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Abstract

The connectionistmodel of reasoningpresentedhere, INFERNET,
implements a working memory that is thetivatedpart of long-term
memory. This is achieved by making use of temporal properties of the
node spikes. A particular solution of the problem of multiple
instantiation isproposed. This model makes predictionthat have
been testedxperimentallyand the results of these experiments are
reported here. These results would seem to challergielar models

of memory.

1 Introduction

Connectionist models of working memory face two main problems. The first is the
binding problem; thesecond isthe problem of multiple instantiation. Theodel
presented here dravits inspiration from neurobiology in an attempt to salltese
problems. Different aspects ofthe same stimulugre not processed byhe same
neurons. The brain has to link together these various agpegts color, contours,
movement) inorder to differenciatthem from other objects. This isferred to as
variable bindingand the presenimodel achieves ithrough the use of temporal
synchrony. In short, when omade(i.e., a group ofneurons) fires in synchrony
with another, theyaretemporarily boundogether. Thistechnique can be used to
successfully represent n-apyedicates. This idea has beerapplied to “reflexive”
reasoning [15], to natural language parsing [7], to analogifarenced8], and to
deductivereasoning [18]. Multiple instantiation involves simultaneous use of the
same parts of th&nowledge base irifferent ways. Connectionist models that
defineworking memory as the activation of parts of representations in long-term
memory must explain how multiply-instantiated entitége handled. Ithis paper

we describe one such model, INFERNET, show how it simulates various aspects of
human working memoryanddemonstratdow it representsnultiply instantiatiated
concepts. Predictionwill follow and experimentaldatawill be presented which
confirm predictions made by the model.



2 INFERNET description
2.1 Concepts and attributes

INFERNET is a connectionist model using integrate-and-fire nodes. Each concept is
represented by aluster ofnodesfiring in synchrony (figures 12). Concepts are
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Figure 1: The “red rose on the green lawn” requires binding of concepts “red” and
“rose” with the role “Supported_Object” , followed by “green” and “lawn” with the
role “Supporting_Object.

bound together by synchronofisng. For example, taepresenthe conceptred
rose”, nodesbelonging to“red” must fire synchronouslywith nodesbelonging to
“rose” (figure1). There isneurobiologicalevidencefor considering synchrony as a
possible binding mechanism in the brain. In particular, synchrony hawbsewed
between distant cells in the same cortical area, between cells in different creasal
andeven betweemells in different hemispheres. If a number dffferent objects
make up a scene, distinct windows of synchrargformed, each associatedth a
particularobject. Individual cells can rapidly change partners synchrony if the
stimulus changes. Moreoveahe absence okynchronization has beeasbserved to
impair cognitive abilities. For a complete discussion on synchronizatiomesral
binding mechanism, see [16, 14].

2.2 Discrimination

Discrimination is achieved by successive synchronies, for example, to discriminate a
red rose on a greenlawn. The nodes belonging to “red” “rose” and
“Supported_Object’'must fire in synchronyand those corresponding to“green”

“lawn” and“Supporting_Object” must alsfire in synchrony. Further, these two



sets of nodes must fire in close succession and afterotfesbelonging to“On” for
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Figure 2: The temporal distribution of node-firing determines if a concept is
activated.

“the red rose on the green lawn” to be perceived (figure 1). Emgkdl. [6] provide
evidencethat shows that ieveralobjectsarepresent in a scene, sevegabup of
cells are grouped in distinct windows of synchrony.

2.3 Initial constraints

A number of neurobiological parameten® involved in this representatiorthat rely

on clusters of nodes firing simultaneously. The first isfteguency ofoscillation.

In INFERNET, as in SHRUTI [15]pnce anode isactivated, it tendgbut not
necessarily) to fire rhythmically between 30 and 100 Hz. The tempordiejapen

2 spikes of a node is therefore from 10 tor88. Thiscorresponds tdhe observed
30-100 Hz ¢ wave)oscillations ofcertaintypes of neurons. Thesewaveshave

been observed to be associated with attention [21] and with associative memory [22].
The second key parameter is the precision of the synchréiegording to[17] this
precision is between 4 to 6 ms. For [1], the precision is about &nthslepends on

the frequency of oscillation.

2.4 Windows of synchrony as working memory span

Since conceptsare represented as set of nodes, INFERNET focuses on the
distribution ofnode-firingtimes. If the firing distribution is tightlyconcentrated
about the mean, the concept é¢ensidered to bectivated. In figure 2three
distibutions are depicted. The Y-axis represents the percentagdedbelonging to

a concept that are firing, the X-axis shows the time in ms. The top graph shows the
distribution of a highlyactivatedconcept, allnodespertaining to the concegire

within 5 ms. The middle graph shows a lestivatedconcepts whosaodesall fire



within 9 ms. Thelower graph shows the distribution of amactivated concept
node. In this last case, too few of the concept nodes fire and what firing thdeesis
not occur within a short interval.

In Figure 1, nodes corresponding to the concept “rose” are firing in synchrony and
the firing-time distribution isconcentrated arounthe mean. Nodespertaining to
“rose” fire in synchrony with nodes representingred”. This synchrony is
distinguished from the synchrorhetween nodepertaining to“green” and “lawn”
within the same cycle. Their means are clearly different.

The temporal lag between 2 spikes of a node oscillating fatquency(30 - 100
Hz) is between 10 to 33 ms., and is typically about 25 ms. pfdasion orwidth
of a window of synchrony igsbout 5 ms.and isproportional to therequency[1].

This allows us to approximate the numbemdfidows of synchronyhat could be
differentiated, i.e. 25/5=5. If we assume thatiadow of synchronycorresponds

to an item or a chunk in working memory, then this puts working memory span at
approximately 5, with a small amount \wdiriancesince precision is proportional to
oscillation frequency. This corresponds to currergstimates of human working
memory span. It habeen suggestef], that the traditionallyacceptedsize of
working memory (i.e., 7+2 items [12]) may be too high. An item canWerd, an

idea, an object in a scene or a chunk, i.e., a grouping of items. Sexfimations

for the brain’sability to store approximately 7 short-term memory itecas be
found in [9, 10, 15].

2.5 Persistance in working memory

How can representations be maintainedvorking memory? The problem witi

waves is that they persist only a few hundred milliseconds. This is noetangh

to reflectthe time taken by people tdraw inferences,nor does it correspond to
standard estimates @forking memory retention time (10 to Z@conds). For this
reason, following [10]y waves inINFERNET occur in bursts whichrestartevery

146 to 333 ms. Thisorresponds t® waves [3 - 7 Hzjyhose duratiorcan exceed

10 seconds. Theesulting temporal firing pattern for a singhl®de isshown in

Figure 3. The node shown fires at 50 Hz for the seven spikes that constitute a burst.
This is followed by arestingperiod of 60ms. Thereafterthe burst begins again.

The burst interval is about 200 ms (5 Hz).

Y wave 50 Hz. 6 wave 5 Hz.
20 ms 200 ms
H —_—
Time

Figure 3:y wave embedded & wave

There is neurobiological evidence for this rhythm in working memdrywaves
have beerpbserved to be associatedth visual short term memory task on a
monkey [13]. This wave was maintained as long as attention was required.



2.6 Chunking

Working memory capacity is limited, and chunking increasesthe amount of

information it can contain. In INFERNET, chunking is achieved by two processes:

1. Increasinghe number ohodes — and, as eesult, the number ofoncepts
firing in synchrony. This is achieved by means of spreading activation.

2. Replacing the content of two or maséndows of synchrony by aingle one
that sums them up. This &hieved bythe use of excitatorand inhibitory
connections.

2.7 Interference

Working memory is affected by interferenc&or example, when Workingnemory
is successively tested ldifferent wordspertaining to the same category, thigan
decreaseduring the course ofthe trial. In INFERNET concepts pertaining to the
samecategory have nodes tommon. Previouslynemorizeditems interfere with
newly arriving ones if they share common nodes.

2.8 Memory scan

Sternberg [20]askedparticipants torehearsdists of 1 to 6 items. At aion-
predictablemoment, participanteeceived gorobe itemand were asked tdecide as
quickly as possible if the probe had beerthia list of memorizeditems. Sternberg
found that responséime increasedinearly according tothe number ofmemorized
items. Foreach additionaltem, reactiontime increased by 38ns. (see figure 4).
Other replicationsshowed ashorterincrease of reactiotime e.g. [11] found an
increase of 22 ms.
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Figure 4 : Memory scan, Sternberg data

A closerlook at the Sternberglata shows that, whileoverall reactiontime
increases with the number of itemmemorizedthe varianceremains constant. It is
hard to see how this would be the case if the process was serial. céihgidereach



item as an independent random variable, then the total variance woetgiddeto the
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Figure 5 : Simultaneous activation of the memory set and starting point (arrow)
of the parallel matching process in INFERNET.

sumof the variances associated with each of the variables. Just as measuring the
length of a room byepeated(“serial”) measurementsvith a six-inch ruler will
produce a proportionately greater total error than measuring the room yaittistick
or a tape-measure, the same should hold for the Sternberg reactiatatamelf we
have a serial process, then not only should the mestiontime increaseput the
variance should as wellBut this is not the case.

In contrast to a serial recognition process, whichuld produce dinearincrease
in variance asthe number of itemsincreases, onesolution compatible with
INFERNET would produce the uniform variance that we observe in Sternloaitg's
The actual implementation of thjgocess is currently in progress. Recognition of
previously seen items could involve a multi-phase process:

« Storage: the original itemare insertednto memoryand are refresheonceevery
everyB-wave cycle. At this point there is no need for #dglitionalcomputational
resources required by maintaining each item in a window of synchony.

e Simultaneous item activatioffigure 5): The probe arrivesiWas the following
item in the list?"followed by some item. At this point, thenemorizeditems
must be simultaneoushactivated in working memory.  This involves the
following serial process: one of the items in tls (for example,“h”) will be
associated with a particular window of synchrony @gample, the firstvindow)
and, thereafter, will appear in that position with every 25egde ofthe y wave.
Each of the other items in the originalBarnedlist will be activated inthe same
manner, with its owrwindow of synchronyand once every 25ms. Oncethis
process ixompleted —i.e., all of theletters in the listhave been assigned to a
window of synchrony —only thencanthe matching processegin. Thus, the
length of timerequired toset up the matching procesereasedinearly with the
number of items in the original list (approximately 25 ms. per item).

* Matching: Thisprocess occurs in parallel acradb items and thereforetakes a
constant amount of timandependent othe number of itemgequired in the
matching.

As a result, reaction time would be a function only of the setup réapgred by
the system once the probe has been presented. All of the elements must, in fact, be



retrieved beforeghe matching processmanbegin. Arelatedexplanationcan befound
in [10], although their work does not involve the problem of unifeamancewith
an increased number of items to be memorized.

2.9 Multiple instantiation

Multiple instantiation involves the simultaneous use of the same parts of the
knowledge base in different ways. Knowing that “John is in love with Louise” and
that “Louise is in love with John”, oneaneasily inferthat they should be happy.

To arrive at this conclusion one must instantiate pifeglicate'is in love with” and

the objects “John” and “Louise” twice. Precisely how thidase isthe problem of
multiple instantiation.

Traditional modelge.g. [2]) that load copies of pieces oknowledgeinto a
working areabefore transforming them do nohave any problemwith multiple
instantiation. They simply make several copies of the same content from the long-
term knowledge base. However, for connectionists mdtlatsuse the structure of
the knowledge base itself as the pladeereconceptsare associated, transformed and
where inferences are drawn, multiple instantiation is a serious problem. How can the
same part of the knowledge base be associateddiffithent things at the same time
without making severalcopies of theknowledge in question? This question is
crucial for connectionist models of working memory. Multiple instantiation poses a
significant problem fordistributed representationsTwo closely related concepts
will, in principle, share nodes. Iboth conceptsare neededsimultaneously their
common parts must be instantiated twice.

However,some studies [3, 5, 19] show that humdmmndle atleast double
instantiation without difficulty. Experimental tasks using singled double
instantiation are rare. One example is relational reasoniftigree-term-series-
problem). Singly-instantiated predicates in tAbetter thanB, C is worse tharB’
were compared taoubly-instantiategredicates in “Ais better thanB, B is better
thanC” and nodifference inreactiontimes betweenthese two situations wdsund
[3, 19]. No difference ofcorrectness can be found jB]. Thesedata seem to
demonstratehat performance isnot impaired by doubleinstantiation. Inother
words, this would seem to imply that there is, in fact, no cost in terradditfonal
processing time fodoubleinstantiation. Thigropertywill emergenaturally from
the underlyingassumptions of INFERNET.However,this prediction should be
assessed by further experiments.

The present model modifigke frequency ofthe y wave to enablanultiple
instantiation. This means that neurons pertaining ttowbly-instantiated concept
will oscillate twice as fast as singly-instantiated ones. If we assumpevave
frequency between 30 a0 Hz., the number of multiple instantiations should be
limited to about 3 with little or nadditional cost to the system. In thisase,
singly-instantiated nodes could fire at 30 ldpubly-instantiated ones at &z, and
triply-instantiated ones at 90 Hz. Since the maximum oscilldteguency ofthe y
wave is approximately 100 Hz, anythingeyondtriple instantiation will require
chunking, and this would require extra time. INFERNB@&reforesuggests that the
brain does multiple instantiation by replacing a number of windows of synchrony by
a single“chunked” one. If the number of instantiatiorexceeds 3, afncrease of
processing time proportional to the difficulty of chunking should be observed.



3 Experiment 1

When the number of instances incread@®yond 2 o13), a chunkingprocess should
reduce the number dfistantiations indifferentwindows ofsynchrony. Sometimes
this process is easy, for example, whalh instancescan be groupedvith one
proposition. Sometimes it is more difficuthen no single propositionan be
found that could chunk all instances. INFERNEpredictsthat in the lattercase
reaction time will increase. Experiment 1 will test this prediction.

3.1 Participants and design

The 30 participants were undergraduate psychology majors randomly assigraeth to
of two conditions that differed in their ease of chunking.

3.2 Material

Two sets of 4 premises (relational statemenisjpng the same number @fords,
were constructed.

The easy chunking group set The hard chunking group set
“Allan is in love with Mary”, “Peter is in love with Mary”,
“Mary is in love with Allan”, “Barbara is in love with Allan”,
“Peter is in love with Barbara”, “Allan is in love with Mary”
"Barbara is in love with Peter”. “Mary is in love with Peter”.

The questiorasked ofparticipants of both conditions wég/ho is happy?” All
material was presented by a computer program allowing reaction time récdoged.
Participants’ conclusions were recorded manually.

3.3 Procedure

Each participantvas seatedapproximately 50 cm from the monitor. THieur
premises appeared on the screen simultaneously in a random order. Partigpants
asked toreadthese 4 premiseand to indicate whenthey had finished. Then a
questionappeared orthe screen. Reactiotime for answering the question was
recorded. Befor@resenting the experimental material, participasteivedtraining
exercises with the same procedure, but with an arithmetic content.

3.4 Results

Table 1 showseactiontimes for all correctresponses.Differences betweegroups
are significant (Mann-Whitney Z = -2.331, p= 0.019).

Mean SD
Easy chunking group 3719 1025
Hard chunking group 7778 4312

Table 1: Reaction time in ms for hard and easy chunking of multiple
instantiation



3.5 Discussion

For theeasy chunking grouprhereall relationsare reciprocal,subjectscan rapidly
replacethe relation “is in love with” by “loveeachother”, and finally, by “are
happy”, therefore reducinghe number of instantiations. By contrast, in tieed
chunking group, subjectseed todistinguish itemdor which the “loveeach other”
relation is true from itemdor which this relation isfalse and maintain this
distinction in working memorypefore enabling thereplacementprocess. This
additional processakes time, explaining the significantly highessponsetimes.
Dealing with more than 2 or 3 instantiations (in thése, thersavere 4) seems to
require additional processing resources, at least when sigle propertycan be
applied to all instances. One might reasonably object, for example, thairfger
not be happyecause havas upset that Allan loves the person he loaed that
Mary could beupset of the love of Peter. The point is well taken, buthis
experiment we onlyonsideredesponsdime for participants wheoepliedthat both
Peter and Mary werkappy. Inaddition, no participantsepliedthat both Peter and
Mary were unhappy.

4 Experiment 2

For adistributedconnectionist model, multiple instantiation will alaffect related
concepts. Concepts thahare propertiesnost likely share something in the
neurobiological substrate. Thefect of multiple instantiation should bebservable
when related conceptsare usedtogether. The following experiment testhis
hypothesis.

One of the keyfeatures of distributedonnectionist models is that a single
concept isrepresented by karge set of nodesreferred tohere as aell assembly.
Moreover, a single node can participatelifferent cell assemblies. In INFERNET,

a concept is represented by a set of nodes firing in synchrony di§thibuted nature

of eachconceptimplies that closelyelatedconcepts haveomenodes incommon.

If two relatedconceptsare neededsimultaneously and if they cannot belong to the
same window of synchrony, the nodes that they share must be instantiated twice. In
the present experiment the number of closely related concepts was manipulated. The
prediction was that if the number of instantiationssladredpropertiesexceeded 2 or

3, a replacement process would be trigger&tis replacemenmust take time and

would be reflected in the subjects’ response times.

4.1 Participants and design

The 40 participantsvere undergraduatesychology majors. Thewere randomly
assigned to each of two conditions. Thege conditionsdiffered in the number of
shared properties of concepts.

4.2 Material

Two rules of the type “if...then” (material implication), one &achcondition, were
constructed. These rules have the same length. The firsassifgpned tadhe group
of participantscalled “distant group” involved rathedistant concepts!If the
lumberjack cutddownthe oak tree, théarmer’s tractor camise the pathway”. The



secondrule assigned tathe group of participantalled “relatedgroup” used more
closely related concepts: “If the lumberjack cdésvnthe oak tree, thearpenter can
nail the oakboards”. Inthe latter rulethereare 7 conceptselated towood. Four
guestions for each condition were designed. For the first condition, wleesgThe
lumberjack cut down the oak tree. What do youclude?™The lumberjackdidn’t
cut downthe oak tree. What do yaronclude?™The farmer's tractor camse the
pathway. What do yowonclude?” “The farmer’'s tractor can'tise the pathway.
What do youconclude?” For thesecondcondition, theywere: “The lumberjack cut
downthe oak tree. What do yaronclude?” “The lumberjackdidn’t cut down the
oak tree. What do you conclude?” “The carpenterr@ihthe oakboards. What do
you conclude?” “The carpenter can't nail the oak boards. What do you conclude?”

The four questions and the ruderrespond tahe following logical forms: AB,
A; AOB, ~A; AOB, B; AOB, ~B. All material waspresented by a computer
program allowing responsémes to berecorded. Participants’ conclusionsvere
recorded manually.

4.3 Procedure

Each participant was seated approximately 50 cm in front of the monitor. One of the
rules appeared on the screen. Participamste asked toeadthe ruleand to indicate

when theyhad understoodit. The rule stayed onthe screen duringthe entire
experiment. Questions appeared on the screen, one at thanthie randomorder.
Participants had to answer each question. The computer recorded the time required for
them torespond. Before presenting the experimental material, participaetgived
training exercises with the same procedure, but with an arithmetic content.

4.4 Results

There were no significardifferences inbetweeen-group reactidimes (Table 2) for
each type of inference, ModusPonens (MP), Denying theantecedent (DA),
Affirming the consequent (ACandModus Tollens (MT). Onlyreactiontimes for
equivalent responses were considered.

[ wmp | bA | AC [ wmT |

Mean| SD | Meal SD| Meaf SD| Medn SO
Group related] 4031 | 1135 3898 982 450f 1518 5062 1844
Group distan{ 3526 | 1285 3683 1093 417f¢ 1829 42p8 1587

Table 2 : Mean reaction time for each inference type

Reaction times for each question presented in succemsiatonsidered.Table 3
shows thedata (mean and SD) for the first, second, thirdand fourth question
(questionswere presented in random order)Only reaction times for equivalent
responses were taken into account.

Therewas a significantly longereactiontime for answering the firsguestion
presented irthe group‘related” (Mann-Whitney Z =2.994, p= 0.002). Allother
differences of reaction time&ere not significant. Reaction tim#or readingthe rule
does not differsignificantly among groups for thelatedgroup: mean 8058 ms for
the distant group 8243 ms. (Mann-Whitney Z = -0.132, p= 0.911).



| 1st Question| 2nd Questiqn  3h Questipn  4th Question

Mean| SD | Meary SD| Meaph SO Mean S[
Group related 4893 | 1426| 3813 807 4204 1170 43p2 17p1
Group distan 3499 | 1024 3737 1197 434fL 1960 37F4 146

Table 3: Mean reaction time by order of presentation.

There is no between-grougifference regardingonclusioninferred, asTable 4
shows. Fisheexactprobabilitiesareall not significant (.5, .7564, .30256693,
respectively).

MP DA AC MT
Group related 1.00 .95 .85 .85
Group distantf 0.95 .95 .95 .85

Table 4: proportion of conclusions inferred
4.5 Discussion

There are no differences ithe time requiredfor participants toread one rule or
another, but when theneceivethe first question, they musncodethe rule in a
particular way, thereby permitting amference to be drawnThis encodingrequires
dealing with multiply-instantiated properties that share the concepts used in the rules.
A replacement processtisquired,‘the lumberjack cutglown the oaktree” must be
assigned to a uniguentecedenbbject, orwindow of synchrony. The twadlifferent
consequents: “The farmer’s tractor aase thepathway”and“The carpenter canail

the oakboards”must also bessigned to aingle consequenbbject orwindow of
synchrony. For these consequent parts, therecracial difference: the concepts in

the sentence “The carpenter can't nail the oak boards” share properties with each other
andwith thoseused inthe antecedenpart of the rule. Multiple instantiations of
thesesharedproperties impair theeplacemenprocess, thereby increasing ttime
required to answer the first question. When the following three questions apjpear,
replacement has already been done, and redati@s no longediffer. The reaction

time differencefor the first question isot due tothe type of question posed. The
four different questionsappear in randororderfor each participantand there is no
significant difference in between-group reaction time for each of the question types A
(MP), ~A (DA), B (AC) and ~B (MT). The only significawlifferencebetween the

two groupsoccurs forthe first question — wheancodingoccurs. In addition, the

lack of any significanbetween-grouplifference related tahe conclusiondnferred,
reinforcesthe idea that the only difference between groups involves multiple
instantiation.

5 Conclusions

INFERNET attempts to simulate various aspects of a human working memory
defined as the activated part of long-term memory. In particular, INFERM&ticts

that multiple instantiation will notequireadditionalprocessing time as long as the
number of instantiations does not exceed 2 or 3. Wihemumber of instantiations



does exceed 2 or 3,INFERNET predicts a replacement proceshich requires

additional processingtime. The preliminarydata reportechere wouldseem to

confirm this. INFERNET alsopredictsthat dealingwith closely related concepts
will requiremultiple instantiation. Thexperimental resultpresented here would
seem to confirm this hypothesis. These results seem to sujigtabiuted concept
representationand challenge modular accounts wfemory. For the lattemodels

(e.g. [2]), working memory is distinct from long-term memandthe contents of
LTM areloadedinto WM when needed. According to modulammemory models,
multiple instantiation should nancrease reactiotime. The resultgeportedhere

contradict this prediction.
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