
ARIES/NT Modification for Advanced Transactions Support∗

Henrietta Dombrowska
University of St.-Petersburg
E-mail: henr@orl2.usr.pu.ru

Abstract

A modification of ARIES/NT algorithm for nested transactions
rollback and recovery is proposed. This modification allows to per-
form the forward recoveryfor advanced transaction models, such
as ConTracts and some subclasses of Sagas. The implementation
of the proposed algorithm at the storage system level is described.

1 Introduction

ARIES/NT [11] (ARIES for nested transactions) algorithm for
transaction rollback and recovery is a simple and efficient recovery
method. It uses write-ahead logging protocol and supports differ-
ent modes of logging. Among the most important advantages of
this algorithm are the ability to to attach different buffer manage-
ment strategies, different lock modes and effective recovery: the
system can start its activity after a crash when only the first step of
recovery is completed.

ARIES/NT is an extension of ARIES recovery and concurrency
control method introduced in [7] and inherits its major features.
Though this method applies to a very general model of nested trans-
actions and is flexible enough to be used for different modifications
of transaction model, it is not sufficient to support some transac-
tion models, namely those which require intermediate transaction
recovery after the system crash.

The proposed modification of ARIES/NT algorithm allows to
support a wide range of flexible transaction models and workflows.
It was implemented using the buffer managing system of the stor-
age system described in [9]. Some in-memory structures used by
the buffer manager allow to simplify the basic ARIES scheme. The
rest of the paper is organized as follows: in section 2 some impor-
tant advanced transaction models are described. Section 3 gives
a short description of the buffer manager of the storage system,
its main functions and data structures, in section 4 the proposed
modifications for ARIES/NT are considered. Conclusion shortly
summarize the results.

∗This work was partially supported by Russian Foundation for Basic Research un-
der grant 95-01-00636, and UrbanSoft Ltd. under contract 35/95.

Proceedings of the International Workshop on Advances in
Databases and Information Systems. Moscow, June 27–30,
1995.

2 Overview of advanced transaction models

The traditional transaction concept, which confirms the ACID
transaction properties, ensures both execution and failure atomicity
as it hides the effects of failures and concurrent processing. Such
transactions are very effective in traditional applications which are
characterized with short duration and access few data items.

However, in advanced non-traditional applications this tradi-
tional concept has limited applicability. Thus, in CAD/CAM, pub-
lication and software development environments transactions are
usually very complex, access many data items and reside in the sys-
tem for a long duration. Suchlong-lived transactions, introduced
in [4], have high probability to be interrupted while their execution
because of their long execution time. If such transaction will be
rolled back due to failure atomicity requirement, much work will
be lost. Besides, long lived transactions, due to isolation require-
ment, have to lock large amounts of data for long periods of time,
leaving other transactions to wait for hours and days. Moreover,
such transactions can easily cause deadlock.

Using traditional transactions in multidatabase systems and dis-
tributed databases also evokes some problems. These problems
concern the global serialization and detecting of global conflicts
which contradicts with the requirement of local autonomy.

To overcome some of the difficulties mentioned above several
non-traditional transaction models were proposed, the most impor-
tant of them will be shortly described below.

Two basic transaction models introduced in 80ths are conven-
tional nested transactions and Sagas. In the nested transaction
model introduced in [8], each transaction can initiate any num-
ber of nested transactions that are executed independently, but all
the nested transactions should terminate (commit or abort) before
the parent transaction. If the child transaction committs, its parent
transaction can restart it, or ignore, or start the contingency sub-
transaction, or deside to abort. This model implies partial refusing
from atomicity and durability.

In the Sagas model [3] each transaction is divided into rela-
tively independent steps, for each of these steps the compensat-
ing transaction is defined. A system must guarantee that either the
whole Saga will be executed or all its steps already performed will
be compensated, so the committed steps may be rolled back. The
locked data items are released at the end of each step.

Many other advanced transaction models are either concretiza-
tions of these two classes or combine some features of both of them.
Thus, the DOM model [6] support different types and concretiza-
tions of nested transactions, among them decoupled and deferred
transactions.

The ConTract model [10] requiresforward-recoverability. This
means that after a failure the ConTract must be continued from
where it was interrupted. The Sagas extensions presented in the

29



Transactions

Atomic Nested

Multilevel

DOM

Deffered

Depend. Independ.

Decoupled

������� ?

�
��/









�

Sagas

Split

A
A
A
AU

ConTract

?

HHHHHHj

HHj ��	

S
S

S
Sw

Figure 1: Advanced Transaction Classes

ACTA framework [1] allow to have nested Sagas and Sagas that
can’t be compensated. Thepolitransactions[12] were developed
to support interdependent data in multidatabase environment and
allows to detect an existence of data dependencies during the trans-
action execution.

The hierarchy of advanced transaction classes is represented on
figure 1.

3 Buffer management

The storage system was designed to support the manipulation of
hierarchical complex data objects. It provides for representation,
storing, indexing and searching of low-level representation of the
SYNTHESIS [5] objects.

One of the most essential components of storage system ker-
nel is the buffer manager, that supports reuse of blocks that are
already read into memory, latching of the buffers and locking of
the logical records, minimizing of the real input/output. It provides
fine-granularity locking and supports the log, based on ARIES/NT
algorithm for transaction rollback and recovery.

The functions of the buffer manager of the storage system are
similar to those of many other systems of this type. It provides in-
memory cache for disk storage. For the reasons of portability the
storage system do not use hardware support for virtual memory.
Explicit function calls to allocate, free, store pages to disk etc. are
provided instead.

Each memory buffer is described internally by it’sheader,
which includes the information used to support the reuse of blocks
already read from disk, thereby minimizing the actual number of
I/O operations and to provide the correctness of transaction access
to the buffer. The buffer state reflects the buffer status and depends
on the last operation performed with this buffer.

In the SYNTHESIS architecture a full-function concurrency
control is independent of the storage system. The interoperable
environment of heterogeneous information resources provides the
logical transaction processing, including global distributed trans-
actions which are subdivided into sets of local transactions over
different resources. For this reason, the storage system provides
only low-level transaction support ensuring physical data integrity,
but do nothing about serialization, deadlock protection etc.

On the other hand, access methods provide logical operations
on data items, such asupdate, insert, delete, so in the buffer system
we don’t consider garbage collection or growing records, but deal
only with reading and writing of physical pages. For example, sup-
pose that while performingupdateit will be discovered that the free
space on the page is insufficient for the new value and the record
should be transferred to some other page. The actions of the buffer
manager will be the following: it will write to the stable storage the
”old” page where the garbage collection will be already performed
by the access method, obtain the new page, place there the updated
record and write it to the stable storage. thus it will simply perform
two updates.

As the buffer system provides fine-granularity locking, one
buffer can be shared by several transactions. That’s why for correct
usage of the buffers theLocks Tableis supported. For each record
locked by transaction it contains the transaction code, the record
number and the buffer identifier. Note that the previous discussion
about logical and page-oriented operations can be completely ap-
plied in case of fine-grained locks.

If one of the records in a buffer should be updated by transac-
tion that has locked it, this transaction latches the buffer, placing
it’s identifier to the buffer header. For the latched buffer this trans-
action is called it’sowner. While the buffer is latched, only it’s
owner can access it (see figure 2). Note, that if the buffer is in the
free state, it is considered to have no owner, and any transaction,
which previously locked a records in this buffer can latch it.

In case of nested transactions each transaction can access all
the records of it’s direct or transitive parent transactions which are
not currently locked, and is committed to it’s parent while the real
write-to-disk operation is executed after the up-level transaction
commit. Such scheme allows to execute the transaction rollback
at any level.

To provide the correct access to the buffers for nested trans-
actions the Active Transaction Tree (ATT) is kept in memory [2].
Each node of this tree contains the transaction code and the pointers
to the direct ancestor, to the elder brother and to the first child. It
also contains the number of the last log record for each transaction,
which is used for rollback during normal processing. Additional
buffer system functions provide some operations on ATT, that al-
lows to change its structure. These operations are used to support

30



1

2

3

4

a

b

b

c

2 3 4 5

10 12

101 103 105 110

214 217

BuffersBuffer
Headers

Locks Table

Trans
Id Rec BufId

a

b

a

c

c

b

b

2

103

101

214

5

12

3

1

3

3

4

1

2

1

Figure 2: Locking and Latching

other flexible transaction models, namely, decoupled and deffered
transactions, split transactions, and some other.

4 Recovery method

.
ARIES is a family of algorithms for transaction rollback and

recovery. It uses the widely accepted write ahead logging (WAL)
protocol. This protocol asserts that the log records which represents
the changes of the data items should be already on stable storage
before the updated page will replace the previous version of that
data. The recovery methods based on WAL protocol are used in
such systems as IMS/VS, DB2, Starbust, NonStop SQL and some
others.

The alternative methods are based on shadow page technique.
To update a physical page its new copy is formed in the main mem-
ory, which is later transferred to disk as acurrent versionof a page,
while the previous copy is referred to asshadow version. This
method has such well-known disadvantages as extra nonvolatile
storage space overhead for shadow data copies, distributing the
physical clustering of data and need for extra I/O operations for
page map blocks modification.

Existing WAL-based methods differs in buffer management,
ways they take normal checkpoints and usage of compensating log
records. Most of them require specific buffer managing policy,
locking granularity and so on. For example, DB2, NonStopSQL
and some other systems adopted the steal and no-force policies.
One of the advantages of ARIES is that it allows to attach different
strategies of buffer management and supports a wide range of lock
types. To achieve more efficiency, ARIES supports page-oriented
redoand for high concurrency it supports logicalundo.

In contrast to other WAL-based methods ARIES does not write
log records to indicate the time when the data item was fetched to

volatile storage. While normal processing it formsundoandredo
records for each update operation and writes them into the log. All
log records written by the same transaction are linked via aback-
ward chain. TheLSN– Last Sequent Number – identifies the record
in the log and is used as a pointer in this chain. The checkpoints are
taken during the normal processing as in other WAL-based meth-
ods.

In ARIES/NT method nested transactions should be supported.
When a child transaction commits, thechild-commit record is
added into a backward chain of the parent transaction thus linking
all its subtransactions chains into the backward chain tree.

�

��

�

��

%
%

%
%

e
e

e
e

�

��

�

��

�

��

�

��

A active

B active

Ccommitted E active

Dcommitted F committed

Figure 3: Nested Transaction Example

The piece of ARIES/NT log which corresponds to the execution
of transactionA represented on figure 3 is shown on figure 4. We
do not cover here such aspects of ARIES and ARIES/NT as adding
compensation log recordswhile transaction rollback, filling the log
during recovery and some others.

After the system failure ARIES scans the log to extract the in-
formation about the pages that were updated in memory and not
yet updated in the database; and about the transactions that were
in progress at the time of a crash. Then ARIES repeats the his-
tory updating those records that were logged but not transferred to
nonvolatile storage. During the last phase of recovery ARIES un-
does the affect of all in-progress transactions. All the child trans-
actions of in-progress top-level transaction are rolled back, no mat-
ter whether they were committed or not. For committed top-level
transactions the lost updates of their subtransactions are repeated.

To support logging and recovery in the ordinary ARIES/NT al-
gorithm several in-memory tables should be provided. The most
important of them areTransaction Tableand Dirty Pages Table.
Both of them are used during normal processing and during restart
recovery. In the latter case they are created using the information
from the log records on the analysis pass of the log.

In considered buffer managing system the ARIES/NT algo-
rithm was modified in two main aspects. The first concerns the
support of in-memory structures. In the considered storage sys-
tem all the information about dirty pages can be extracted from the
buffer headers. Besides, the ATT nodes contain the codes, types
andLast LSN’sof in-progress transactions, so the system needn’t
support any additional in-memory structures.

The second aspect arises from the need to support a wide range
of transaction models. Note that in ARIES/NT method the results
of committed subtransactions are undone if their parent top-level

31



active

active

active

A

B

E

A:

B:

C:

D:

E:

F:

-
time

u

u

u

u

u

u

u

u

c

c

u

c

u

����������9

�

�
�
�
�
�
�
�
�
�
�
�
�
���

�

�









���� �����������)�

�
�

�
��/�

TransTab

Last
LSN State Trans-

Id

Figure 4: ARIES/NT Log Example

transaction hasn’t been committed. Meanwhile, a large number of
advanced transaction models require an ability to continue top-level
transaction processing after a crash, that is requireforward recov-
erability. In the proposed ARIES/NT modification new log record
typenewtransis introduced which indicates the start of new trans-
action. The piece of the modified log is shown on figure 5.

Each record ofnewtranstype contain the subtransaction code,
the parent transaction code and the subtransaction type. Due to
this during the ananlysis pass the the ATT can be restored during
the system recovery just in the same state as it was at the moment
of a crash. This ability provides the way to support such flexible
transaction models as ConTracts and nested sagas and a wide range
of other advanced models supported by ACTA framework.

For the system with adavanced transaction models it’s very dif-
ficult to define a performance measure and built appropriate model.
On one hand, long-living activities can last for many hours. On the
other hand, the execution time depends highly on application type.
So, the only thing we can do is to compare the suggested recov-
ery method with the basic ARIES/NT algorithm. Two things may
be stated then: the first is that the proposed modification is correct
relatively to the basic algorithm, and the next is that it is almost as
efficient as ARIES/NT, because the only additional overhead is one
more log record per transaction, which is normally less than few
percents of the total number of records written to the log.

5 Conclusion

In this paper the ways of various types of transaction support by
the buffer manager of the storage system where considered. The
means to support fine granularity locking and the ARIES algorithm
for transaction rollback and recovery were described. The main
mechanism for nested transaction execution in the buffer manager
is the active transaction tree. After inclusion of some additional in-
formation into it’s nodes, the ATT can be used to support the whole

range of flexible transaction models, thereby allowing to implement
to all of them the ARIES algorithm.

The future research in this area will be concentrated on measur-
ing performance of proposed recovery method and on comparing it
with the techniques proposed in [13].

References

[1] P. Chrysanthis and K. Ramamritham. ACTA: A framework
for specifying and reasoning about transaction structure and
behavior. InProceedings of ACM SIGMOD Conference,
1990.

[2] H. Dombrowska. The low-level support and logging for flexi-
ble transactions. InProc. of the Intnl. Workshop on Advances
in Databases and Information Systems - ADBIS’94, pages 49–
53, Moscow, May 23–26 1994.

[3] H. Garcia-Molina and K. Salem. SAGAS. InProceedings of
ACM SIGMOD Conference, pages 249–259, San Francisco,
California, May 1987.

[4] J. Gray. The Transaction Concept: Virtues and Limitations.
In Proceedings of the 7th International Conference on Very
Large Data Bases, pages 144–154, Cannes, France, Septem-
ber 1981.

[5] L. Kalinichenko. The interoperable environment of hetero-
geneous information resources: a generalization perspective.
In Proc. of the First International Workshop on the Interop-
erability in Multidatabase systems, pages 196–199, Kyoto,
April 1991.

[6] F. Manola and A. Buchmann. Functional/relational object-
oriented model for distributed object management. Technical
Report TM-0331-11-90-165, GTE Laboratories Inc., Decem-
ber 1990.

32



A:

B:

C:

D:

E:

F:

-
time

u

u

u

u

u

u

u

u

c

c

u

c

u

�

�

�









���� ����������)�

�
�

�
�/�

n

n

n

n

n

�

6

��
6

C
C
C
C
C
C
C
C
C
C
CCO

�

�

J
J

J
J]

6

n

n
A
AAn

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�























�

A

B

E

ATT

�
�

�
�

�
�

�
�

�
��/

Figure 5: Modified Log Example

[7] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwartz. ARIES: A transaction recovery method support-
ing fine-granularity locking with partial rollbacks using write-
ahead logging.ACM Trans. on Database Systems, 17(1):94–
162, 1992.

[8] J. Moss.Nested Transactions: An Approach to Reliable Dis-
tributed Computing. PhD thesis, MIT Press, Cambridge, MA,
1985.

[9] B. Novikov. The storage system support for complex objects.
USiM, (7):46–52, July 1991.

[10] A. Reuter. Contracts: A Means for Extending Control Be-
yond Transaction Boundaries. InPresentation at Third Inter-
national Workshop on High Performance Systems, September
1989.

[11] K. Rothermel and C. Mohan. ARIES/NT: A recovery method
based on write-ahead logging for nested transactions. InProc.
15 conf. VLDB, pages 337–346, 1989.

[12] M. Rusinkiewicz and A. Sheth. Polytransactions for man-
aging interdependent data.IEEE Data Engineering Bulletin,
14(1), March 1991.

[13] E. Soisalon-Soininen and T. Ylonen. Partial strictness in two-
phase locking. InProc. of the 5th Intnl. Conf on Database
Theory - ICDT’95, pages 139–147, Prague, January 11–13
1995.

33


