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Topographic mappings are important in several contexts, including data 
visualization, connectionist representation, and cortical structure. Many 
different ways of quantifying the degree of topography of a mapping have 
been proposed. In order to investigate the consequences of the varying 
assumptions that these diierent approaches embody, we have optimized 
the mapping with respect to a number of different measures for a very 
simple problem - the mapping from a square to a line. The principal 
results are that (1) different objective functions can produce very different 
maps, (2) only a small number of these functions produce mappings which 
match common intuitions as to what a topographic mapping "should" 
actually look like for this problem, (3) the objective functions can be put 
into certain broad categories based on the overall form of the maps, and 
(4) certain categories of objective functions may be more appropriate for 
particular types of problem than other categories. 

1 Introduction 

Problems of mapping occur frequently in understanding biological processes, 
in designing connectionist representations, and in formulating abstract meth- 
ods of data analysis. An important concept in all these domains is that of a 
"neighbourhood preserving" map, also sometimes referred to  as a topographic, 
topological, topology-preserving, orderly, or systematic map. Intuitively speak- 
ing, such maps take points in one space to points in another space such that 
nearby points map to nearby points (and sometimes in addition far-away points 
map to  far-away points). Such maps are useful in data analysis and data visu- 
alization, where a common goal is to represent data from a high-dimensional 
space in a low-dimensional space so as to  preserve as far as possible the "internal 
structure" of the data in the high dimensional space (see e.g. [Ill). In psychol- 
ogy, topographic mappings have been used to understand mental representa- - 
tions: for instance the idea that similar features of the world are represented 
close together in some internal semantic space [18]. In neurobiology there are 
many examples of neighbourhood-preserving mappings, for instance between 
the retina and more central structures [20]. Another type of neighbourhood- 



preserving mapping in the brain is that, for instance, from the visual world 
to cells in the primary visual cortex which represent a small line segment at 
a particular position and orientation in the visual scene [8]. A possible goal 
of such biological maps is to represent nearby points in some sensory "feature 
space" by nearby points in the cortex [4]. This could be desirable since sensory 
inputs are often locally redundant: for instance in a visual scene pixel intensi- 
ties are highly predictable from those of their neighbours. In order to perform 
"redundancy reduction" [I], it is necessary to make comparisons between the 
output of cells in the cortex that represent redundant inputs. Two ways this 
could be achieved are either by making a direct connection between these cells, 
or by constructing a suitable higher-order receptive field at the next level of 
processing. In both cases, the total length of wire required can be made short 
when nearby points in the feature space map to nearby points in the cortex 
(see [3, 4, 16, 141 for further discussion). 

A number of different objective functions have been proposed to measure the 
degree of topography of a particular mapping (for reviews see [6, 71). Given the 
wide variety of quantification choices available, it is important to understand 
what impact these choices have on the form of the maps that each measure 
best favors. This gives insight into which measures are most appropriate for 
particular types of applications. This paper addresses this question for a very 
simple problem: the mapping of 10 x 10 points in a square array to 1 x 100 
points in a linear array (see figure 1). Our approach is to explicitly optimize 
several different objective functions from the topographic mapping literature 
for this case, and thus gain insight into the type of representation that each 
measure forms. 

2 Objective functions 

The objective functions investigated are as follows (for more details see [6]). 
Define the similarities in the input space (square) as F(i, j), and in the output 
space (line) as G(p,q) (figure I), where i and j are points in the input space 
and p and q are points in the output space. Let there be N points in total, and 
M be a 1-1 mapping from points in the input space to points in the output 
space. For the first three of the measures considered, both F and G are taken to 
be euclidean distances in the two spaces, with distance between neighbouring 
points in each space taken as unity. 

Metric Multidimensional Scaling [19]: minimize 

0 Sarnmon measure [17]: minimize 



0 Spearman coefficient [2]: maximize 

where Ri and Si are the corresponding rankings in the ordered lists of 
the F's and and G's. 

For the other four measures we consider, similarities are nonlinear functions of 
euclidean distance. They are all cases of the C measure [5, 71: 

for different choices of similarity function. 

0 Minimal path length [4]: F(i, j )  = euclidean distance, G(p, q) = 1 if 
p, q are neighbouring on the line and 0 otherwise. 

0 Minimal wiring [4]: G(p, q) = euclidean distance, F(i ,  j )  = 1 if i, j are 
neighbouring in the square and 0 otherwise. 

Minimal distortion [13]: F(i, j )  = squared euclidean distance, G(p, q) = 
e-d2/"2, where d = euclidean distance between p and q, and cr is the 
length scale in the output space over which nearby output points should 
represent similar input points. This is related to the minimal path length 
measure, but with a broader neighbourhood function in the output space. 

0 Inverted minimal distortion [15]: G(p,q) = squared euclidean dis- 
tance, F(i, j )  = e-d2/"2, where d = euclidean distance between i and j, 
and a is now the equivalent length scale in the input space. This is re- 
lated to the minimal wiring measure, but with a broader neighbourhood 
function in the input space. 

3 Minimization procedure 
There are of the order of loo! possible mappings for this problem, and thus opti- 
mization by exhaustive search is clearly impractical. Instead we used simulated 
annealing, a heuristic optimization method [9]. This performs gradient descent 
(or ascent, as appropriate) in the objective function, but allows occasional steps 
in the wrong direction so that the solution is less likely to get stuck in a local 
optimum. The probability of taking a step in the wrong direction is controlled 
by a "temperature" parameter that is gradually reduced. The parameters used 
were as follows [12]. The initial map between points in the square and points on 
the line was random. At each step, a candidate move consisted of interchang- 
ing a random pair of points in-the map. This move was accepted with 100% 



Figure 1: The example mapping problem (only 25 points are shown). The 
matrix F(i ,  j) defines similarities in the input space (square), the matrix G(p,  q) 
defines similarities in the output space (line), and M is the 1-1 map between 
the two spaces. 

probability if it improved the value of the objective function, or with a proba- 
bility determined by the temperature if it did not. Once the sooner of 10,000 
candidate moves had been generated or 1000 moves accepted, the temperature 
was multiplied by 0.998. The procedure was terminated when no moves were 
accepted out of 10,000 candidates at  the same temperature. Empirically, these 
values were found to produce close to optimal solutions for cases where the 
optimal solution is explicitly known (see figure 2). 

4 Results 

Figure 3 shows the maps found for the metric MDS, Sammon and Spearman 
measures. The illusion of multiple ends to the line is due to the map frequently 
doubling back on itself. For instance, consider the fifth column of the square for 
the optimal Sarnmon map (figure 3(b)). Initially the line meets this column at 
the point (5,1), counting from the bottom left corner of the square. However, 
the next point in the map is actually (5,10), followed by (5, 6), (5,-8), (5, 
7), (5,4), (5,9), (5,5), (5,3), and (5,2), where the line then proceeds on to the 
sixth column. This strong local discontinuity is the result of the more global 
optimization concerns that dominate these measures. 

Figure 4 shows minimal distortion solutions for varying a. For small a, 



Figure 2: Testing the minimization algorithm for cases where the optima are 
explicitly known. (a) Mininal path length solution, length = 100.243, 1.3% 
longer than the optimal of 99.0. (b) Minimal wiring solution, length = 917.0, 
0.3% longer than the optimal of 914.0 [4]. An optimal minimal path length 
solution was found when the cooling rate was increased to 0.9999 and the 
upper bound increased to 100,000; however it was computationally impractical 
to run all the simulations this slowly. 

the solution resembles the minimal path optimum of figure 2(a), since the con- 
tribution from more distant neighbours than nearest neighbours is negligible. 
However, as a increases the map changes form. Local continuity becomes less 
important compared to continuity at  the scale of a, the map becomes more 
spiky, and the number of large-scale folds in the map gradually decreases until 
at  a = 20 there is just one. This last map also shows some of the frequent 
doubling back behaviour seen in figure 3. 

Figure 5 shows analogous results for reversed minimal distortion. For small 
a the map somewhat resembles the minimal wiring map of figure 2(b), as 
expected. However, as a increases, the map rapidly takes on a form reminiscent 
of figure 3. 

In terms of general appearance, the optimal maps we have calculated can 
be placed into four classes. 

1: Metric MDS, Sammon, reversed minimal distortion for a = 4.0 (figs 
3(a), 3(b), 5(d)). These maps are very locally discontinuous but have a charac- 
teristic overall form. This is because they all take into account neighbourhood 
preservation at all scales. Thus local continuity is not privileged over global - 
continuity, and global concerns dominate. 

2: Minimal distortion for a 5 4.0 (fig 4(a-c)). Only local neighbourhoods on 
the line are of interest. For a 1 this means in effect only nearest neighbours, 
and so the line meanders randomly through the square. As a increases, the line 



Figure 3: Solutions found by simulated annealing for the square to line problem. 
(a) Metric MDS measure, cost = 9570087.8 (b) Sammon measure, cost = 38.5. 
(c) Spearman measure, cost = 0.698. For these measures, global topography 
dominates local topography. (d) For comparison, a map found by the elastic 
net algorithm [4]. This is less optimal than any of the maps shown in this paper 
with respect to the objective functions for which they were optimized. , 



Figure 4: Minimal distortion solutions found by simulated annealing for the 
square to line problem. (a) a = 1.0, cost = 43.3. (b) a = 2.0, cost = 214.7. (c) 
a = 4.0, cost = 833.2. (d) a = 20.0, cost = 18467.1. Note how the scale of the 
folding of the map changes with a. 



Figure 5: Reversed minimal distortion solutions found by simulated annealing 
for the square to line problem. (a) a = 1.0, cost = 6250.2. (b) a = 2.0, cost = 
86469.1. (c) a = 3.0, cost = 349926.5. (d) a = 4.0, cost = 851763.4. 



is encouraged to fold to try to keep more distant neighbours close: the scale of 
the folding depends on a. 

3: Spearman, minimal distortion for a = 20 (figs 3(c), 4(d)). Although 
these share with class 1 the property of having very global concerns, they both 
have a characteristic horseshoe shape. 

4: Reversed minimal distortion with a 5 3.0 (fig 5(a-c)). These have long 
stretches in the middle, with rapid zig-zags at the edge. 

5 Discussion 

Of the measures we have considered, only minimal distortion produces intu- 
itively appealing maps for this problem. An interesting point is that the mini- 
mal distortion measure is almost an objective function for the SOFM algorithm 
[lo], with a determining the size of the neighbourhood function [13], In the 
SOFM algorithm however a decreases with time, making it hard to draw direct 
analogies. It could be that the intuitive appeal of the maps produced by min- 
imal distortion is precisely because of wide familiarity with the behaviour of 
the SOFM, rather than for any reason more firmly rooted in the mathematics 
of neighbourhood preservation. 

What do these results tell us about which measures are appropriate for dif- 
ferent problems? If it is desired that generally nearby points should always map 
to generally nearby points as much as possible in both directions, and one is 
not concerned about very local continuity, then measures in class 1 are useful. 
This may be appropriate for some data visualization applications where the 
overall structure of the map is more important than its fine detail. If, on the 
other hand, one wants a smooth progression through the output space to imply 
a smooth progression through the input space, one should choose from class 
2. This may be important for data visualization where it is believed the data 
actually lies on a lower-dimensional manifold in the high-dimensional space. 
However, an important weakness for this representation is that some neigh- 
bourhood relationships between points in the input space may be completely 
lost in the resulting representation. For understanding the structure of cortical 
mappings, self-organizing algorithms that optimize objectives in class 2 have 
proved useful 141. Very few other objectives have been applied to this problem 
though, so it is still an open question which are most appropriate. Classes 3 
and 4 represent pathologies that have been hitherto unappreciated. There may 
be some applications for which they are worthwhile, but for brain maps they 
are unsuitable. 

6 Conclusions 
This paper has attempted to impose some order on the space of popular mea- 
sures of neighbourhood preservation, in order to better understand topographic 
mapping methods in data analysis, connectionism and neurobiology. We con- 
sidered a mapping problem that represents an extremely simple example of a 



mismatch between the dimensions of the input space and the output space. 
By examining the maps given by optimizing each measure, we tried to group 
together different types of optimal maps and thus the measures that generated 
them. The main conclusions are as follows. 

1. The optimal maps span a surprisingly broad subspace of possible maps, 
and include maps lacking local continuity. 

2. This subspace is much larger than the space of maps that are often 
referred to as topographic. This suggests that great caution should be used in 
relying on visual inspection to judge degrees of topography. 

3. The subspace of optimal maps, and thus the measures that generated 
them, can be divided into four main classes based on the general form of the 
maps produced. 

4. The structure of this subspace can provide guidance in choosing the 
most appropriate mapping measure to apply to more complex mapping prob- 
lems. For instance, finding a highly curved manifold in a higlidimensional space 
requires preservation of local but not global topography, whereas forming a low 
dimensional representation of the relationships between clusters in a high di- 
mensional space (ignoring structure within a cluster) requires preservation of 
global but not local topography. In general, the sensible use of topographic 
mapping techniques requires a good understanding of the nature of the partic- 
ular application. 
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