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Abstract: Some of the shortcomings of using refinement alone as the means of passing from
high level simple models to actual detailed implementations are reviewed. Retrenchment is
presented as a framework for ameliorating these. In retrenchment the relationship between an
abstract operation and its concrete counterpart is mediated by extra predicates, allowing most
particularly the description of non-refinement-like properties, and the mixing of I/O and state
aspects in the passage between levels of abstraction. Stepwise simulation, the ability of simulator
to mimic a sequence of execution steps of the simulatee, is introduced as the reference point for
discussing the broader semantic issues surrounding retrenchment. Punctured simulation is
introduced as a naturally occurring phenomenon implicit in the ability of retrenchments to
describe of non-refinement-like properties; and it is shown to have relevance even in some
refinements. Two special cases of retrenchment, simple simulable retrenchment and memoryless
regular retrenchment are introduced. Both enjoy a unique domain property for large maximal
punctured simulations, and the former has an easy stepwise simulation property too. A simple
case study is presented. The B-Method and notation are used throughout the paper.
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1 Introduction

In [Banach and Poppleton (1998)], we proposed retrenchment in order to liberalise the
notion of refinement. The purpose of this was to enable more of the informal aspects
of development to be captured within a formal framework. A retrenchment step from a
more abstract to a more concrete level of abstraction admits strengthening of the pre-
condition and weakening of the postcondition, and the mingling of state and I/O infor-
mation between the levels of abstraction in question. This is accomplished by having
two extra predicates per retrenched operation, the WITHIN and CONCEDES clauses
the former expressing the precondition strengthening, and the latter expressing the post-
condition weakening. Most specifically, non-refinement-like behaviour can be enter-
tained within the framework via the weakened postcondition. This in turn permits
inconvenient low level detail of the true system from interfering with an idealised model
at a high level of abstraction, leading to hopefully cleaner, more comprehensible devel-
opment routes.

[Banach and Poppleton (1998)] was concerned with making the engineering case for
the retrenchment notion. We considered it important to proceed in this more pragmatic
manner at the outset, as the experience with refinement showed in hindsight that too ear-
ly an emphasis on mathematical elegance could have detrimental consequences on the
development activity for realistic problems. In this paper we focus on some of the the-
oretical properties of retrenchment. Specifically, since retrenchment allows the retrieve
relation to be violated in the after-state of an execution step, and also because the more

1. As we have called them in the concrete syntax of the B-Method.



concrete level of abstraction may contain operations that do not appear at the abstract
level, the simulation relation between the two levels, familiar from refinement, may
break down completely. We study this situation to see what can be recovered from it.
Specifically we introduce punctured simulation, a behavioural notion describing simu-
lations “with holes in them”, and show that in special cases of retrenchment, “large
maximal” punctured simulations possess a unique domain property, which is about the
best one could hope for in the context of such a general notion.

In more detail, the rest of this paper is as follows. In section 2 we briefly recall why
refinement is too strong a notion to conveniently encompass much of realistic system
building activity. For a much fuller treatment of such motivational issues see [Banach
and Poppleton (1998)]. In section 3 we present retrenchment and the proof obligations
that give it semantic content. In section 4 we define stepwise simulation, the central
concept for discussing wider semanic issues for retrenchment, and briefly comment on
our choice of definition. In section 5 we introduce punctured simulation formally and
give some basic properties, showing in fact that it has relevance even in the familiar
world of B refinement. In section 6, simple simulable retrenchment s introduced, a spe-
cial case of retrenchment with properties quite close to those of refinement. For this we
get a straightforward stepwise simulation result, and we see that the uniqgue domain
property mentioned above holds. In section 7, another special case is introduced, mem-
oryless regular retrenchment, and a similar unique domain property is established. Sec-
tion 8 presents a small case study of a model power generation plant to illustrate
punctured simulation. Section 9 concludes. The B-Method and Abstract Machine No-
tation [Abrial (1996a), Wordsworth (1996), Lano and Haughton (1996)] are used
throughout the paper. By providing in particular a fixed syntactic framework for refine-
ment, they provide a very convenient structure into which the ideas of retrenchment can
be placed. This also helps in comparing refinement and retrenchment although a thor-
ough treatment of that topic is beyond the scope of this paper.

2 The Trouble with Refinement

We will start with a small example taken from an idealised process management sub-
system. Suppose we must defensively implement the operation of adding a new process
newprocto an existing pool of processesocs. In the B notation we would write (a

little loosely for brevity) at the abstract level:

MACHINE Proc_Machine
VARIABLES procs
INVARIANT procsd PROCS
INITIALISATION procs:= [
OPERATIONS

AddProc( newproc) =
IF

newprocd PROCS
THEN
procs:= procs { newproc}
END
END

We might want to refine this to a situation in which the geticswas represented by an
injective sequence of the constituent procegses;sseq For pragmatic reasomsoc-



sseqwould be limited in size to 15 elements say. Set union becomes represented by ap-
pending sequences. So the resulting refinement would turn out as follows:

REFINEMENT Proc_Machine_R

REFINES Proc_Machine
VARIABLES procsseq
INVARIANT procssed] iseq(PROCS ) Osize(procsseg < 1500

procs= rng(procsseg
INITIALISATION procsseqg= < >
OPERATIONS
AddProc( newproc) =
IF

newprocd PROCS [0 newprocl] rng(procsseq O
size(procsseq < 15
THEN
procsseq= procssed) [ newproc]
END
END

Unfortunately this is not a refinement in the technical sense. To see this let us examine
the proof obligation of refinement as generated in the B-Method:

INVy OINVe Otrm(AddProg,)
O trm(AddProg) O[AddProg] = [AddProg] - INVc

HereINV, andINV are the abstract and concrete invariants respectively (and the con-
crete invariant contains the retrieve relatiprocs= rng( procsseq ). Furthermore
trm(AddProg) andtrm(AddProg.) are the abstract and concrete termination predi-
cates (normally called preconditions in non-B parlance). pdblProg] - [AddPro-

cal - INV( asserts that for every step that the concrete operatduiProg: makes,
there is a step that the abstract operafioitlProg can make that establishes the truth

of the concrete invariahiNVc , in the abstract and concrete after-states.

Consider what this says whéprocs| = 15 andnewprocl procs. We have to show

two things. Firstly thatrm(AddProg) , which is justtrue , can be derived from the
hypotheses. Butrue holds anyway so there is nothing to prove here. However when
we secondly check that for every concrete step we have to have an abstract step that em-
ulates it, we run into trouble since as well as other things we have to prove:

procsd PROCS [
procssed] iseq(PROCS) [size(procsseq < 150procs=rng(procsseq O true
0

newprocd PROCS [0 newprocl] procs(]size(procsseq = 15
O
[ skip] - [ procs:=procsO { newproc} | = ( procs= rng(procsseq )

This is evidently false since in the after-stapgecswill have an extra element com-
pared toprocsseq To get a genuine refinement we would have to push the concrete
level finiteness requirement up to the abstract level.

But this is a bad idea we claim. It acts only to obscure the simplicity and clarity of the
abstract system as we originally wished to conceive it. This in turn weakens the useful-
ness of the abstract level by narrowing the gap between abstract and concrete levels.



This leads to a shallower development route, capturing less of the design activity within
the formal framework.

One technical device that leads to a way out of the formal conundrum just identified,
and one that is much favoured in the formal development community, is to amplify the
key statement in the abstract operation to:

procs:= procsC] { newproc} [ ] skip

In this particular caseskip, ([]is the choice combinator in Byvould do just what the
concrete operation does in the (null) ELSE branch of the conditional, so we could res-
cue the situation and recover a refinement. More generally though, we couldn’t just cas-
ually insert “[ ] skip” and leave it at that. We would need to wrikip alone as the body

of the abstract operation, and have a suitably trivial retrieve relation, so that we could
rely on the fact that with a trivial retrieve relatiosnyterminating operation (that pre-
serves it) refineskip . Obviously in such a situation thekip says nothing at all about

the relationship between the “true” abstract and concrete levels, except to signal loud
and clear that whatever it is, it is certaimgta refinement relationship. Therefore as a
technique for capturing design decisions in the engineering of real systems in the man-
ner illustrated (as opposed to its proper role as an identity for sequential composition in
the calculus of generalised substitutions), we congikigrharmful.

Returning to our putative refinement above, when we are indeed jptbes| = 15 and
newprocl] procssituation, the concrete system simply does nothing. Would this be ap-
propriate in reality? Of course not. We would want the operation to at least inform its
caller that it was unable to fulfil the normal demand, and that it was taking an excep-
tional action. For this we would need a change of signature, eg.

res —«— AddProc( newproc)

Theresoutput would indicate success or failure regarding the normal functioning of the
operation. Evidently changing the signature is not within the province of refinement as
it is conventionally understood, so incorporating a more concrete signature into the ab-
stract level, particuarly when its role in the ideal abstract model would be spurious, rep-
resents at best another unnecessary distraction from the simplicity of the abstract
system, or at worst a further undesirable narrowing of the abstraction gap between ab-
stract and concrete systems.

We see that there are drawbacks to using conventional refinement as the sole means of
going from an abstract description of a system to a concrete one. Evidently the issues
we have raised are rather trivial in the case of a small illustrative example, but it is not
hard to imagine that in realistic situations, the level of detail that needs to be brought up
to the abstract system in order for there to be a refinement between abstract and concrete
worlds is so great that it overwhelms the underlying concepts of the abstract model. The
supposedly abstract model then becomes little more than a restatement of the concrete
model in another language. Such a thing is not terrible in itself of course — the different
perspectives of the two descriptions can each illuminate the other — but the valuable
goal of setting out how the real system definition is arrived at from the designer’s orig-
inal simplified ideas is lost. In this manner we briefly promote the introduction of a
more liberal notion than refinement which we intend to bridge that gap. Such motiva-
tional issues are discussed much more extensively in [Banach and Poppleton (1998)].



3 Retrenchment

The top level system construct in B is the MACHINE which expresses the abstract mod-
el of the system being built. A MACHINE is refined via the top level REFINEMENT
construct which roughly speaking contains similar components to a MACHINE , with
the exception that its INVARIANT clause contains the retrieve relation which links ab-
stract and concrete variables. The abstract variables in question are those to be found
in the top level construct being refined, this being named in the REFINES clause of the
REFINEMENT , and refers to either a MACHINE or a preceding REFINEMENT .

Retrenchment may be viewed as a variation on refinement. For flexibility we will allow
either a MACHINE or a REFINEMENT to be retrenched, since the result of the devel-
opment step is essentially the specification of a fresh problem. Here is the syntax of a
RETRENCHMENT .

MACHINE M (a) MACHINE N(b)
RETRENCHES M
VARIABLES u VARIABLES %
INVARIANT I (u) INVARIANT J(v)
RETRIEVES G(u,v)
INITIALISATION X (u) INITIALISATION Y (V)
OPERATIONS OPERATIONS
0 «— OpName(i) = p «— OpNamdj) &
S(u,i,o) BEGIN
END T(v,j,p)
LVAR
A
WITHIN
P(i,j,u,v,A)
CONCEDES
C(u,v,0,p,A)
END
END (3.1)

Thus we have a MACHINB/(a) , with typical operation given by the signatuwwe-—
OpNamé) , the body ofOpNamebeing a generalised substituti&u, i, 0) . On the

right we have a MACHINEN(b) , together with the RETRENCHEM clause and re-
trieve relation RETRIEVES(u, v) . (We insist that the retrieve relation and invariant
are given separately in a retrenchment in order to separate concerns.) The body of each
operationp —— OpNaméj) is now a ramified generalised substitution, that is to say a
generalised substitutioR(v, j, p) , together with its ramification, the LVAR , WITHIN ,
CONCEDES clauses. Ea@pNamef M must appear ramified withiN , but we allow
additional operations iN . (These could be specified trivially Bkips in M but we
consider such uses skip at least undesirable not to say harmful.) If we strip away the
RETRENCHES clause, the RETRIEVES clause, and the ramifications, we end up with
just a normal B MACHINE .

Speaking informally, the ramification of an operation allows us to describe how the con-
crete operation fails to refine its abstract counterpart. The D¥dRuse, which is op-
tional, allows us to introduce logical variablésthat remember before-values of
variables and inputs, so that we may refer to them in the context of the after-state if nec-



essary. The scope of the LVAR declaration is the WITHIN and CONCEDES clauses.
The job of the WITHIN clause is to describe nontrivial relationships between the ab-
stract and concrete before-values of variablendv , and abstract and concrete input
valuesi andj , and to define values for the logical variabkes It is used to strengthen

the precondition as we will see below, and thus may contain any strengthening of the
retrieve relation required in the retrenchment step. The purpose of the CONCEDES
clause is to provide a similar storehouse for information concerning the after-state. In
particular, the CONCEDES clause involves abstract and concrete variables, abstract and
concrete outputs, and the logical variabfesand weakens the retrieve relation in the
after-state allowing non-refinement like behaviour to be expressed. These ideas find
more precise expression in the proof obligations which we now list.

We take for granted an environment where all the necessary identifiers are defined in
terms of basic types. Then there are the conventional machine PRsfuiN . Firstly
the initialisation POs:

[ X(u) ] 1(u)
[Y(V)]JMV)

and then the invariant preservation POs:

I(u) Otrm(S(u, i,0)) O [ S(u,i,0) ] 1(u)
Jv) Otrm(T(v, j, p) O [TV, p) 1 (V)

Next we have the sharp retrenchment initialisation PO which is just like the correspond-
ing refinement initialisation PO:

[Y(V) ] = [X(W)] = Gu,v)
and finally we have the retrenchment PO for operations which reads:

(I(u) OG(u, v) OJ(V) O trm(T(v, j, p)) OPG, j, u, v, A)
U

trm(Su,i,0)) O[T(v,j, p) ] = [Su,i,0)] =
(G(u,v) OC(u, v, 0, p, A) (3.2)

The antecedents of this PO contain the invariants and retrieve relgtigpm(G(u, v) O

J(v)) , and moreover them(T(v, j, p)) clause is strengthened by the WITHIN clause
P(i, j, u, v, A) . These assumptions allow us to infer the abstiraa{(u, i, 0)) clause,

and also that the familiaf“T(v, j, p) ] = [ Su, i, 0) ] =" structure establishes for the
after-states either the retrieve relation, or the CONCEDES clause, the latter permitting
reference to outputs as well as after-states, and to before-data as rememberei in the
variables. The justification of the precise form of this PO was discussed at length in
[Banach and Poppleton (1998)]. Beyond those considerations which continue to apply
here, we will say that it leads to a clean notion of stepwise simulation which we intro-
duce in the next section.

We give an example of retrenchment by redoing our failed refinement above within the
new framework. Given our preceding comments about the appropriateness of a refine-
ment step between the desired two levels of abstraction, the following seems a more nat-
ural development step.



MACHINE Proc_Machine_Ret
RETRENCHES Proc_Machine

SETS RESPONSES = {added, notadded
VARIABLES procsseq
INVARIANT procssed] iseq(PROCS ) [ size(procsseq < 15
RETRIEVES procs= rng(procsseq
INITIALISATION procsseq= < >
OPERATIONS
res —«—— AddProc( newproc) =
BEGIN
IF

newproc PROCS [ newprocl] rng(procsseg U
size(procsseg < 15

THEN
procsseq= procssed) [ newproc] ||
res:=added
ELSE
res:= notadded
END
LVAR
LL,PP
WITHIN
LL = size(procsseq OO PP = procsseq
CONCEDES
(LL = 150procsseq PP Ores=notadded = - (res=added
END

END

Note how the CONCEDES clause allows us to express what happens when the refine-
ment relationship breaks down, as well as allowing us to say something about the output
res, which did not exist at the abstract level. Note also how the occurrenpesasseq

in the WITHIN clause refer to the before-value while the occurrence in the CON-
CEDES clause refers to the after-value, necessitating the . of

4 Stepwise Simulation

The generality of the relationships we are prepared to admit as retrenchments, provokes
the question of what is the fundamental semantic anchor point for the retrenchment no-
tion. Our stance is, that this lies in the kinds of simulation that retrenchments support.
The basic simulation notion that we focus on is that of stepwise simulation, by which
we mean the simulation of a sequence of steps of the simulatee by an equal length se-
quence of steps of the simulator. This choice is dictated by various technical details re-
garding different notions of simulation that it is beyond the scope of this paper to dis-
cuss. We write a step of a machine suchaxd (3.1) in the form:

u-@, m, 0)->u

whereu andu’ are the before and after statesis the name of the operation (where it
can help, we writes, the body ofm, instead oimitself), andi ando are the input and
output ofm. This signifies thaty, i) satisfytrm(S) , and that q, i, U, 0) satisfy the
before-after predicate ofi(which in B parlance says that'(0) is a possible result from



(u,i)). When discussing properties of sequences of stagi$] ) will denote the index

of the last state mentioned in , andr O dom’(T ) will meanr O[O ... last(T ) — 1] if

T is finite, andr O NAT otherW|se Similarly for sequences of any type. In general we
need to distinguis®psM , the operation names atthe abstract level, fpsN the op-
eration names at the concrete level, wi@ps™ O OpsN

Definition 4.1 Let (3.1) be a retrenchment. Suppose thas [ Vg -(jo, My, P1)-> V1 -
(11, ™, P2)-> V5 ... | is an execution sequence Nif, and thalS = [ ug -(ig, Mg, 07)-> Uy -
(i, my, 09)-> Uy ... ] is an execution sequence M, where [my, my, ... ] is a sequence
overOps" . ThenS is a stepwise simulation df iff G(ug, vp) holds, and for alf O
domi'(T ) there is am, such that:

G(Ur, V) 0P (irs Jp Up Vi A) O
G(Ur+1v Vr+1) 0 Cm(ur+1! Vr+1 Or+1: Pr+ts Ar)) (4-1)

Note that it is the concrete sequence that we are taking as the simulatee, and the abstract
one that is the simulator. This is definitely the more appropriate perspective for re-
trenchment, made more so by the considerations of the next and subsequent sections.
The picture for conventional refinement is less clear: who should be the simulator and
who the simulatee can be argued both ways, but again we do not have space to go into
details.

5 Punctured Simulation

The last section defined stepwise simulation as the ability to simulate the whole of a se-
quence. But the CONCEDES clause in a retrenchment makes it suitable for cases
where simulation simply breaks down as a result of incompatibility between abstract
and concrete models, even though the retrenchment operation PO remains valid. We
look at this more closely now.

Let us consider a simulation of a concrete execution which has just broken down. We
have succesfully simulated some steps, arriving at statasdyv, , and having estab-
lished G(uy, v;) OC(uy, Vi, O, P, Ar—7)) - However we are unable to establigb(i,, v;)

OPm (Ur, Vi i, Jr, Ay)) for the next concrete step-(jy, My, Pr11)-> V41 . COmmon sense
and some algebra shows that this could be because:

(h  m OOpsY
m ma0 Ops butP  (Ur, Vi, i, ], A;) does not hold, or
my m oopsM, cu, vr, Oy, Pr, Ar_1) holds butG(u,, v;) does not hold.

Of course, (II) and (lll) may hold simultaneously. Furthermore, after one or more non-
simulable steps, non-simulability may be contributed to by the failure of the abstract in-
variant, i.e.

(V) = (Ou = 1(u) OG(uy, V)

These conditions ()—(1V) delineate the ways in which retrenchment can describe the
failure of simulability. Any or all of them may explain non-simulability at any point of
a concrete executioh , which we summarise as the failure of condition (S) thus:

(S)  (Oupin A« 1(u) OG(Uy, V) OPm (Up, Vi i i Ar))
(The remaining condition for simulability, tiiem condition, we take care of via .)



Definition 5.1 Let (3.1) be a retrenchment and suppose ¥ha& concrete state of .

If (OueI(u) OG(u, v) OJ(v)) holds, we say that is O-recoverable. We say thats s-
recoverable iff at leastconcrete steps are required to reach a O-recoverable state from
v. If there is no suchwe callv irrecoverable.

The possibility of needing to recover from a faulty situation is a familiar one in real ap-
plications. Often a singlResefction is all that is required and 1-recoverability suffic-

es. Then again there are systems (for example complex high power electrical networks)
which require a much more carefully staged recovery, consisting of a larger number of
steps. And just because a concrete stasaéxoverable does not mean that any partic-
ular concrete execution sequence indeed recovers from it in presistelys; the recov-

ery may itself partially fail, requiring a more protracted route back to simulability.
Equally one can imagine that at a sufficiently high level of abstraction, the possibility
of failure and the necessity of recovery might be out of scope for the model. Retrench-
ment allows for these possibilities via the following very general concept.

Definition 5.2 Let (3.1) be a retrenchment and suppose that[ vy -(o, Mg, P1)-> V1
-(j1, My, po)-> v, ... ] is & concrete execution sequenceNbf A punctured (stepwise)
simulationS of T is a subset don®) of doni(T ) , and a mapg, from dom@) to steps
of M, @&(r) = u, -(i;, M, Or+1)-> U4, Such that:

(1) For eachr 0 dom@) , I(u,) holds.

(2) For eachr O dom@) , for an appropriaté, , (4.1) holds for the steps; -(i,, m,
0r+1)'> Ur+1 andvr '(jry m, pr+1)'> Vis1 indexed by .

(3) For each adjacent pair {r+1} 0 dom@) , the steps indexed byandr+1 agree on
the value of,q .

Fig. 1 illustrates the general idea.

Fig. 1. A punctured simulation.

Definition 5.3 Let (3.1) be a retrenchment. Suppose that [ v -(jg, Mg, P1)-> V4 -

(i1, My, Po)-> Vs ... ] is a concrete execution sequenceNdf and letS be a punctured
simulation of T . A portion of domf) is a maximal interval of consecutive natural
numbers in donf) . A portionttof S is a maximal run of consecutive execution steps
of S, the image undeg; of a portion, doni) , of dom@) . Runs of consecutive exe-
cution steps off indexed by maximal intervals of (do(T ) — dom§)) are called ex-
ceptions.

Fig. 1 shows two portions & and three exceptions. Normally in a punctured simula-
tion we would expect the exceptions to consist exclusively of non-simulable parts of the
concrete execution sequence, but there is nothing in Definition 5.2 to ensure this. This
is addressed in the following definition.



Definition 5.4 Let (3.1) be a retrenchment. Suppose that [ vj -(ig, Mo, Po)-> V1 -

(i1, My, p1)-> V5 ... ] is a concrete execution sequencelofand letS™ be a punctured
simulation ofT . Sis a (punctured) subsimulation 5T iff it is a punctured simulation

of T in its own right, dom$) 0 dom@™) , and both simulations agree as maps on the
common parts of their domainsS is a proper subsimulation & iff dom(S) #
dom@") . Sis a subsimulation &~ iff S™is a supersimulation & . A punctured sim-
ulation (of T ) is maximal iff it is not a proper subsimulation of some other punctured
simulation of T . A portionttof a punctured simulatio of T is maximal iff there is

no proper supersimulatios™ of S containing a portiort properly containingt. A
portionTtof a punctured simulatiof of T is called large iff there is no punctured sim-
ulationS™of T containing a portiom™ such that dontf) L) dom(t") . A maximal punc-
tured simulation whose portions are all large is called a large maximal punctured
simulation.

Obviously a stepwise simulation is a maximal punctured simulation which is total on
its domain (and so contains just one large portion). The following counterexample
shows that the concept of punctured simulation is relevant even in the more familiar
world of B refinement.

Counterexample 5.5 Consider the B refinement:

MACHINE M REFINEMENT N
REFINES M
VARIABLES uu VARIABLES v
INVARIANT uu: NAT O INVARIANT v :NAT O
uud{1, 2} w=0
INITIALISATION  uu:=1 INITIALISATION  w:=0
OPERATIONS OPERATIONS
Op & Op“ skip
PREuu=1
THENuu:=2
END
END END

Fig. 2 shows that either the first or the second abstract step alone forms a maximal punc-
tured simulation of the two step concrete execution sequence beneath, because the two
abstract steps are unable to agree on a common intermediate abstract state. This shows
that maximal punctured simulations are neither unique nor do they necessarily have a
unique domain, even under apparently favourable circumstances. The counterexample
also indicates that punctured simulation is not simply an alternative means of dealing
with situations that need stuttering (i.e. the interspersing of arbitrary finite ruskgmst

into abstract execution sequences — see eg. [Abadi and Lamport (1991)]), because in
a punctured simulation the final abstract state of one portion need not coincide with the
first abstract state of the next portion: in particular two consecutive portions must have
an exception of at least one concrete step between them.

The main point of the rest of this paper, is to show that under suitable circumstances, a
unique domain property can be proved for large maximal punctured simulations. We
start with a very general construction.



Fig. 2. Simulation steps not forming a stepwise simulation.

Theorem 5.6 Let (3.1) describe a retrenchment andlle€ [ vq -(jo, Mg, P1)-> V1 -(i1,
my, Po)-> Vs ... ] be an execution sequenceldf ThenT has a maximal punctured sim-

ulationS = [ ug -(ig, Mg, 04)-> Uy ~(i1, My, 09)> Uy ... ] .

Proof. Consider the steps df . Some of them may be simulable. Any simulation of
such a simulable step forms a portion of a punctured simulation by itself. Candidate
simulations of adjacent simulable steps can be combined into bigger portions if they
agree on the abstract states at their interfaces. These portions are partially ordered by
the supersimulation relation. Since d@i) provides an upper bound for the domain

of any such portion, maximal portions exist by Zorn’s Lemma. Let the set of maximal
portions beyax - We usdly,y, to construch as follows.

1. r:=0
2. REPEAT steps 3,4,5
3. WHILE there is no element ofy,,, Starting at index
DOr:=r+1
END
4, CHOOSE an elementt of My, starting ar and include it irb
5. r:=r+size +1

6. UNTIL allindices ofl have been considered
EvidentlyS so constructed is maximal

The above result cannot be strengthened to assert largeness (without strengthening the
hypotheses) because nothing prevents a scenario in which there are two maximal por-
tions in M5, Which overlap but such that neither is included in the other; but which
nevertheless are such that either could be included in a maximal punctured simulation.
We leave the reader to construct easy counterexamples based on the following situation.

Example 5.7
MACHINE M RETRENCHMENT N
RETRENCHES M
VARIABLES uu VARIABLES Y
INVARIANT uu: NAT, INVARIANT vv:NAT O
w=0

INITIALISATION  uu:0 NAT, INITIALISATION  wv:=0
OPERATIONS OPERATIONS



Op % uu:=uu+1 Op&
END BEGIN

skip

WITHIN
uu<4

CONCEDES
false

END

END

6 Simple Simulable Retrenchment

In this section we define a class of retrenchments for which a stepwise simulation result
can be proved, and then show that this carries through to a unique domain property for
large maximal punctured simulations.

Definition 6.1 For aretrenchmentlike (3.1), suppose the jointinitialisation establishes:

(GlUg o) 0 Dp (0 i Dy A * Prin s U0 Vo And) (6.1)

and suppose that eaC)'psM operatiomn = (T,,, A, P,,, C,) of N satisfies the operation
compatibility PO:

G(u, v) OCy(uy, v, 0, p, B)

u
(G(u.v) O meSM (Dim D, Ay * Pri, i U, Vs Ar) (6.2)
then we say that the retrenchment is a simple simulable retrenchment.
The stepwise simulation property of simple simulable retrenchment is the following.

Theorem 6.2 Let (3.1) describe a simple simulable retrenchment where the set of ab-
stract operation names@psM . LetT =[vg-(ig, Mg, P1)-> V4 -(i1, My, Po)-> V5 ... 1 be

an execution sequencelf Suppose that the sequence of invoked operation namses
=[mg,m ...]isan OpsM sequence. Then there is a stepwise simuldier] Ug -(ig,

Mg, 07)-> Ug (i1, My, 09)-> Uy ... JOf T .

Proof. This follows standard lines. Ldt =[ vq-(jo, Mg, P1)-> V4 --- ] be an execution
sequence ol . The dom({ ) = {0} case is trivial because of the retrenchment initiali-
sation PO. Otherwise we go by induction on &dm .

Forr =0, we knowthat for the givervy andjy from T , (6.1) holds. So for then, from
T we can find ang such thatG(ug, Vo) 0Py (ios jo» Uos Vo Ag) holds for suitabledy .
Now the initialisation POs foM andN yieldmf)(uo) andJ(vp) . And becauseg -(jg, Mg,
py-> vy is a step oN , trm(Tp) holds for {/, jo) whereTy is the body ofnyin N, so we
have the antecedents of the retrenchment operation PO (3.2).

For the inductive step, suppoSéhas been constructed as far asithtestep. Then we
havel(u,) , J(v,) , G(u,, v) , trm(T;) for (v,, j,) (from the existence of thet+1'th step of
), andPp, (ir, jr, Uy, vy, Ay) for suitablei, andA, . Applying the retrenchment operation
PO (3.2), yields bottrm(S) for (uy, i;) whereS is the body ofm, in M , and thence a
step ofM , Uy -(i, My, Or11)~> Upsq SUCh thatG(Uy.1, Vi+1) U Cry (Ur+1, Ve+1s Op+1s Pres
A;) holds. Machine consistency ftd andN yieldsJ(v, 1) andj(vr+1) , and from (6.2)
we conclude that we can find 0, andAy,1 such thaG(Uy+1, Vr+1) OPm, ;(Ur+1, Vr41,



Or+1; Pr+1, Ar+1) holds. We getrm(T,.1) for (V+1, j+1) from the existence of ther2'th
step of T which reestablishes the inductive hypothesis.

The above result has a direct counterpart in terms of the automata-theoretic notion of
simulation but we do not have space to explore this here. We move directly on to the
punctured simulation result.

Theorem 6.3 Let (3.1) describe a simple simulable retrenchment anfl lef vq -(jg,
My, Po)-> V1 -(i1, My, P1)-> V5 ... ] be an execution sequencedf ThenT has a large
maximal punctured simulatiod = [ ug -(ig, Mg, 04)-> Ug (i1, My, 09)-> U ... ] ; and if
S is any large maximal punctured simulationlof then donf§”) = dom§) .

Proof. We construct a suitabfin the following rather obvious manner, and show that
it has the required properties.

1. CHOOSE aug so that (6.1) holds
2. r:=0

3. REPEAT steps4,5,6

4

WHILE the next step, -(j;, M, Pr+1)-> Vr+1 Of T is anOps™ step
DO construct a simulating step -(i,, M, 041)-> U4 of S as in Theorem 6.2

r=r+1
END
5. WHILE the next step, -(j;, M, Pr+1)-> Vy+1 Of T is not arOps™ step
OR the simulation condition (S) fails fef,4
DO r:=r+1
END
6. CHOOSE au, so that the simulation condition (S) holds vpr

7. UNTIL all steps off have been considered

The simulating abstract steps so constructed fornClearly thisS is a punctured sim-
ulation. To see it has the required properties we argue as follows. Each porfios of
maximal since it starts as early as possible by steps 1 and 5, and finishes as late as pos-
sible by the WHILE test of step 4. S®is maximal. Also each portion & is large
because an easy induction over the structure of any exception of the punctured simula-
tion demonstrates that no step of such an exception can be simulaiés IBme max-

imal. Furthermore any other large maximal punctured simulation must have domain
within dom@) , and so its domain must equal dSjn( ©

Thus as advertised, we see that the properties of a simple simulable retrenchment ensure
the unique domain property for any large maximal punctured simulation of a concrete
execution.

7 Memoryless Regular Retrenchment

In this section we define another class of retrenchments with good properties regarding
large maximal punctured simulations in particular.

Definition 7.1 Let (3.1) describe a retrenchment. We say the retrenchment is memo-
ryless iff no ramification of an operation Mfcontains an LVAR clause.



So a memoryless retrenchment can be described using only individual states (and the
outputs and inputs pertaining to them), without reference to properties of before-after
pairs.

Definition 7.2 Let (3.1) describe a memoryless retrenchment where the set of abstract
operation names '@psM . We say thaM is regular (with respect to the retrenchment)
iff the following holds for alim [ Ops'\’I :

G(u, v) OP(i, j, u,v) Ostp(M)(v, j, v, p) O(G(u, v) OC(U, V, 0, p))
O

stp(9(u, i, u', 0) (7.2)

where egstp(S(y, i, U, 0) is a predicate that says that(i, S 0)-> U’ is a step of gen-
eralised substitutio8, as described at the beginning of section 4.

Now memoryless regularity is not in itself enough to always guarantee a stepwise sim-
ulation. However it is enough for a good large maximal punctured simulation result.

Theorem 7.3 Let (3.1) describe a memoryless retrenchment Witregular, and leT
=[ Vg -(ig, Mys Po)-> V1 -(11, My, P1)-> V> ... ] be an execution sequencef. ThenT
has a large maximal punctured simulat® [ ug -(ig, Mg, 07)-> Ug ~(i1, My, 09)-> Uy
o] ;(Sand if S~ is any large maximal punctured simulation bf, then dom§™) =
dom@) .

Proof. We construct a suitabl® , and show that it has the required properties. Let
dom@) be the subset of doifT ) for which an abstract state can be found to act as be-
fore-state in a simulation step; more precisely:

dom@) = {r Ddon(T ) |m, 0 OpsM O(Du, i« I(u) OG(u, v,) OPm (i, i U, vi)}

SinceT consists of execution steps, for everyl dom@) , we can build a simulating
abstract step for the corresponding step(j,, m,, py+1)-> Vy+1 of T because the re-
trenchment operation PO is satisfied (specifically, the PO gives us the need&d ).
In particular

donmi"*(S) = {r + 1|r O domQ)}
is the set of indices of after-states of such steps. Let

Befs = dom@) — donT*(S)
Mids = dom§) n doni"*(S)
Afts = doni™*(S) — dom{)

For eactr Ul BefsU Mids choosev, , i; such that ((u;) O G(uy, Vi) 0Py, (ir, jr, U, V)

holds. For each O Aftschoosey, , o, such that (u,) O (G(uy, v;) O Cp,_,(Uy, Vi, O,

py))) holds. ForBefs[ Mids this is possible by assumption; faftsthis is possible by
abstract machine consistency and the retrenchment operation PO. Now for each adja-
cent pair , r+1 in dom@) O dom™(S) , we choose a ste ~(i;, My, 0;41)-> U1 - This

in turn is possible by the memoryless regularity\divith respect to the retrenchment,
(7.1). This gives us a punctured simulatfdwith domain domg) . The maximality of

Sis clear. Large maximality follows because memoryless regularity prevents the exist-
ence of overlapping or abutting maximal portions which are not fusible (or not fusible
after adjustment of a step or two). We are ddre.



8 A Power Generation Case Study

We sketch a toy power generation example to illustrate some of the concepts above. A
power generation system specification might start with something like the following:

MACHINE GenPower
CONSTANTS Margin
OPERATIONS

outpower —— RunGenPowe( powerreq) =
outpower: ( powerreg— Margin < outpower(]
powerreg+ Margin > outpower)
END

This is a machine that simply states that when the environment demands power to the
tune ofpowerreq, then in the time it takes to execute tReanGenPoweoperation, the
generation facility will deliver power withitargin units ofpowerreq. This machine

lacks vital information about many aspects of a real system (eg. an upper bound for the
deliverable power). Nevertheless, embellished with appropriate timing and other data,
a similar specification could serve as the definition of “normal service”, required to be
available for at least a certain proportion of the time, say 99%.

The “real” specification will consist of a number of generating facilities managed by an
overall control strategy. An individual generator might be described by the following
state machine. We assume for simplicity that a generator offers little flexibility in its
actual power output; it is either running and essentially delivering its full output, or not.
Furthermore, a generator cannot go from cold to full power instantaneouly, it needs to
go through the preparatohyit state first.

MACHINE Generator
SETS GENSTATES = { Off, Init , Running, Tripped}
VARIABLES state
INVARIANT state[] GENSTATES
INITIALISATION  state:= Off
OPERATIONS
StartUp =
PRE state= Off THEN state:=Init END ;
RunGen
PRE state=Init THEN state:= Running END ;
StandBy*
PRE state= Running THEN state:=Init END ;
TripOut =~
PRE state[ { Init , Running} THEN state:= Tripped END ;
ReStart®>
PRE state= Tripped THEN state:= Init END
SwitchOff =

PRE state[ { Init , Tripped} THEN state:= Off END
END

Now we give the specification of the full system. It incorporates two generators, a gas
fired one and an oil fired one which together contain all the state of the system. It con-
tains operations to start the system and to recover after a trip, also a retrenchment of the
RunGenPoweoperation. Given the lag between starting a generator and its being able



to deliver full power, the signature of titunGenPoweoperation in the retrenchment

has an extra paramenter compared to that of the high level version to allow the environ-
ment to warn the control system of upcoming changes in demand. Demands for power
that were not adequately anticipated thereby can cause a trip. When a trip occurs the
power output is too unstable to be put into the environment, and is immediately
switched to a sink, the environment seeing a sudden loss of power. Fig. 3 gives a tran-
sition diagram for the non-exceptional part of tRenGenPowepperation of the
GenPower_Remachine. Note the slightly nonstandard 1/0O labelling.

(" GasInitDOILO (Zerg O trend= Steady

trend= Down trend=Up

( Gas.Running] Oil.Off (Low) O trend= Steady
trend= Down trend=Up

( Gas.Runnind] Oil.Init  (Low) O trend= Steady
trend= Down trend=Up

( Gas.Running] Oil.Running (High)@ trend= Steady

Fig. 3 Transition diagram fdRunGenPower

MACHINE GenPower_Ret
RETRENCHES GenPower_Mch
INCLUDES Gas.Generator Oil.Generator
CONSTANTS Threshold
SETS POWERLEVELS = { Zero, Low, High} ;
TRENDS = { Up, Down, Steady}

OPERATIONS

StartSystent

PRE Gas.state= Off [ Oil.state= Off THEN Gas.StartUpEND ;
yield —— RunGenPowe( demand, trend) =
BEGIN
PRE
demand] POWERLEVELS Otrend 0 TRENDS
THEN
SELECT Gas.state= Init [ Oil.state= Off O
demand= Zero O trend = Steady
THEN vyield ;= Zero
WHEN Gas.state= Init [ Oil.state= Off O



demand= ZeroOtrend= Up
THEN vyield := Zero|| Gas.RunGen
WHEN Gas.state= Running Oil.state= Off (I
demand= Low [ trend = Steady
THEN vyield := Low
WHEN Gas.state= Running Oil.state= Off
demand= Low [Jtrend = Down
THEN vyield := Low || Gas.StandBy
WHEN Gas.state= Running Oil.state= Off O
demand= Low Otrend=Up
THEN vyield := Low|| Oil.StartUp
WHEN Gas.state= Running Oil.state= Init O
demand= Low Otrend = Steady
THEN vyield := Low
WHEN Gas.state= Running Oil.state= Init O
demand= Low Otrend = Down
THEN vyield := Low || Oil.SwitchOff
WHEN Gas.state= Running Oil.state= Init O
demand= Low Otrend=Up
THEN vyield := Low|| Oil.RunGen
WHEN Gas.state= Running Oil.state= Running]
demand= High Otrend = Steady
THEN vyield := High
WHEN Gas.state= Running Oil.state= RunningC]
demand= High Otrend=Down
THEN vyield := High || Oil.StandBy
ELSE
IF Oil.stateO { Init , Running}
THEN OIl.TripOut || Gas.TripOu{| yield := Zero
ELSE Gas.TripOuf| yield := Zero
END
END
WITHIN
( powerreg< Margin = demand=Zero) [
( powerregz Margin O powerregs Threshold=
demand=Low) O
( powerreg> Threshold= demand=High)
CONCEDES
( Gas.statet Tripped Oil.state# Tripped) O
( (yield=ZeroO outpower< 2x Margin) O
(yield=Low [ outpower< Threshold+ Margin) [
(yield=High O outpower> Threshold-Margin)
)
END
END ;
RecoverSystem#
PRE Gas.state= Tripped Oil.state= Tripped
THEN Oil.SwitchOff
END ;



RecoverSystem?2
PRE Gas.state= Trippedd Oil.state= Off
THEN Gas.ReStart
END ;

ShutDownSysterfr
PRE Gas.state= Init O Oil.state= Off
THEN Gas.SwitchOff
END

END

Note that we have built in a constraint betwedRacoverSystendnd RecoverSystem2
whereby the former must complete (if its precondition applies) before the latter can be
applied, alluding to a presumed interactions between oil and gas generators not other-
wise modelled.

Execution sequences &enPower_Rethat start properly and end cleanly, can be de-
scribed by the following regular expression, where an optional operation occurrence is
to be included or excluded at a particular point depending on whether or not its precon-
dition holds there:

StartSystem
(; RunGenBwer* [ [ ; RecoverSystenil, RecoverSysteni? * ;
ShutDownSystem

The underlinedRunGenBwer* sections of such an execution sequence are simulable
by GenPower_Mch It is easy to check that the given retrenchment is both a simple
simulable retrenchment and a memoryless regular one, so Theorems 6.3 and 7.3 apply.
In fact any run of concretRunGenPowesteps can be simulated by abstract steps
though the converse does not hold — we can easily imagine abstract runs with power
demands that fluctuate too wildly for the concrete system to be able to keep up. Thisis
a typical characteristic of the transition from a continuous model to a discrete one.

We close this little case study with one further observation. Noting that there is no state
at all at the abstract level, there is no RETRIEVE relation either. This reduces the re-
trenchment PO.,.. O [RunGenPowef]~[RunGenPowey]- (G OC), to a triviality, as-
suming that the vacuuo@&defaults tatrrue as we would want it to do in the antecedents

of the PO. Of course there is nothing to prevent us from proving the other branch of the
disjunction too but we don'’t have to. In fact in this example the CONCEDES clause
acts conjunctively more than disjunctively. Where such distinctions need to be vigor-
ously policed, as in the most highly critical developments, we can separate conjunctive
and disjunctive aspects to get a more subtle version of retrenchment (called sharp re-
trenchment, see [Banach and Poppleton (1999)]). These considerations apply especial-
ly to relationships involving abstract and concrete outputs, which certdinhothold
onlywhen the the retrieve relation fails; i.e. they hold conjunctively.

9 Conclusions

In this paper we briefly reviewed some of the disadvantages of restricting oneself to re-
finement as the sole means of moving from an abstract high level description of a sys-
tem to a realistic implementation level one. We find that the refinement POs are often
just too demanding to allow the relegation of various kinds of low level considerations



to the appropriate level of abstraction, with the result that such aspects of the system end
up cluttering the most abstract levels.

Of course it is often the case that people use the word “refinement” much more infor-
mally, for development steps where additional detail incompatible with the official re-
finement POs is indeed introduced, but such steps lack precise semantics, and thereby
the potential for machine checkability. Our introduction of retrenchment has as objec-
tive the legitimisation of such practices, by offering a syntactic container for the relevant
properties, and especially, specific proof obligations.

It is hardly the case that no one else has previously noticed the difficulties imposed by
the refinement straitjacket. The complexities arising from being sensitive to the purely
finite domains available to real implementations were noted in the work on clean termi-
nation (see eg. [Coleman and Hughes (1979), Blikle (1981)]). Another approach to the
same subject can be found in Neilson’s thesis [Neilson (1990)], which observes that the
infinite idealised domains of textbook examples usually arise as well behaved limits of
finite ones, and thus refinement in the idealised case can be understood as the limit of a
finite version. Yet another attack can be found in [Owe (1985), Owe (1993)] who pro-
poses dealing with finiteness considerations, and the resulting definedness problems, by
using a carefully constructed three-valued logic. The I/O side of the coin has been ex-
amined by [Hayes and Sanders (1995)], and more recently by [Boiten and Derrick
(1998), Stepney, Cooper and Woodcock (1998), Mikhajlova and Sekerinski (1997)].
Retrenchment provides a relatively simple vessel into which (at least closely related
variants of) many of these ideas can be placed.

Perhaps the most obvious related development method to retrenchment is the rely/guar-
antee method of [Jones (1983)] and its successors. Here too a development step is me-
diated by an additional pair of predicates per operation, the rely and the guarantee
clauses, but the crucial difference with respect to retrenchment is that both act conjunc-
tively, and thus allow no weakening of the retrieve relation. The fact that these methods
are mainly designed to assist in the development of concurent programs is what explains
the particular form of the POs there.

The notion of retrenchment is thus inspired by very pragmatic considerations. This
said, it behoves us to draw out its theoretical consequences, and the majority of this pa-
per was devoted to some aspects of simulation that retrenchment supports. We alighted
on the notion of stepwise simulation as the key one. Because of the possibility of weak-
ening the retrieve relation in the after-state of a step, and of strengthening it in the be-
fore-state, two consecutive retrenched steps will not always admit sequential composi-
tion. Equally, since not all concrete steps are simulable anyway, an attempt to abstractly
simulate the whole of a concrete execution sequence is not guaranteed to succeed. Thus
the punctured simulation concept arose naturally. The view that it is the concrete se-
quence that is the one to be simulated, and the abstract sequence that is to do the simu-
lating, derives from the fact that in the end, the concrete machine in a retrenchment de-
velopment step provides the more accurate model of the real system. The abstract view
is likely to be a useful though ultimately oversimplified one.

Punctured simulation is a very general notion, and as such an unpromising place to look
for sharp results of a general kind. Nevertheless we were able to identify the unique
domain property for large maximal punctured simulations and show that it held for two
kinds of statically characterisable systems. Simple simulable retrenchments are very
close to being refinements, and thus it is not surprising that good results can be obtained



for them. The other kind, memoryless regular retrenchments, also exhibited the unique
domain robustness property though additional assumptions would be needed to derive
a stepwise simulation property.

Punctured simulation as presented here sets the scene for launching more incisive in-
vestigations into the interactions between retrenchment and behavioural approaches to
system description. The case study we gave in section 8 merely hinted at these possi-
bilities as we used just about the simplest behavioural description method imaginable,
the regular expression. That this was in fact adequate to describe system behaviour
comes down to the relatively trivial system structure in this particular case. Obviously,
in more complicated situations, where for example non-trivial fairness questions arise,
less primitive behavioural description methods will prove useful. However this is again
beyond the scope of the present paper.
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