Model Generation using Genetic
Programming

H.Glaser™, D.De Roure™, J.Putney*, and A.Salhi*

T Department of Computer Science and Electronics,
The University of Southampton,
Southampton SO17 1BJ, UK

* Trading and Planning Group, National Power PLC,
Windmill Hill Business Park, Whitehill Way,
Swindon SN5 6PB, UK

Abstract

In search and optimisation applications, model building is largely manual.
However, relationships binding variables and making up constraints may be
automatically generated if a complete enough body of data is available. At
present, at the level of most businesses such a body is not only available but
unexploited.

In the following we shall rely on these data which ultimately can be used
in the constraints description of the problem. The efficient implementation of
this process is also addressed.

1 Introduction

An important step in the process of generating applications in the Search/Optimisation
domains is the generation of a requisite model. The task of building such a model is
tedious, time consuming and prone to errors. It requires an accurate representation of
the different entities involved (variable definition), and the pinning down of relation-
ships between them, usually in an algebraic form. One or more of these relationships
form the objective, others, the constraints. The latters define the search space.

Some relationships are obvious and easily derived from the problem definition.
Others, however, can be difficult if at all possible to find, for we don’t know they are
there. One way of looking for them is to consider the accumulated data about the
application. There is no guarantee that relationships will be discovered at all, and it
is not even clear what relationships or models are looked for. However, ’'something’
may be found if the data is complete enough. Moereover, it is an automatic process
and hence by extension, one hopes to generate whole requisite models in a similar
way. Note that these relationships can also be used on their own as regression models
and it is in this respect that they are considered here for the time being.

The process is computation extensive which points to the use of novel algorithms
and hardware architectures. It is, in the specific form considered here, commonly
referred to as Symbolic Regression or Symbolic Function Identification. Note that in
the classical regression the model is known beforehand.



2 Context

Recently, businesses have come to realise the potential of the large amounts of data
they keep gathering. Although a lot of it is in databases easily accessible through
specialised query languages, less organised data is common and until now is only
taking space. The trend now is to put all business data in data warehouses aimed at
providing decision support. The aim is to be able to extract manageable chunks of
information (Data Summarisation, see [?]) from the organised as well as the nonor-
ganised ever growing heap of data and make sure that it is understandable to humans
or precisely to the decision maker.

Decision support systems already achieve this in many ways such as cluster anal-
ysis, trend spotting, visualisation of large data, induction and pattern recognition
and behavioural modelling. However, we are here concerned with data mining in its
narrow and specific sense as matched by the need to extract models used in Search
and Optimisation applications.

2.1 Data Mining

It is rare nowadays to open any business oriented publications without finding adverts
or articles referring to data mining. It is currently such a fashionable expression that
it is attached to a myriad of topics and products. Some manufacturers go as far as
to attach it to existing products.

Data mining is certainly attached to databases, data warehousing, image process-
ing, pattern recognition and much more. Because of the various contexts in which
it has been used, it is slightly debased. This calls for refocusing the term to what it
normally means, and to what it means in our context.

Data mining is three folds:

1. There is the statistical approach, hypothesis testing. Here the system is pre-
sented with a hypothesis such as ‘Those who buy coal have toddlers. Is that
so?” More precisely it can be formulated as :‘Is there a positive correlation be-
tween coal and baby food?” The system is restricted to a certain type of data,
which may still be vast, but, nevertheless, is well specified.

2. There is directed data mining where the system is steered towards what to look
for as in ‘Is there a link between spending at a supermarket and residence area
or address of customer?’ Here the problem is an induction one. The steer
however is not as strong as in hypothesis testing. The problem is commonly
solved using decision analysis approaches as well as classification newral nets,
clustering methods and perhaps regression.

3. There is pure data mining where no steering and no constraints are imposed on
the system. In this situation, the user does not know what to look for. The
problem is in the same spirit as that well contained in the question: ‘Is there
anything interesting in my data?’ It is then hoped that the system will unravel
interesting facts about the data that will assist the decision maker.



3 Search and Optimisation: Stochastic Approaches

In search/optimisation problems [?, 7, ?] the aim is to find the best plan to configure
a system. This plan is usually in the form of a vector. Here, however, we are looking
for an expression, a model which best represents a given set of data. Ultimately, this
expression may be used as a regression model in its own right or as a building block
in the construction of constraints of a search/optimisation problem itself.

All expressions, form a search space. To proceed with the search we need a
criterion function, or objective function, and a description of the space itself, using
limitations or constraints. The objective function provides us with a handle for choice
between different members of the search space, and the constraints tell us what is a
valid member. Note that constraints may be implicit. For instance, expressions are
restricted to those returning values that can be found in the mined data, up to a
tolerance.

Even though we have a selection criterion, the objective function, except in special
cases where assumptions on it (Convexity, Continuity,...) are made, it may not be
possible to guarantee that the global optimum (global optima) is found. Instead, it
is practical to settle for the ‘best so far’ as the candidate solution, usually only a
local optimum. The reason is in limitations on the computational expenses allowed,
or simply the chosen stopping criteria. Behind it all, still, is the fact that global
optimisation peoblems, except in special cases, are notoriously difficult to solve, i.e.
it is virtually impossible to construct search algorithms which will guarantee that
a global optimum is found. Exhaustive search techniques are especially doomed to
failure except when the search space is very small.

Stochastic methods begin with a given candidate, known beforehand or randomly
generated in the search space. A move in a random direction is taken from the
candidate. If it leads to a better one, then the current point is superseeded by the
new, else another random move is operated. Such techniques belong to the hill-
climbing, or gradient, family of techniques. Hill-climing, of course, as just sketched
will unlikely lead to the global optimum unless the function is unimodal. However,
devices which help escape from local optima have been extensively studied as in
Simulated Annealing, Multistart, Tabu Search, Clustering algorirthms [?].

If the search space is disconnected, some random moves may not be valid. This
born in mind, connectivity or connectedness may be assumed and the notion of neigh-
bourhood of a point can be defined. It is technically the set of points falling within
a distance § of a given point. When a point returns the best value for the objective
function in its neighbourhood, it is called a local optimum. These points are relatively
easy to find as opposed to global optima. Note that a global optimum is also a local
one.

3.1 Genetic Algorithms

Genetic algorithms (GA’s) are stochastic search methods modelled upon natural selec-
tion. They rely on the concept of fitness which measures the success of an individual
in reproducing, i.e. passing on its genes to future generations. GA’s are an attempt to
capture aspects of natural selection essential to their problem-solving capacity. This
capacity of GA’s has been observed in many areas as will be seen later.



GA’s differ from traditional search techniques in that, inherently, they work on
discrete spaces. The basic move, unlike hill-climbing, depends on more than one point
or individual. In fact a population of individuals is first drawn from the search space,
and maintained generation after genaration to be of some size larger than one. Its
constituents may change of course.

The move from one generation to another or from one population to the next is
effected by the use of appropriate opearators, such as reproduction, crossover and
mutation. Note that mutation, as well as reproduction, work from one individual, a
single parent, to obtain a new individual. Mutation especially is similar to the move
in the hill-climbing approach but is not typical.

In GA’s, there is a flurry of selection procedures and operators. Selection pressure
is exercised through the careful design of these selection procedures and operators.
It is important to note that if good individuals are favoured a outrance, early con-
vergence may result into a poor local optimum. This is because the variety in the
population which allows the natural selection process to thoroughly cover the search
space is fatally reduced by acute selection pressure. On the other hand, no selection
at all will result in a very slow convergence which may not be acceptable in prac-
tice. It is essential to strike a balance between the number of fit elements in every
population and the variety of its pool of genes.

GA’s belong to the larger class of Evolutionary Algorithms. Their kin are the
so called Fvolutionary Strateqy Algorithms first introduced in Germany in the 60’s,
(7, 7], where mutation is the typical means of evolution as opposed to crossover in
GA’s.

Note that the distinction is now so blurred after the modifications brought into
boths types of algorithms that it is not ambiguous to refer to them as Evolutionary
Algorithms.

4 Genetic Programming: A Review

Genetic Programming (GP) pioneered by J.Koza [?, 7, 7], [?]. is an extension of GA’s
to operate over spaces whose elements are programmes. It is a randomized, adap-
tive search method which represents programmes by their parse trees, [?]. It allows
computers to find solution programmes to some problems without being explicitely
programmed to deal with those problems.

A distinguishing element between GA and GP, commonly found in the literature,
is that GA’s work on constant length chromosomes while GP works on a variable
length chromosomes. The tree structures processed by GP are of variable length.

A model GP algorithm can be described as folows:

1. Define the set of terminals;
2. Define the set of functions;

3. Construct a fitness function to measure the problem-solving capacity of valid
programmes;

4. Choose control parameters;



5. Choose stopping criteria or ways for recognising a solution;
6. Generate a population of programmes;

7. Find the fitness value of each programme in the population. If stopping criteria
satisfied go to 10, else continue.

8. Generate a new population by applying some pre-defined breeding operators on
the elements of the current population.

9. Repeat from 7.

10. Solution is the programme with best fitness. Stop.

Some of the terms used in this algorithm will be explained later.

4.1 Theory

To those familiar with traditional search and optimisation techniques and their the-
oretical basis, there is not much theory to speak of in the case of GA’s. When GP
is concerned, theoretical results are even scarcer. However, there are beginnings in
understanding why these algorithms work and where they might not work.

4.1.1 Fitness Landscapes

GA’s work on populations of individuals represented by fixed length bitstrings, (chro-
mosomes). If n is the length of a string, the cardinal of the search space is 2". If the
elements of this space are represented as dots on a plane with distance between every
two dots equal to the Hamming distance, i.e. the number of bit changes to transform
one string to the other, and if each dot is now raised above the plane by the fitness
value of the individual it represents, then hills and valleys will show. This is a fitness
landscape.

A fitness landscape gives a pointer to how difficult a problem might be to GA’s. If
it is mainly flat and featureless then the search for a hill top would be very difficult.
If it looks like a hedgehog’s back, again guaranteeing that a global optimum is found
will be almost a lost cause, if on the other hand one or very few hills are apparent
then the search may produce a ‘good’ optimum.

Fitness landscapes are useful when GA’s are concerned. They are not so useful
however when GP is concerned because there is no equivalent of humming distance
when the strings are not bitstrings and are of different lengths to represent the adja-
cency of individuals. In GP, programmes are represented as trees, genes can be any
predefined operand or operator. The adjacency of programmes is rather difficult to
catch.

4.1.2 Schemata, the Schema Theorem and BBH

In his ground breaking work [?] Holland introduced the notion of a schema which is no
more than a hyperplane. But the insight was that while explicitely the GA operates
on a finite population of individuals, implicitely it processes, in parallel, a very large
number of schemata which crisscross the search space. Also, an average estimate of



their fitness is recomputed for each generation. Why are they so important? Because
they represent building blocks of fit individuals in the search space, as long as they
are short, of low-order and highly fit themselves. What more the Schema Theorem
stipulates that the schemata with high fitness are perpetuated more often in the
new generations making GA’s probably the only class of algorithms which exploit
exponential explosion. This theorem is the basis to the now notorious Building Block
Hypothesis (BBH) [?].

What about GP? The equivalent of a schema in GP is a set of subtrees with
common features. This set is infinite but, it is not once a limit is imposed on the size
of acceptable trees [?], which is the case in practice. There is a difficulty with this
notion of schema in GP due to the definition of a schema which is a string built over
an extended alphabet with a wild card. This means simply that if the alphabet is,
say, 0,1, schemata are built over alphabet 0,1,* where ‘“*’ can be ‘0’ or ‘1’. In the case
of GP, the alphabet is made up of higher order entities, such as functions so a schema
is unlikely to be a valid programme in the general case. The notion will be viable only
under tight restrictions [|. Attempts to build a GP BBH on the GA equivalent of the
schema theorem have not been satisfactory, although O’Reilly’s thesis is a very good
attempt, [?, ?]. A GP-hill-climing hybrid algorithm has also been developed and the
results point to the superiority of such an algorithm over simple GP of hill-climing
simple algorithms.

4.1.3 Minimal Deception

In order to understand what makes a problem difficult to GA’s and also due to the
shortcomings of Shemata approach and BBH, attempts have been made to construct
problems which ‘fool” the algorithm so as convergence is never achieved or only at
great costs. The work of Goldberg, [?, 7], is the starting point. It is possible to
build such problems, but not for all variants of the GA, i.e. given the opportunity,
an algorithm may be tuned to deal with problems. The MD idea does not seem to
catch on GP.

This lack of satisfactory theoretical tools to make predictions, measure perfor-
mance and analyse GP as well as GA’s is a stumbling block to newcomers to evo-
lutionary approaches. However, efforts are being made to overcome it. Those of
Altenberg for instance, [?] who considered evolvability as the main ingredient in the
success of GP are interesting.

4.2 Practical Aspects of Genetic Programming
4.2.1 Measuring Fitness

The fitness measure is the criterion used to distinguish between programmes. A
measure whose sink is of very low cardinality (< 5 for instance) will not be suitable
as a large proportion of individuals in the population will be of the same fitness;
progress towards a fit individual will be very slow. The ideal fitness measure is the
one which reveals all differences between any two individuals. If a population is
ordered according to it, then every number between 1 and the population size should
be allocated. In other words, no clusters of individuals with the same score should



show. Such a fitness measure will be hard to find, but it should be the target when
designing such a measure.

A simple measure of fitness in GP is the error measure [?]. It simply computes
the difference between the output of a given programme and the target output, when
it is known. This is usually the case in regression type problems.

Other fitness measures can be the computation time of programmes in the popu-
lation, or their memory requirements, the number of hits scored given the input to all
programmes. This is termed absolute fitness. When it is the score of an individual in
a subset of the population, which is itself evolving, then relative fitness is the term.
When programme runtime gives the fitness, some programmes with infinite loops may
cause the braek down of the whole entreprise. Measure, such as maximum number of
loops, or maximum CPU time allowed may be introduced, [?].

A mixture of measures may also be used. Pareto scoring for instance uses multiple
criteria such as functionality and efficiency to compare programmes [?].

4.2.2 Genetic Operators

Reproduction:

Reproduction is an asexual genetic operation. It promotes fitness in the population
by selecting individuals using a fitness measure and copying them into the next gen-
eration unaltered|?, ?]. The positive aspect of the reproduction operator is that it
is not expensive: no fitness is recomputed for the individuals copied into the new
population as their fitness is alraedy known. However, it is only best if applied to a
low percentage of the population, say 10%.

Crossover:

Crossover is a sexual operation in that it operates on two individuals chosen by some
means based on fitness. These two individuals exchange parts, such as branches in the
case of tree structures. The result is two children which will join the new population.
Unlike reproduction, here the fitness of the offspring has to be computed. This is
bad news since the computation of fitness absorbs most of the CPU time for any
non-trivial problem.

Self-crossover:
It operates on a single programme as both parents. The selection of the individual
can be done through any selection approach.

Cassette-crossover:

This allows subexpressions in the middle of two parent programmes to be swapped.
This operator relaxes the standard crossover which permits only subtrees to be
swapped. It is however difficult to implement so that the offspring are valid pro-
grammes. This operator appears to make gains in the standard GP, i.e. without

ADF’s [?].

Hozist:
It is an asexual operation which randomly choses a subtree from an existing pro-



gramme structure to be included in the new generation. This operator promotes
parsimony, [?].

Mutation:

Mutation operates on single individuals and thus is asexual. It alters randomly chosen
nodes in the tree structure representing a programme. Terminal nodes can be changed
into any other terminals but function nodes can only be changed into functions which
accept the same arguments.

Mutation promotes diversity in the population: terminals and functions that have
been driven out of the pool of the programmes in the current population may be
brought back.

A useful variant is shrink mutation which takes the subtree with root the node to
alter and replaces with it the whole parent. That keeps the size of programmes in
check, [?].

Mutation is considered a secondary operation compared with reproduction and
crossover. Other secondary genetic operators are permutation, editing, encapsulation
and decimation, [?].

4.2.3 Re-usability and Abstraction

Re-usability of modules is important to the success of any high level programming
language. The concept is embodied in the notions of subroutine and function. In GP,
it is easy to see how beneficial re-usability can be: simply, sequences of code that
are useful need not be rediscovered in different parts of the tree representation [?, ?].
Moreover, recursivity can be harnessed, generalisation of the concepts of hierarchical
problem solving may be possible.

Automatically Defined Functions:

In [?] ADF’s have been extensively studied. They are evolvable modules of an evolving
genetic programme. They can be called by the main GP programme itself and used
as functional building blocks. To allow these modules to carry on evolving, operators
such as crossover are tricky to implement. However, results show that problems not
satisfactorily solved with standard GP, have been satisfactorily solved when ADF’s
were used.

Concepts Reuse:

In [?], Seront attempts to introduce libraries of concepts which are then used by GP
based systems to inject into the population of programmes they are evolving. It
is a different view, from ADF’s in that it’s internal as well as external as subtrees
which form a valid ‘concept’ may be used in a totally different problem. With ADF’s
subtrees are only used in the course of solving a given problem; ADF’s are only for
internal use. Moreover an ADF may not be a valid ‘concept’ in Seront’s definition.
It is rather akin to system libraries which are familiar.

Adaptive Representation:
Adaptive representation is another attempt to introducing reusability. In [?] it has
been reported that by analysing the evolutionary trace of GP’s; subtrees which in-



crease the fitness of programmes are isolated and added to the set of functions of
the main GP programme. Enrichment of the latest generation with newly generated
programmes using the extended function set seem to have a positive effect on the
overall performance of GP on some prblems.

Other attempts, [?], were made in abstracting data types, ADT’s and, [?], in
genetically building libraries, GLiB’s. Results are not conclusive, but it is the direction
for fruitful research, [?].

4.2.4 Breeding Approaches

Breeding approaches go hand-in-hand with fitness measure. They concern ways by
which a new generation is obtained from the current one, i.e. how parents are chosen,
which individuals may be replaced and so on. Their ultimate aim, common to GA’s
and GP, is to ensure a good cover of the search space and avoid premature convergence
to poor local optima.

fitness-proportionate selection:

In this approach, selection depends on fitness and chance. A lottery wheel is used,
but a bias in favour of individuals proportional to their fitness is enforced [?], so
that the ‘survival of the fittest’ concept is implemented. That is to say that if a
programme has fitness which is 50then this programme will be represented on the
wheel to occupy half of it, 180°. This means it will be picked more often and its genes
have more chances of passing to the next generation.

Tournament selection:

Two individuals are picked at random, the one with higher fitness is the candidate to
replace an unfit element previously selected or to mate with it. Tournament selection
tries to simulate what happens between animals during the mating season. Usually
bouts between two individuals are fought to serve a female [?].

rank selection:

Here selection pressure is introduced so that among comaparatively fit programmes,
those which are dominant are selected. Rank selection exagerates the difference be-
tween losely clusterd fitness values so that the better ones are sampled more. [?, 7].

Generational and Steady State Genetic Programming:

Generational GP (GGP) occurs when, population size kept constant, the entire pop-
ulation changes from generation to generation. No elements are spared on any basis.
In Steady state GP, however (SSGP), only a small number of elements are replaced
from generation to the next.

Demes and Locality:

Demes or islands, are semi-disjoint populations which are allowed to evolve locally,
but migratory agents probabilistically selected are allowed to cross the boundaries to
mate. This helps avoid early convergence and promotes diversity. Results [?, 7, 7, 7]
show benefits of the demetic approach. In [?] explicite islands of different sizes were
used, while in [?] the islands are defined using a form of geographic neighbourhood.



Parents are selected from a neighbourhood and the offspring are placed in that area.
It is reported that the notion of demes increases the the generality of the whole
population and the overall efficiency.

The advange of the demetic approach is its inherent parallelism. In [?] linear
speed-up has been achieved when this approach is adopted in the implentation of GP
on a network of transputers to solve some problems.

In [?] it has been suggested that the selection of similar parents from the demes,
and crossover points which minimise the difference between the parents and the off-
spring also lead to beneficial effects.

Elitism:

It is a breeding policy which favours the fittest individuals in the population. Its
draw back is that some elements never get replaced as in SSGP. Because of that
elitist approaches may cause premature convergence.

There are numerous breeding policies on top of the ones discussed here. Notable
ones are Brood Selection, [?], Population Enrichment, [?] and Disassortative Mating,
cite94:Ryan. They all seem to have positive effect on GP implementation results on
some problems according to the reports. It remains however to try them on other
problems and perhaps carry out a one-to-one comparison to see their individiual
merits.

4.3 Applications

Given the wide scope for applying GP, an exhaustive list will be very long. Among
the areas in which it has been successfully applied, to name a few, are the following.
optimal control, robotic planning, playing startegies, market strategies and evolution
of emergent behaviour. A longer list may be found in [?]. Here, our main interest is
in Symbolic Regression

Symbolic Regression

Symbolic regression, (SR), already attempted in the 50’s and 60’s, [?, 7], is an im-
portant applications of GP [?]. It is an attempt to automatically generate models,
unknown beforehand, unlike classical regression, to fit data comprising two distinct
groups, input data and output data. In more precise terms, the symbolic expression
looked for is the one which, given as argument a subset of the accumulated data
input, will produce, after evaluation, a result within a tolerance € of a subset of the
accumulated data output. In noisy data environments, it is customery to talk of em-
pirical discovery and when sequences are involved where the aim is to find a sequence
element of a certain index given some previous elements, then sequence induction is
concerned. They are special cases of SR.

Just as in the model algorithm for GP of Section 4, here SR requires the six key
steps for the system to be initiated, namely:

1. Determine the set of terminals;
2. Determine the set of functions;

3. Devise a fitness measure;

10



4. Determine the stopping criteria;

5. Generate an initial population of programmes.

4.3.1 Set of Terminals

If © is the set of terminals, then © consists of dependent and independent variables,
as well all constants relevent to the problem in hand, (see sufficiency of © in [?]).
Terminals form the leaves of the tree structure containing the evolved programmes.

Constants: Constants are particularly difficult to guess. Ways of evolving them have
been devised. In [?], ephemeral random constants are used to introduce constants
into evolving GP expressions. In [?] a genetic operator is described which affects only
these ephemeral random constants of Koza in [?]. The operator is called a Constant
Perturbation Operator. It serves fine-tuning coefficients in evolving expressions and
introduces new terminals in ©. This is achieved by multiplying all these ephemeral
constants by a random number in the range [0.9, 1.1], which is a perturbation of 10

4.3.2 Set of Functions

Let ® represent the set of functions. ® consists of the standard operators (+, -, +, X)
and other fuctions such as sin, cos, exp etc... which may be relevent to the problem
in hand, (see sufficiency of ® in [?7]).

Closure:

This property is required from all evolved programmes. It means that expressions
and the different arrangements of them must be valid programmes. All functions in
® should be handled with attention in all expressions using them. For instance the
division operator ‘+’, as it cannot be given ‘0’ as divisor, must be written so that it
can handle it if it occurs without causing a crash in the evolved programme.

4.3.3 Fitness measure

As explained in Section 4.2.1., the fitness measure should tell us how good the expres-
sion generated is with respect to the set of data we have in hand. Let this expression
be ¢(x) and the working data the real values (float) stored in arrays x[] and y[].
The fitness function can be the discrepancy between the values in array y[] and the
values returned by ¢() when it takes as arguments values from array x[], or the
number of values returned within € of those in y[], or some average over differences
between values returned and those in array y[]. It can be a combination of these
ideas.

4.3.4 Control parameters

These parameters control the process of GP. In [?], 19 parameters are listed. Ob-
viously, not all of them are required in an application. They depend very much on
the breeding policy adopted and the genetic operators. Parameters which are most
common and used here are the population size tt PopSz, the proportion of this to
be generated, after initialisation, by the genetic operator crossover, XRate, the rate

11



of mutation MuRate, the maximum size of any program to be generated , i.e. the
maximum size of the tree which will hold it, MaxTreeSz.

4.3.5 Stopping criteria

One the most potent stopping criterion is the available CPU time. This is imple-
mented by imposing a limit on the maximum number of populations the GP pro-
gramme may generate in the course of its run. The number of hits is an obvious
stopping criterion as well, because it allows to recognise a very ‘fit” expression which
may be what we are looking for, it is a success predicate. It can be a great saver of
CPU time. Other stopping conditions can be devised especially if a lot of information
is know about the data mined.

Here, the stopping criterion is either a generated program matches all y[] val-
ues when we pass to it as argument the values in x[], or the maximum number of
generations allowed is exceeded, i.e. MaxNbGen.

4.3.6 Initial population

The random generation is the most popular and effective way of constructing an
initial population. However, as in the previous section, advantage may be taken of
the knowledge of the data to generate individuals likely to fit it. For instance, in
market data there is a periodicity element to it which may be exploited by making
sure that expressions have trigonometric functions in them.

4.3.7 Basic SR Algorithm

Algorithm

In algorithmic form the steps described above will look like this:

Initialisation:
set MaxNbGen the maximum number of generations;
set PopSz the size of the population (constant);
generate an initial population of random programs made up of the
elements of the terminal and function sets of the problem:;
NbGen := O;

Start:

While (NbGen < MaxNbGen+1 and No Program is 100 per cent fit) do:
Assign a fitness value to each member of the population
according to how well it solves the problem.

Generate new population from a selected number of programs
according to fitness using the following operators:
1) Copy existing programs to new population;
2)Mutate programs from old population and incorporate
in new population to increase diversity of stock;

3) Create new ones by crossing two randomly chosen programs;
Endwhile

12



Choose from resulting population the program with best fitness as a
candidate solution to problem.
End:

4.4 Implementation
Data Structures: The Tree

The tree structure is the most appropriate data structure for GP. This is due to the
fact that unlike the standard GA algorithm, in GP the chromosome has a variable
length.

GP-SR is stack based. Programmes are stored in prefix tree structures.

Modules of the GP-SR tool

Beside the C library functions, GP-SR has the following functions:

function ReadData() to read control parameter and arrays x[], yl[];

function RandGen() to generate random trees holding the initial random expres-
sions or programs;

function fitness() to find a fitness value of any valid program,;

function Copy () to move a given program into a new tree structure (may be done
by pointer updating);

function LabelTree() to associate an index with every node of a given tree so
that random choice of a node will be easier to implement;

function RandomNode () to find a random node in a given tree;

function Mutate () to alter a randomly chosen node to take a new value and keep
the program valid (closure);

function Cancatenate() to join two subtrees into a valid tree or program;

function Xover () to perform crossover between two trees at randomly chosen
nodes and ensure that offsprings are valid programs;

function DispProg() to output the candidate solution program either as an alge-
braic expression or as a C program.

4.4.1 Experiments

At the moment, the tool is tried on simple data such as in textbooks, (Koza’s examples
for symbolic regression). Polynomials fitting the data are evolved by GP-SR. Tt
remains to be tested on larger sets.

4.4.2 Applications of SR

4.4.3 Conclusion and current work

We have considered model generation for search/optimisation in the context of data
mining and looked at the most promising approach to tackle it with. This approach,
namely genetic programming has been reviewd. The basic components of a tool for
symbolic regression have been presented. The tool is still under development and no
major experiments have been carried out on real world data yet. In due course the tool

13



will be tested on data from the electricity market, and because of the computational
demands already apparent of the tool, its parallelisation is being investigated.
Cropping: In the process of evolving expressions, extraneous subexpressions are likely
to appear. These subtrees will be evaluated for fitness despite them being redundant
for instance. They can also propagate in successive populations. If it can be recog-
nised then cropping it prior to fitness evaluation will be beneficial. Subtle approaches
are required though in order to recognise a extraneous subtree. It may be just as ex-
pensive to find it, or costly if wrongly removed as it may be best to leave the process
of evolution to deal with it.

Parallel implementation: It is already apparent that the computational demands of
GP-SR can be substantial, as is the case with most genetic processing based software.
These demands may be met by both an algorithmic approach (cropping, parsimony,
...) Some of these can be met by the use of parallel/distributed architectures.

14



