

(G(u0, v0) ∧ (∀ jm ∃ im, Am • Pm(im, jm, u0, v0, Am))) (6.1)

and suppose that eachOpsM operationn ≡ (Tn, An, Pn, Cn) of N satisfies the operation
compatibility PO:

G(u, v) ∨ Cn(u, v, o, p, B)
⇒

(G(u, v) ∧ (∀ jm ∃ im, Am • Pm(im, jm, u, v, Am))) (6.2)

then we say that the retrenchment is a simple simulable retrenchment.

The stepwise simulation property of simple simulable retrenchment is the followin

Theorem 6.2 Let (3.1) describe a simple simulable retrenchment where the set of
stract operation names isOpsM . Let T ≡ [v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 …] be
an execution sequence ofN . Suppose that the sequence of invoked operation namesms
≡ [m0, m1 …] is anOpsM sequence. Then there is a stepwise simulationS ≡ [u0 -(i0,
m0, o1)-› u1 -(i1, m1, o2)-› u2 …] of T .

Proof. This follows standard lines. LetT ≡ [v0 -(j0, m0, p1)-› v1 …] be an execution
sequence ofN . The dom(T) = {0} case is trivial because of the retrenchment initial
sation PO. Otherwise we go by induction on dom•(T) .

For r = 0 , we knowthat for the givenv0 andj0 from T , (6.1) holds. So for them0 from
T we can find ani0 such thatG(u0, v0) ∧ Pm0

(i0, j0, u0, v0, A0) holds for suitableA0 .
Now the initialisation POs forM andN yield I(u0) andJ(v0) . And becausev0 -(j0, m0,
p1)-› v1 is a step ofN , trm(T0) holds for (v0, j0) whereT0 is the body ofm0 in N , so we
have the antecedents of the retrenchment operation PO (3.2).

For the inductive step, supposeS has been constructed as far as ther’th step. Then we
haveI(ur) , J(vr) , G(ur, vr) , trm(Tr) for (vr, jr) (from the existence of ther+1’th step of
T), andPmr

(ir, jr, ur, vr, Ar) for suitableir andAr . Applying the retrenchment operation
PO (3.2), yields bothtrm(Sr) for (ur, ir) whereSr is the body ofmr in M , and thence a
step ofM , ur -(ir, mr, or+1)-› ur+1 such thatG(ur+1, vr+1) ∨ Cmr

(ur+1, vr+1, or+1, pr+1,
Ar) holds. Machine consistency forM andN yieldsJ(vr+1) andJ(vr+1) , and from (6.2)
we conclude that we can find anir+1 andAr+1 such thatG(ur+1, vr+1) ∧ Pmr+1

(ur+1, vr+1,

m ∈ OpsM
∧

m ∈ OpsM
∧

on of
the

at

f
s pos-

mula-

ain

ensure
rete

rding

mo-
or+1, pr+1, Ar+1) holds. We gettrm(Tr+1) for (vr+1, jr+1) from the existence of ther+2’th
step ofT which reestablishes the inductive hypothesis.

The above result has a direct counterpart in terms of the automata-theoretic noti
simulation but we do not have space to explore this here. We move directly on to
punctured simulation result.

Theorem 6.3 Let (3.1) describe a simple simulable retrenchment and letT ≡ [v0 -(j0,
m0, p0)-› v1 -(j1, m1, p1)-› v2 …] be an execution sequence ofN . ThenT has a large
maximal punctured simulationS ≡ [u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2 …] ; and if
S~ is any large maximal punctured simulation ofT , then dom(S~) = dom(S) .

Proof. We construct a suitableS in the following rather obvious manner, and show th
it has the required properties.

1. CHOOSE au0 so that (6.1) holds

2. r := 0

3. REPEAT steps 4, 5, 6

4. WHILE the next stepvr -(jr, mr, pr+1)-› vr+1 of T is anOpsM step
DO construct a simulating stepur -(ir, mr, or+1)-› ur+1 of S as in Theorem 6.2

 r := r + 1
END

5. WHILE the next stepvr -(jr, mr, pr+1)-› vr+1 of T is not anOpsM step
OR the simulation condition (S) fails forvr+1

DO r := r + 1
END

6. CHOOSE aur so that the simulation condition (S) holds forvr

7. UNTIL all steps ofT have been considered

The simulating abstract steps so constructed formS . Clearly thisS is a punctured sim-
ulation. To see it has the required properties we argue as follows. Each portion oS is
maximal since it starts as early as possible by steps 1 and 5, and finishes as late a
sible by the WHILE test of step 4. SoS is maximal. Also each portion ofS is large
because an easy induction over the structure of any exception of the punctured si
tion demonstrates that no step of such an exception can be simulable. SoS is large max-
imal. Furthermore any other large maximal punctured simulation must have dom
within dom(S) , and so its domain must equal dom(S) .

Thus as advertised, we see that the properties of a simple simulable retrenchment
the unique domain property for any large maximal punctured simulation of a conc
execution.

7 Memoryless Regular Retrenchment

In this section we define another class of retrenchments with good properties rega
large maximal punctured simulations in particular.

Definition 7.1 Let (3.1) describe a retrenchment. We say the retrenchment is me
ryless iff no ramification of an operation ofM contains an LVAR clause.

d the
after

tract
t)

sim-
ult.

et
e-

adja-

,

xist-
ible
So a memoryless retrenchment can be described using only individual states (an
outputs and inputs pertaining to them), without reference to properties of before-
pairs.

Definition 7.2 Let (3.1) describe a memoryless retrenchment where the set of abs
operation names isOpsM . We say thatM is regular (with respect to the retrenchmen
iff the following holds for allm ∈ OpsM :

G(u, v) ∧ P(i, j, u, v) ∧ stp(T)(v, j, v′, p) ∧ (G(u′, v′) ∨ C(u′, v′, o, p))
⇒

stp(S)(u, i, u′, o) (7.1)

where eg.stp(S)(u, i, u′, o) is a predicate that says thatu -(i, S, o)-› u′ is a step of gen-
eralised substitutionS , as described at the beginning of section 4.

Now memoryless regularity is not in itself enough to always guarantee a stepwise
ulation. However it is enough for a good large maximal punctured simulation res

Theorem 7.3 Let (3.1) describe a memoryless retrenchment withM regular, and letT
≡ [v0 -(j0, m0, p0)-› v1 -(j1, m1, p1)-› v2 …] be an execution sequence ofN . ThenT
has a large maximal punctured simulationS ≡ [u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2
…] ; and if S~ is any large maximal punctured simulation ofT , then dom(S~) =
dom(S) .

Proof. We construct a suitableS , and show that it has the required properties. L
dom(S) be the subset of dom•(T) for which an abstract state can be found to act as b
fore-state in a simulation step; more precisely:

dom(S) = { r ∈ dom•(T) | mr ∈ OpsM ∧ (∃ u, i • I(ur) ∧ G(u, vr) ∧ Pmr
(i, jr, u, vr))}

SinceT consists of execution steps, for everyr ∈ dom(S) , we can build a simulating
abstract step for the corresponding stepvr -(jr, mr, pr+1)-› vr+1 of T because the re-
trenchment operation PO is satisfied (specifically, the PO gives us the neededtrm(Sr)).
In particular

dom++(S) = {r + 1 | r ∈ dom(S)}

is the set of indices of after-states of such steps. Let

Befs = dom(S) – dom++(S)
Mids = dom(S) ∩ dom++(S)
Afts = dom++(S) – dom(S)

For eachr ∈ Befs∪ Mids chooseur , ir such that (I(ur) ∧ G(ur, vr) ∧ Pmr
(ir, jr, ur, vr))

holds. For eachr ∈ Aftschooseur , or such that (I(ur) ∧ (G(ur, vr) ∨ Cmr–1
(ur, vr, or,

pr))) holds. ForBefs∪ Mids this is possible by assumption; forAftsthis is possible by
abstract machine consistency and the retrenchment operation PO. Now for each
cent pairr , r+1 in dom(S) ∪ dom++(S) , we choose a stepur -(ir, mr, or+1)-› ur+1 . This
in turn is possible by the memoryless regularity ofM with respect to the retrenchment
(7.1). This gives us a punctured simulationS with domain dom(S) . The maximality of
S is clear. Large maximality follows because memoryless regularity prevents the e
ence of overlapping or abutting maximal portions which are not fusible (or not fus
after adjustment of a step or two). We are done.

e. A
g:

to the

r the
data,

be

an
ing
its
ot.
s to

gas
con-
of the
able
8 A Power Generation Case Study

We sketch a toy power generation example to illustrate some of the concepts abov
power generation system specification might start with something like the followin

MACHINE GenPower
CONSTANTS Margin
OPERATIONS

outpower←— RunGenPower (powerreq) =̂
outpower : (powerreq – Margin < outpower∧

powerreq + Margin > outpower)
END

This is a machine that simply states that when the environment demands power
tune ofpowerreq, then in the time it takes to execute theRunGenPoweroperation, the
generation facility will deliver power withinMargin units ofpowerreq. This machine
lacks vital information about many aspects of a real system (eg. an upper bound fo
deliverable power). Nevertheless, embellished with appropriate timing and other
a similar specification could serve as the definition of “normal service”, required to
available for at least a certain proportion of the time, say 99%.

The “real” specification will consist of a number of generating facilities managed by
overall control strategy. An individual generator might be described by the follow
state machine. We assume for simplicity that a generator offers little flexibility in
actual power output; it is either running and essentially delivering its full output, or n
Furthermore, a generator cannot go from cold to full power instantaneouly, it need
go through the preparatoryInit state first.

MACHINE Generator
SETS GENSTATES = { Off , Init , Running , Tripped }
VARIABLES state
INVARIANT state⊆ GENSTATES
INITIALISATION state := Off
OPERATIONS

StartUp =̂
PRE state = Off THEN state := Init END ;

RunGen =̂
PRE state = Init THEN state := Running END ;

StandBy =̂
PRE state = Running THEN state := Init END ;

TripOut =̂
PRE state∈ { Init , Running } THEN state := Tripped END ;

ReStart =̂
PRE state = Tripped THEN state := Init END

SwitchOff =̂
PRE state∈ { Init , Tripped } THEN state := Off END

END

Now we give the specification of the full system. It incorporates two generators, a
fired one and an oil fired one which together contain all the state of the system. It
tains operations to start the system and to recover after a trip, also a retrenchment
RunGenPoweroperation. Given the lag between starting a generator and its being

t
iron-
ower
rs the
tely
tran-
to deliver full power, the signature of theRunGenPoweroperation in the retrenchmen
has an extra paramenter compared to that of the high level version to allow the env
ment to warn the control system of upcoming changes in demand. Demands for p
that were not adequately anticipated thereby can cause a trip. When a trip occu
power output is too unstable to be put into the environment, and is immedia
switched to a sink, the environment seeing a sudden loss of power. Fig. 3 gives a
sition diagram for the non-exceptional part of theRunGenPoweroperation of the
GenPower_Ret machine. Note the slightly nonstandard I/O labelling.

MACHINE GenPower_Ret
RETRENCHES GenPower_Mch
INCLUDES Gas.Generator , Oil.Generator
CONSTANTS Threshold
SETS POWERLEVELS = { Zero , Low , High } ;

TRENDS = { Up , Down , Steady }
OPERATIONS

StartSystem =̂
PRE Gas.state = Off ∧ Oil.state = Off THEN Gas.StartUp END ;

yield ←— RunGenPower (demand , trend) =̂
BEGIN

PRE
demand∈ POWERLEVELS ∧ trend∈ TRENDS

THEN
SELECT Gas.state = Init ∧ Oil.state = Off ∧

demand = Zero∧ trend = Steady
THEN yield := Zero

WHEN Gas.state = Init ∧ Oil.state = Off ∧

Gas.Init∧ Oil.Off (Zero)

Gas.Running∧ Oil.Off (Low)

Gas.Running∧ Oil.Init (Low)

Gas.Running∧ Oil.Running (High)

trend= Down trend= Up

trend= Up

trend= Up

trend= Down

trend= Down

trend= Steady

trend= Steady

trend= Steady

trend= Steady

Fig. 3 Transition diagram forRunGenPower

demand = Zero∧ trend = Up
THEN yield := Zero || Gas.RunGen

WHEN Gas.state = Running∧ Oil.state = Off ∧
demand = Low ∧ trend = Steady

THEN yield := Low
WHEN Gas.state = Running∧ Oil.state = Off ∧

demand = Low ∧ trend = Down
THEN yield := Low || Gas.StandBy

WHEN Gas.state = Running∧ Oil.state = Off ∧
demand = Low ∧ trend = Up

THEN yield := Low || Oil.StartUp
WHEN Gas.state = Running∧ Oil.state = Init ∧

demand = Low ∧ trend = Steady
THEN yield := Low

WHEN Gas.state = Running∧ Oil.state = Init ∧
demand = Low ∧ trend = Down

THEN yield := Low || Oil.SwitchOff
WHEN Gas.state = Running∧ Oil.state = Init ∧

demand = Low ∧ trend = Up
THEN yield := Low || Oil.RunGen

WHEN Gas.state = Running∧ Oil.state = Running∧
demand = High ∧ trend = Steady

THEN yield := High
WHEN Gas.state = Running∧ Oil.state = Running∧

demand = High ∧ trend = Down
THEN yield := High || Oil.StandBy

ELSE
IF Oil.state∈ { Init , Running }
THEN Oil.TripOut || Gas.TripOut|| yield := Zero
ELSE Gas.TripOut|| yield := Zero
END

END
WITHIN

(powerreq < Margin ⇔ demand = Zero) ∧
(powerreq≥ Margin ∧ powerreq≤ Threshold⇔

demand = Low) ∧
(powerreq> Threshold⇔ demand = High)

CONCEDES
(Gas.state≠ Tripped∧ Oil.state≠ Tripped) ⇒
 ((yield = Zero⇒ outpower < 2× Margin) ∧

(yield = Low ⇒ outpower< Threshold + Margin) ∧
(yield = High ⇒ outpower> Threshold – Margin)

)
END

END ;
RecoverSystem1 =̂

PRE Gas.state = Tripped∧ Oil.state = Tripped
THEN Oil.SwitchOff
END ;

n be
other-

e-
ce is
con-

ble
ple
apply.
ps
ower
his is
.

state
e re-

ts
f the
use
gor-
ctive
rp re-
ecial-

o re-
sys-
ften

ons
RecoverSystem2 =̂
PRE Gas.state = Tripped∧ Oil.state = Off
THEN Gas.ReStart
END ;

ShutDownSystem =̂
PRE Gas.state = Init ∧ Oil.state = Off
THEN Gas.SwitchOff
END

END

Note that we have built in a constraint betweenRecoverSystem1andRecoverSystem2
whereby the former must complete (if its precondition applies) before the latter ca
applied, alluding to a presumed interactions between oil and gas generators not
wise modelled.

Execution sequences ofGenPower_Retthat start properly and end cleanly, can be d
scribed by the following regular expression, where an optional operation occurren
to be included or excluded at a particular point depending on whether or not its pre
dition holds there:

StartSystem
(; RunGenPower * [[; RecoverSystem1] ; RecoverSystem2]) * ;

ShutDownSystem

The underlinedRunGenPower* sections of such an execution sequence are simula
by GenPower_Mch. It is easy to check that the given retrenchment is both a sim
simulable retrenchment and a memoryless regular one, so Theorems 6.3 and 7.3
In fact any run of concreteRunGenPowersteps can be simulated by abstract ste
though the converse does not hold — we can easily imagine abstract runs with p
demands that fluctuate too wildly for the concrete system to be able to keep up. T
a typical characteristic of the transition from a continuous model to a discrete one

We close this little case study with one further observation. Noting that there is no
at all at the abstract level, there is no RETRIEVE relation either. This reduces th
trenchment PO,… ⇒ [RunGenPowerC]¬[RunGenPowerA]¬(G ∨ C) , to a triviality, as-
suming that the vacuuousG defaults totrue as we would want it to do in the anteceden
of the PO. Of course there is nothing to prevent us from proving the other branch o
disjunction too but we don’t have to. In fact in this example the CONCEDES cla
acts conjunctively more than disjunctively. Where such distinctions need to be vi
ously policed, as in the most highly critical developments, we can separate conjun
and disjunctive aspects to get a more subtle version of retrenchment (called sha
trenchment, see [Banach and Poppleton (1999)]). These considerations apply esp
ly to relationships involving abstract and concrete outputs, which certainlydo nothold
only when the the retrieve relation fails; i.e. they hold conjunctively.

9 Conclusions

In this paper we briefly reviewed some of the disadvantages of restricting oneself t
finement as the sole means of moving from an abstract high level description of a
tem to a realistic implementation level one. We find that the refinement POs are o
just too demanding to allow the relegation of various kinds of low level considerati

end

for-
re-
ereby
jec-

vant

d by
rely
rmi-
o the
t the

ts of
it of a
ro-

ms, by
n ex-
rrick
7)].

lated

/guar-
is me-
ntee
junc-
hods
lains

This
is pa-
ighted
eak-

be-
posi-
ractly
. Thus
e se-

simu-
t de-
t view

look
ique
two
very

ained
to the appropriate level of abstraction, with the result that such aspects of the system
up cluttering the most abstract levels.

Of course it is often the case that people use the word “refinement” much more in
mally, for development steps where additional detail incompatible with the official
finement POs is indeed introduced, but such steps lack precise semantics, and th
the potential for machine checkability. Our introduction of retrenchment has as ob
tive the legitimisation of such practices, by offering a syntactic container for the rele
properties, and especially, specific proof obligations.

It is hardly the case that no one else has previously noticed the difficulties impose
the refinement straitjacket. The complexities arising from being sensitive to the pu
finite domains available to real implementations were noted in the work on clean te
nation (see eg. [Coleman and Hughes (1979), Blikle (1981)]). Another approach t
same subject can be found in Neilson’s thesis [Neilson (1990)], which observes tha
infinite idealised domains of textbook examples usually arise as well behaved limi
finite ones, and thus refinement in the idealised case can be understood as the lim
finite version. Yet another attack can be found in [Owe (1985), Owe (1993)] who p
poses dealing with finiteness considerations, and the resulting definedness proble
using a carefully constructed three-valued logic. The I/O side of the coin has bee
amined by [Hayes and Sanders (1995)], and more recently by [Boiten and De
(1998), Stepney, Cooper and Woodcock (1998), Mikhajlova and Sekerinski (199
Retrenchment provides a relatively simple vessel into which (at least closely re
variants of) many of these ideas can be placed.

Perhaps the most obvious related development method to retrenchment is the rely
antee method of [Jones (1983)] and its successors. Here too a development step
diated by an additional pair of predicates per operation, the rely and the guara
clauses, but the crucial difference with respect to retrenchment is that both act con
tively, and thus allow no weakening of the retrieve relation. The fact that these met
are mainly designed to assist in the development of concurent programs is what exp
the particular form of the POs there.

The notion of retrenchment is thus inspired by very pragmatic considerations.
said, it behoves us to draw out its theoretical consequences, and the majority of th
per was devoted to some aspects of simulation that retrenchment supports. We al
on the notion of stepwise simulation as the key one. Because of the possibility of w
ening the retrieve relation in the after-state of a step, and of strengthening it in the
fore-state, two consecutive retrenched steps will not always admit sequential com
tion. Equally, since not all concrete steps are simulable anyway, an attempt to abst
simulate the whole of a concrete execution sequence is not guaranteed to succeed
the punctured simulation concept arose naturally. The view that it is the concret
quence that is the one to be simulated, and the abstract sequence that is to do the
lating, derives from the fact that in the end, the concrete machine in a retrenchmen
velopment step provides the more accurate model of the real system. The abstrac
is likely to be a useful though ultimately oversimplified one.

Punctured simulation is a very general notion, and as such an unpromising place to
for sharp results of a general kind. Nevertheless we were able to identify the un
domain property for large maximal punctured simulations and show that it held for
kinds of statically characterisable systems. Simple simulable retrenchments are
close to being refinements, and thus it is not surprising that good results can be obt

ique
erive

ive in-
hes to
possi-
able,
viour
sly,
rise,
ain

t.

tured

p.

ams.

ial

Ori-

sis,
ical

rtial
82-

g the
,

for them. The other kind, memoryless regular retrenchments, also exhibited the un
domain robustness property though additional assumptions would be needed to d
a stepwise simulation property.

Punctured simulation as presented here sets the scene for launching more incis
vestigations into the interactions between retrenchment and behavioural approac
system description. The case study we gave in section 8 merely hinted at these
bilities as we used just about the simplest behavioural description method imagin
the regular expression. That this was in fact adequate to describe system beha
comes down to the relatively trivial system structure in this particular case. Obviou
in more complicated situations, where for example non-trivial fairness questions a
less primitive behavioural description methods will prove useful. However this is ag
beyond the scope of the present paper.

References

Abadi M., Lamport L. (1991); The Existence of Refinement Mappings. Theor. Comp. Sci.82,
253-284.

Abrial J. R. (1996a); The B-Book. Cambridge University Press.

Banach R., Poppleton M. (1998); Retrenchment: An Engineering Variation on Refinemenin:
Proc. B-98, Bert (ed.), LNCS1393, 129-147, Springer.

Banach R., Poppleton M. (1999); Sharp Retrenchment, Modulated Refinement, and Punc
Simulation.in preparation .

Blikle A. (1981); The Clean Termination of Iterative Programs. Acta Inf.16, 199-217.

Boiten E., Derrick J. (1998); IO-Refinement in Z.in: Proc. Third BCS-FACS Northern Formal
Methods Workshop. Ilkley, U.K.

Coleman D., Hughes J. W. (1979); The Clean Termination of Pascal Programs. Acta Inf.11, 195-
210.

Hayes I. J., Sanders J. W. (1995); Specification by Interface Separation. Form. Asp. Com7,
430-439.

Jones C. B. (1983); Tentative Steps Towards a Development Method for Interfering Progr
ACM Tran. Prog. Lang. Sys.5, 596-619.

Lano K., Haughton H. (1996); Specification in B: An Introduction Using the B-Toolkit. Imper
College Press.

Mikhajlova A, Sekerinski E. (1997); Class Refinement and Interface Refinement in Object-
ented Programs.in: Proc. FME-97, Fitzgerald, Jones, Lucas (eds.), LNCS1313, 82-101,
Springer.

Neilson D. S. (1990); From Z to C: Illustration of a Rigorous Development Method. PhD. The
Oxford University Computing Laboratory Programming Research Group, Techn
Monograph PRG-101.

Owe O. (1985); An Approach to Program Reasoning Based on a First Order Logic for Pa
Functions. University of Oslo Institute of Informatics Research Report No. 89. ISBN
90230-88-5.

Owe O. (1993); Partial Logics Reconsidered: A Conservative Approach. Form. Asp. Comp.3, 1-
16.

Stepney S., Cooper D., Woodcock J. (1998); More Powerful Z Data Refinement: Pushin
State of the Art in Industrial Refinement.in: Proc. ZUM-98, Bowen, Fett, Hinchey (eds.)
LNCS1493, 284-307, Springer.

Wordsworth J. B. (1996); Software Engineering with B. Addison-Wesley.

	Retrenchment and Punctured Simulation
	R. Banacha, M. Poppletona,b aComputer Science Dept., Manchester University, Manchester, M13 9PL, ...
	Abstract: Some of the shortcomings of using refinement alone as the means of passing from high le...
	1 Introduction
	2 The Trouble with Refinement
	3 Retrenchment
	4 Stepwise Simulation
	5 Punctured Simulation
	6 Simple Simulable Retrenchment
	7 Memoryless Regular Retrenchment
	8 A Power Generation Case Study
	9 Conclusions
	References

